Conifers May Ameliorate Urban Heat Waves Better Than Broadleaf Trees: Evidence from Vancouver, Canada
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Region
2.2. Data
2.2.1. Land Cover Classification
2.2.2. Landsat
Band Transformations
2.3. Spatial Analysis
2.4. Air Temperature Comparison
2.5. Bayesian Models
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Mean | SD | 2.5% | 50% | 97.5% | n_eff | Rhat | |
---|---|---|---|---|---|---|---|
buildings | 37.27 | 0.01 | 37.24 | 37.27 | 37.29 | 5520.00 | 1.00 |
paved | 36.82 | 0.01 | 36.80 | 36.82 | 36.84 | 6138.00 | 1.00 |
otherBuilt | 36.25 | 0.14 | 35.97 | 36.25 | 36.52 | 7381.00 | 1.00 |
barren | 33.50 | 0.03 | 33.45 | 33.51 | 33.56 | 5216.00 | 1.00 |
soil | 32.52 | 0.05 | 32.43 | 32.52 | 32.61 | 2293.00 | 1.00 |
coniferous | 25.07 | 0.03 | 25.02 | 25.07 | 25.13 | 1331.00 | 1.00 |
deciduous | 28.67 | 0.01 | 28.65 | 28.67 | 28.69 | 6124.00 | 1.00 |
shrubs | 28.82 | 0.06 | 28.70 | 28.82 | 28.94 | 7278.00 | 1.00 |
modifiedGrassHerb | 31.59 | 0.01 | 31.57 | 31.59 | 31.62 | 3230.00 | 1.00 |
naturalGrassHerb | 28.81 | 0.03 | 28.74 | 28.81 | 28.87 | 4271.00 | 1.00 |
nonPhotoVeg | 32.85 | 0.07 | 32.71 | 32.85 | 32.98 | 3722.00 | 1.00 |
buildings × albedo_std | −0.75 | 0.02 | −0.79 | −0.75 | −0.71 | 7190.00 | 1.00 |
albedo_std × paved | −0.18 | 0.03 | −0.24 | −0.18 | −0.12 | 7399.00 | 1.00 |
albedo_std × otherBuilt | −1.00 | 0.16 | −1.32 | −1.00 | −0.69 | 7191.00 | 1.00 |
albedo_std × barren | 0.39 | 0.04 | 0.31 | 0.39 | 0.47 | 5799.00 | 1.00 |
albedo_std × soil | −3.39 | 0.06 | −3.51 | −3.39 | −3.28 | 2357.00 | 1.00 |
albedo_std × coniferous | 3.79 | 0.04 | 3.71 | 3.79 | 3.88 | 1354.00 | 1.00 |
albedo_std × deciduous | −1.70 | 0.03 | −1.77 | −1.70 | −1.63 | 8035.00 | 1.00 |
albedo_std × shrubs | −0.92 | 0.13 | −1.19 | −0.92 | −0.66 | 6588.00 | 1.00 |
albedo_std × modifiedGrassHerb | −2.39 | 0.02 | −2.43 | −2.39 | −2.35 | 3121.00 | 1.00 |
albedo_std × naturalGrassHerb | −1.47 | 0.08 | −1.62 | −1.47 | −1.32 | 4419.00 | 1.00 |
albedo_std × nonPhotoVeg | −0.33 | 0.13 | −0.57 | −0.33 | −0.08 | 3788.00 | 1.00 |
sigma | 3.15 | 0.00 | 3.14 | 3.15 | 3.15 | 1555.00 | 1.00 |
mean | sd | 2.5% | 50% | 97.5% | n_eff | Rhat | |
---|---|---|---|---|---|---|---|
buildings | 37.56 | 0.01 | 37.54 | 37.57 | 37.59 | 5618.00 | 1.00 |
paved | 36.97 | 0.01 | 36.95 | 36.97 | 36.99 | 6143.00 | 1.00 |
otherBuilt | 36.55 | 0.15 | 36.25 | 36.55 | 36.83 | 5412.00 | 1.00 |
barren | 33.62 | 0.03 | 33.57 | 33.62 | 33.67 | 4992.00 | 1.00 |
soil | 30.32 | 0.03 | 30.26 | 30.32 | 30.38 | 4876.00 | 1.00 |
coniferous | 23.01 | 0.01 | 22.98 | 23.01 | 23.03 | 6251.00 | 1.00 |
deciduous | 28.99 | 0.01 | 28.97 | 28.99 | 29.01 | 5824.00 | 1.00 |
shrubs | 28.59 | 0.06 | 28.48 | 28.60 | 28.71 | 5181.00 | 1.00 |
