A Review on the Observed Climate Change in Europe and Its Impacts on Viticulture
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Observed CC and Its Impact on Phenology
3.2. Observed CC and Its Impact on Quality
3.3. Observed CC and Its Impact on Production-Yield
3.4. Observed CC and Its Impact on Spatiotemporal Characteristics of Viticultural Areas
4. Summary—Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Glossary
Appendix B. Synoptic Description of the Compiled Scientific Outcomes on the Change in Climate and Its Impacts on Grapevine Performance
European Country | Country Region | Years (Time Period of Climatic Data Recording) | Climate and Bioclimate Parameters Change | Impacts on Viticulture | [Reference] |
---|---|---|---|---|---|
France Italy Spain Germany Slovakia | E(Alsace), NE(Reims), CE (Burgundy), SW (Bordeaux) NE (Conegliano) NW (Valladolid) NW (Pontevedra) W (Geisenheim) S (Dolné Plachtince) | 52 years (1952–2004) | (↑) GST (↑) GSTmax (↑) GSTmin (↑) HI (↑) GDD | Earlier phenological events; shorter phenological intervals | Jones et al. (2005) [17] |
France | E (Alsace) | 30 years (1972–2003) | (↑) Tan (↑) HI (↑) NDT10 | Advancement of phenophases; shortening of phenological intervals; earlier harvest/higher sugar content; higher alcoholic strength | Duchêne and Schneider (2005) [71] |
France | S (Hérault) | 56 years (1950–2006) | (↑) Tan (↑) PET (↑) SR (↑) HI | Advancement of harvest dates/increase in sugar concentrations at harvest; increase in alcoholic content and of pH in wine; decrease in titratable acidity in wine | Laget et al. (2008) [130] |
France | NW (Loire Valley) | 50 years (1960–2010) | (↑) GST (↑) GSTmax (↑) GSTmin (↑) NDT30 (↑) HI, GDD | Earlier harvest dates/Increase in sugar levels; increase in ethanol content; decrease of acid concentration | Neethling et al. (2012) [131] |
France | S (Roussillon) | 85 years (1925–2010) | (↑) GST (↑) GSTmin (↓) Ps, (↓) Paut | Increase in wine alcoholization/decrease in yields | Lereboullet et al. (2014) [150] |
France Switzerland | 20th c. (1901–2007) | (↑) Tsp, Ts (↓) Psp, (↓) Ps | Earlier harvest | Cook and Wolkovich (2016) [132] | |
Italy | N (Conegliano in Veneto) | 45 years (1964–2009) | (↑) GST (↑) GSTmax, (↑) GSTmin | Earlier phenological events; shorter phenological intervals; earlier harvest | Tomasi et al. (2011) [24] |
Italy France | C (Abruzzo) SW (Bordeaux) | 35 years (1974–2009) | (↑) GST (↑) DTR (↑) NDT30 (↑) AT, HI, NHH | Advancement of harvest dates | Di Lena et al. (2012) [134] |
Italy | C (Abruzzo) | 40 years (1974–2013) | (↑) Tan (↑) HS, HI, NHH, GDH, GI, HTE | Advancement of harvest dates; shortening of growing season | Di Lena et al. (2019) [133] |
Italy | C (Abruzzo) | 53 years (1959–2012) | (↑) GST (↑) Pint | Earlier harvest | Di Carlo et al. (2019) [135] |
Italy | N (Romagna Sangiovese) | 61 years (1953–2013) | (↑) GST (↑) GSTmax (↑) GSTmin (↑) GDD, HI, DSI | Increase in alcohol content in wines/increase in yields | Teslić et al. (2018) [126] |
Italy | C (Umbria) | 20 years (1995–2015) | (↑) Tan (↑) GST (↑) NDT30 (↑) WI, HI, CI | Advanced and delayed harvest dates (dependent on genotype)/reduction in titratable acidity in white berries; decrease or increase in sugar content in red berries (dependent on genotype) | Biasi et al. (2019) [136] |
Italy | C (Marche) | 50 years (1971–2020) | (↑) Tan (↑) Tanmax | Decrease in wine grape production | Gentilucci et al. (2020) [153] |
Italy | N (South Tyrol) | 25 years (1996–2021) | (↑) Tbud | Earlier harvest | Ferretti et al. (2021) [72] |
Spain | NE (Alt Penedès, Priorat, Segrià) | 45 years (1952–2006) | (↑) GST (↑) GSTmax (↑) NDT30 (↑) DTR (↓) Pbl-vr (↑) ETc (↑) WI, HI | Earlier phenological events; earlier harvest/Increase in wine quality/Decrease in yields | Ramos et al. (2008) [73] |
Spain | NE (Vilafranca del Penedès, Sant Sadurni d’Anoia and Sant Martí Sarroca in Penedès) | 50 years (1960–2009) | (↑) GST (↑) NDT30 (↓) Pbl-vr (↑) ETc (↑) WI | Advancement in harvest dates/Decrease in yields | Camps and Ramos (2012) [74] |
Luxembourg–Germany | Upper Moselle or German-Luxembourgian Moselle | 55 years (1951–2005) | (↑) Tan (↑) Tanmax (↑) Tanmin | Earlier phenological events/Increase in must density; decrease in acidity | Urhausen et al. (2011) [137] |