modifiedGrassHerb | 30.38 | 0.01 | 30.36 | 30.38 | 30.40 | 7429.00 | 1.00 |
naturalGrassHerb | 29.40 | 0.03 | 29.35 | 29.40 | 29.45 | 4701.00 | 1.00 |
nonPhotoVeg | 32.82 | 0.05 | 32.72 | 32.83 | 32.93 | 4411.00 | 1.00 |
sigma | 3.21 | 0.00 | 3.20 | 3.21 | 3.21 | 683.00 | 1.00 |
Mean | SD | 2.5% | 50% | 97.5% | n_eff | Rhat | |
---|---|---|---|---|---|---|---|
buildings | 0.11 | 0.00 | 0.10 | 0.11 | 0.11 | 5745.00 | 1.00 |
paved | 0.12 | 0.00 | 0.12 | 0.12 | 0.12 | 5303.00 | 1.00 |
otherBuilt | 0.12 | 0.00 | 0.11 | 0.12 | 0.12 | 4810.00 | 1.00 |
barren | 0.16 | 0.00 | 0.16 | 0.16 | 0.16 | 4966.00 | 1.00 |
soil | 0.17 | 0.00 | 0.17 | 0.17 | 0.17 | 4654.00 | 1.00 |
coniferous | 0.08 | 0.00 | 0.08 | 0.08 | 0.08 | 5753.00 | 1.00 |
deciduous | 0.12 | 0.00 | 0.12 | 0.12 | 0.12 | 5485.00 | 1.00 |
shrubs | 0.14 | 0.00 | 0.14 | 0.14 | 0.14 | 3948.00 | 1.00 |
modifiedGrassHerb | 0.16 | 0.00 | 0.16 | 0.16 | 0.16 | 6186.00 | 1.00 |
naturalGrassHerb | 0.10 | 0.00 | 0.10 | 0.10 | 0.10 | 4127.00 | 1.00 |
nonPhotoVeg | 0.15 | 0.00 | 0.15 | 0.15 | 0.15 | 4629.00 | 1.00 |
sigma | 0.03 | 0.00 | 0.03 | 0.03 | 0.03 | 1188.00 | 1.00 |
Mean | SD | 2.5% | 50% | 97.5% | n_eff | Rhat | |
---|---|---|---|---|---|---|---|
(Intercept) | 31.80 | 0.01 | 31.79 | 31.80 | 31.81 | 638.00 | 1.01 |
albedo_std | 0.72 | 0.01 | 0.69 | 0.72 | 0.74 | 4452.00 | 1.00 |
sigma | 5.16 | 0.00 | 5.16 | 5.16 | 5.17 | 2912.00 | 1.00 |
References
- Fischer, E.M.; Knutti, R. Anthropogenic contribution to global occurrence of heavy-precipitation and high-temperature extremes. Nat. Clim. Chang. 2015, 5, 560–564. [Google Scholar] [CrossRef]
- Mitchell, D.; Heaviside, C.; Vardoulakis, S.; Huntingford, C.; Masato, G.; Guillod, B.P.; Frumhoff, P.; Bowery, A.; Wallom, D.; Allen, M. Attributing human mortality during extreme heat waves to anthropogenic climate change. Environ. Res. Lett. 2016, 11, 074006. [Google Scholar] [CrossRef]
- Revich, B.A.; Shaposhnikov, D.A. Climate change, heat waves, and cold spells as risk factors for increased mortality in some regions of Russia. Stud. Russ. Econ. Dev. 2012, 23, 195–207. [Google Scholar] [CrossRef]
- Ministry of Public Safety & Solicitor General. BC Coroners Service (BCCS) Heat-Related Deaths–Knowledge Update 2021. Available online: https://www2.gov.bc.ca/assets/gov/birth-adoption-death-marriage-and-divorce/deaths/coroners-service/statistical/heat_related_deaths_in_bc_knowledge_update.pdf (accessed on 20 March 2022).
- Tait, C.; Hager, J.K.M.; First Nations in British Columbia threaten to block rail traffic over fire recovery fears. Globe Mail, 5 July 2021. Available online: https://www.theglobeandmail.com/canada/article-first-nations-in-british-columbia-threaten-to-block-rail-traffic-over/ (accessed on 20 March 2022).
- Watts, N.; Adger, W.N.; Agnolucci, P.; Blackstock, J.; Byass, P.; Cai, W.; Chaytor, S.; Colbourn, T.; Collins, M.; Cooper, A.; et al. Health and climate change: Policy responses to protect public health. Lancet 2015, 386, 1861–1914. [Google Scholar] [CrossRef]
- Russo, S.; Dosio, A.; Graversen, R.G.; Sillmann, J.; Carrao, H.; Dunbar, M.B.; Singleton, A.; Montagna, P.; Barbola, P.; Vogt, J.V. Magnitude of extreme heat waves in present climate and their projection in a warming world. J. Geophys. Res. Atmos. 2014, 119, 12500–12512. [Google Scholar] [CrossRef] [Green Version]
- Molina, L.T.; Molina, M.J.; Slott, R.S.; Kolb, C.E.; Gbor, P.K.; Meng, F.; Singh, R.B.; Galvez, O.; Sloan, J.J.; Anderson, W.P.; et al. Air Quality in Selected Megacities. J. Air Waste Manag. Assoc. 2004, 54, 1–73. [Google Scholar] [CrossRef]
- Oke, T.; Maxwell, G. Urban heat island dynamics in Montreal and Vancouver. Atmos. Environ. 1975, 9, 191–200. [Google Scholar] [CrossRef]
- Peng, S.; Piao, S.; Ciais, P.; Friedlingstein, P.; Ottle, C.; Bréon, F.M.; Nan, H.; Zhou, L.; Myneni, R.B. Surface Urban Heat Island Across 419 Global Big Cities. Environ. Sci. Technol. 2011, 46, 696–703. [Google Scholar] [CrossRef]
- Kong, J.; Zhao, Y.; Carmeliet, J.; Lei, C. Urban heat island and its interaction with heatwaves: A review of studies on mesoscale. Sustainability 2021, 13, 10923. [Google Scholar] [CrossRef]
- Wang, C.; Wang, Z.H.; Wang, C.; Myint, S.W. Environmental cooling provided by urban trees under extreme heat and cold waves in U.S. cities. Remote Sens. Environ. 2019, 227, 28–43. [Google Scholar] [CrossRef]
- Bowler, D.E.; Buyung-Ali, L.; Knight, T.M.; Pullin, A.S. Urban greening to cool towns and cities: A systematic review of the empirical evidence. Landsc. Urban Plan. 2010, 97, 147–155. [Google Scholar] [CrossRef]
- Wang, C.; Wang, Z.H.; Yang, J. Cooling Effect of Urban Trees on the Built Environment of Contiguous United States. Earth’s Future 2018, 6, 1066–1081. [Google Scholar] [CrossRef] [Green Version]
- Liébard, A.; de Herde, A. Traité D’architecture et D’urbanisme Bioclimatiques: Concevoir, Édifier et Aménager Avec le Développement Durable; Paris Observ’ER: Paris, France, 2005. [Google Scholar]
- Georgi, N.J.; Zafiriadis, K. The impact of park trees on microclimate in urban areas. Urban Ecosyst. 2006, 9, 195–209. [Google Scholar] [CrossRef]
- Domke, G.M.; Oswalt, S.N.; Walters, B.F.; Morin, R.S. Tree planting has the potential to increase carbon sequestration capacity of forests in the United States. Proc. Natl. Acad. Sci. USA 2020, 117, 24649–24651. [Google Scholar] [CrossRef]
- Vancouver City Planning Commission. Climate Emergency: Extreme Heat and Air Quality Mitigation; Vancouver City Planning Commission: Vancouver, BC, Canada, 2021. [Google Scholar]
- Rahman, M.A.; Stratopoulos, L.M.; Moser-Reischl, A.; Zölch, T.; Häberle, K.H.; Rötzer, T.; Pretzsch, H.; Pauleit, S. Traits of trees for cooling urban heat islands: A meta-analysis. Build. Environ. 2020, 170, 106606. [Google Scholar] [CrossRef]
- Rahman, M.A.; Armson, D.; Ennos, A.R. A comparison of the growth and cooling effectiveness of five commonly planted urban tree species. Urban Ecosyst. 2014, 18, 371–389. [Google Scholar] [CrossRef]
- Georgi, J.N.; Dimitriou, D. The contribution of urban green spaces to the improvement of environment in cities: Case study of Chania, Greece. Build. Environ. 2010, 45, 1401–1414. [Google Scholar] [CrossRef] [Green Version]
- Konarska, J.; Uddling, J.; Holmer, B.; Lutz, M.; Lindberg, F.; Pleijel, H.; Thorsson, S. Transpiration of urban trees and its cooling effect in a high latitude city. Int. J. Biometeorol. 2015, 60, 159–172. [Google Scholar] [CrossRef]
- Napoli, M.; Massetti, L.; Brandani, G.; Petralli, M.; Orlandini, S. Modeling Tree Shade Effect on Urban Ground Surface Temperature. J. Environ. Qual. 2016, 45, 146–156. [Google Scholar] [CrossRef]
- Song, J.; Wang, Z.H. Diurnal changes in urban boundary layer environment induced by urban greening. Environ. Res. Lett. 2016, 11, 114018. [Google Scholar] [CrossRef] [Green Version]
- Spronken-Smith, R.A.; Oke, T.R. The thermal regime of urban parks in two cities with different summer climates. Int. J. Remote Sens. 1998, 19, 2085–2104. [Google Scholar] [CrossRef]
- City of Vancouve Open Data Portal. Street Trees. 2022. Available online: https://opendata.vancouver.ca/explore/dataset/street-trees/information/ (accessed on 20 March 2022).
- Diamond Head Consulting. District of North Vancouver Fromme Mountain Area Ecosystem Analysis; Citeseer: Princeton, NJ, USA, 2004; pp. 1–22. [Google Scholar]
- Earth Resources Observation And Science (EROS) Center. Collection-2 Landsat 8-9 OLI (Operational Land Imager) and TIRS (Thermal Infrared Sensor) Level-2 Science Products. 2013. Available online: https://www.usgs.gov/centers/eros/science/usgs-eros-archive-landsat-archives-landsat-8-9-olitirs-collection-2-level-2 (accessed on 20 March 2022). [CrossRef]
- EROS. Landsat 8-9Operational Land Imager (OLI)-Thermal Infrared Sensor (TIRS)Collection 2 Level 2 (L2) Data Format Control Book (DFCB); United States Geological Survey: Reston, VA, USA, 2020. [Google Scholar]
- Dare, R. A system dynamics model to facilitate the development of policy for urban heat island mitigation. Urban Sci. 2021, 5, 19. [Google Scholar] [CrossRef]
- Lee, D.; Seo, M.; Lee, K.; Choi, S.; Sung, N.; Kim, H.; Jin, D.; Kwon, C.; Huh, M.; Han, K. Landsat 8-based high resolution surface broadband albedo retrieval. Korean J. Remote Sens. 2016, 32, 741–746. [Google Scholar] [CrossRef] [Green Version]
- Xu, H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Gelman, A. Scaling regression inputs by dividing by two standard deviations. Stat. Med. 2008, 27, 2865–2873. [Google Scholar] [CrossRef]
- Lawson, J.; Willden, C. Mixture experiments in R using mixexp. J. Stat. Softw. 2016, 72, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Scheffé, H. Experiments with mixtures. J. R. Stat. Soc. Ser. B 1958, 20, 344–360. [Google Scholar] [CrossRef]
- Anderson-Cook, C.M.; Goldfarb, H.B.; Borror, C.M.; Montgomery, D.C.; Canter, K.G.; Twist, J.N. Mixture and mixture-process variable experiments for pharmaceutical applications. Pharm. Stat. 2004, 3, 247–260. [Google Scholar] [CrossRef]
- Carpenter, B.; Gelman, A.; Hoffman, M.D.; Lee, D.; Goodrich, B.; Betancourt, M.; Brubaker, M.; Guo, J.; Li, P.; Riddell, A. Stan: A probabilistic programming language. J. Stat. Softw. 2017, 76, 1–32. [Google Scholar] [CrossRef] [Green Version]
- Vehtari, A.; Gelman, A.; Simpson, D.; Carpenter, B.; Bürkner, P.C. Rank-normalization, folding, and localization: An improved R-hat for assessing convergence of MCMC (with Discussion). Bayesian Anal. 2021, 16, 667–718. [Google Scholar] [CrossRef]
- Domingo, F.; van Gardingen, P.; Brenner, A. Leaf boundary layer conductance of two native species in southeast Spain. Agric. For. Meteorol. 1996, 81, 179–199. [Google Scholar] [CrossRef]
- Ewers, B.E.; Mackay, D.S.; Gower, S.T.; Ahl, D.E.; Burrows, S.N.; Samanta, S.S. Tree species effects on stand transpiration in northern Wisconsin. Water Resour. Res. 2002, 38, 8-1–8-11. [Google Scholar] [CrossRef]
- Seginer, I. The effect of albedo on the evapotranspiration rate. Agric. Meteorol. 1969, 6, 5–31. [Google Scholar] [CrossRef]
- Melles, S. Effects of Landscape and Local Habitat Features on Bird Communities: A Study of an Urban Gradient in Greater Vancouver. Ph.D. Thesis, University of British Columbia, Vancouver, BC, Canada, 2000. [Google Scholar]
- Ley, D. Between Europe and Asia: The case of the missing sequoias. Ecumene 1995, 2, 187–212. [Google Scholar] [CrossRef]
- Pace, R.; Fino, F.D.; Rahman, M.A.; Pauleit, S.; Nowak, D.J.; Grote, R. A single tree model to consistently simulate cooling, shading, and pollution uptake of urban trees. Int. J. Biometeorol. 2021, 65, 277–289. [Google Scholar] [CrossRef]
- Stoll, M.J.; Brazel, A.J. Surface-air temperature relationships in the urban environment of Phoenix, Arizona. Phys. Geogr. 1992, 13, 160–179. [Google Scholar] [CrossRef]
- Shiflett, S.A.; Liang, L.L.; Crum, S.M.; Feyisa, G.L.; Wang, J.; Jenerette, G.D. Variation in the urban vegetation, surface temperature, air temperature nexus. Sci. Total Environ. 2017, 579, 495–505. [Google Scholar] [CrossRef]
- Budei, B.C.; St-Onge, B.; Hopkinson, C.; Audet, F.A. Identifying the genus or species of individual trees using a three-wavelength airborne lidar system. Remote Sens. Environ. 2018, 204, 632–647. [Google Scholar] [CrossRef]
- Wang, K.; Wang, T.; Liu, X. A review: Individual tree species classification using integrated airborne LiDAR and optical imagery with a focus on the urban environment. Forests 2019, 10, 1. [Google Scholar] [CrossRef] [Green Version]
- Myint, S.W.; Zheng, B.; Talen, E.; Fan, C.; Kaplan, S.; Middel, A.; Smith, M.; Huang, H.-P.; Brazel, A. Does the spatial arrangement of urban landscape matter? examples of urban warming and cooling in phoenix and las vegas. Ecosyst. Health Sustain. 2015, 1, 1–15. [Google Scholar] [CrossRef]
- Environment and Climate Change Canada. Nature Smart Climate Solutions Fund; Environment and Climate Change Canada: Vancouver, BC, Canada, 2021.
- Restaino, C.M.; Peterson, D.L.; Littell, J. Increased water deficit decreases Douglas fir growth throughout western US forests. Proc. Natl. Acad. Sci. USA 2016, 113, 9557–9562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melles, S.; Glenn, S.; Martin, K. Urban bird diversity and landscape complexity: Species– environment associations along a multiscale habitat gradient. Conserv. Ecol. 2003, 7, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Tallamy, D.W. Do alien plants reduce insect biomass? Conserv. Biol. 2004, 18, 1689–1692. [Google Scholar] [CrossRef]
- Zahn, M.J.; Palmer, M.I.; Turner, N.J. “Everything we do, it’s cedar”: First Nation and ecologically-based forester land management philosophies in coastal british columbia. J. Ethnobiol. 2018, 38, 314. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eyster, H.N.; Beckage, B. Conifers May Ameliorate Urban Heat Waves Better Than Broadleaf Trees: Evidence from Vancouver, Canada. Atmosphere 2022, 13, 830. https://doi.org/10.3390/atmos13050830
Eyster HN, Beckage B. Conifers May Ameliorate Urban Heat Waves Better Than Broadleaf Trees: Evidence from Vancouver, Canada. Atmosphere. 2022; 13(5):830. https://doi.org/10.3390/atmos13050830
Chicago/Turabian StyleEyster, Harold N., and Brian Beckage. 2022. "Conifers May Ameliorate Urban Heat Waves Better Than Broadleaf Trees: Evidence from Vancouver, Canada" Atmosphere 13, no. 5: 830. https://doi.org/10.3390/atmos13050830
APA StyleEyster, H. N., & Beckage, B. (2022). Conifers May Ameliorate Urban Heat Waves Better Than Broadleaf Trees: Evidence from Vancouver, Canada. Atmosphere, 13(5), 830. https://doi.org/10.3390/atmos13050830