Germany | SW (Schloß Johannisberg in Rheingau region) | 78 years (1932–2010) | (↑) GST | Decrease in total acidity at harvest | Schultz and Jones (2010) [151] |
Germany | S (Würzburg–Lower Franconia) | 62 years (1948–2010) | (↑) GSTmax | Advancement of phenophases; shortening of phenological intervals/increase in sugar content | Bock et al. (2011) [127] |
Germany | S (Würzburg–Lower Franconia) | ~2 c. (1805–1998) | (↑) Tmn (↑) Tan | Increase in must sugar content/increase in yields | Bock et al. (2013) [152] |
Germany | SW (Hainfeld–Southern Palatinate) | 40 years (1975–2015) | (↑) Tan (↑) Tanmin (↑) Tanmax (↑) HI | Advancement in phenophases; earlier harvest/Increase in juice sugar concentration/decrease in juice yields | Koch and Oehl (2018) [138] |
Finland | S (Helsinki) | 20 years (2000–2019) | (↑) Tan | Shortening of growth cycle; earlier harvest | Karvonen (2020) [139] |
Romania | SW (Oltenia) | 60 years (1951–2009) | (↑) Tan | Precociousness of vegetation cycle; advancement of phenological phases; earlier grape maturity; earlier harvest/Increase in sugar content in grapes; decrease in total acidity in grapes | Baduca Campeanu et al. (2012) [140] |
Poland | C (Skierniewice) | 22 years (1986–2007) | (↑) Tan (↑) GST | Earlier phenological stages/Increase in cluster and berry weight; increase in fruit extract content | Lisek (2008) [141] |
Hungary | NW (Sopron) | 30 years (1986–2015) | (↑) Tan (↑) GST (↓) GSP (↑) GDD, HI | Extension of total planted area; Increase in cultivated wine varieties | Kovács et al. (2017) [161] |
Hungary | NW (Sopron, Zala) | 30 years (1986–2015) | (↑) GST (↑)NDT30, (↑)NDT35 (↓) GSP | Earlier phenological phases; shortening of phenological intervals; earlier harvest | Kovács et al.(2018) [142] |
Serbia | N (Sremski Karlovci) | 27 years (1981–2007) | (↑) Tan (↑) GSTmax, GSTmin (↑) GDD | Advancement of phenological stages; earlier harvest | Ruml et al. (2016) [143] |
Serbia | N (Vojvodina) | 32 years (1986–2018) | (↑) Tmn (↑) Pmn | Earlier phenological stages; shortening of phenological intervals | Ivanišević et al. (2019) [144] |
Slovenia | NE (Styria) | 60 years (1950–2009) | (↑) Tan (↑) GST (↑) NDT30 (↑) HI | Shortening of growing season; earlier maturity; earlier harvest/increase in the sugar levels in berries; decrease in total acidity in berries | Vršič and Vodovnik (2012) [145] Vršič et al. (2014) [146] |
Slovakia | S (Dolné Plachtince) | 34 years (1985–2018) | (↑) Tan (↑) GST (↑) GDD, HI | Earlier onset of phenophases; shortening and lengthening of interphase intervals; advancement of harvest | Bernáth et al. (2021) [147] |
Greece | Limnos, Samos, Santorini Anchialos, Pyrgos, Rodos, Nemea, Naousa | 36 years (1974–2010) | (↑) GST (↑) GSTmax (↑) GSTmin (↑) GDD | Earlier harvest | Koufos et al. (2014) [148] |
Greece | Samos, Crete, Drama, Kavala, Maronia, Tripoli, Chalkidiki, Limnos Naousa, Rodos, Santorini, Nemea, Aigialia, Pyrgos | 43 years (1974–2017) | (↑) Tdmax | Earlier harvest/Increase in alcohol levels; decrease in acidity | Koufos et al. (2020) [149] |
UK | England, Wales | 70 years (1954–2013) | (↑) GST | Increase in total hectarage; increase in average vineyard size | Nesbitt et al. (2019) [154] Nesbitt et al. (2016) [155] |
Denmark | 50 years (1961–2011) | (↑) Tan | Increase in interest for wine production expansion | Smith and Bentzen (2011) [156] | |
Finland | S (Helsinki) | 43 years (1971–2014) | (↑) Tan | Growing interest towards viticulture | Karvonen (2015) [157] |
Poland | 8 years (2009–2017) 10 years (2009–2019) | (↑) GST | Revival of viticulture; growth in the number of grapevine plantations; increase in total vineyard area | Maciejczak and Mikiciuk (2019) [158] Mazurkiewicz-Pizło and Pizło (2018) [159] Pijet-Migoń and Królikowska (2020) [160] | |
N = North; S = South; E = East; W = West; CE = Central east, SW = Southwest; NE = Northeast; NW = Northwest; C = Central; (↑) = increase; (↓) = decrease; AT = Active Temperature; CI = Cool night Index; DSI = Dry Spell Index; DTR = Diurnal Temperature Range; ETc = crop EvapoTranspiration; GDD = Growing Degree-Days index; GDH = Growing Degree Hours; GI = Gladstone Index; GSP = Growing Season Precipitation; GST = average Growing Season Temperature; GSTmax = average Growing Season maximum Temperature; GSTmin = average Growing Season minimum Temperature; HI = Huglin Index; HS = Heat Summation; HTE = High Thermal Excesses; NDT10 = number of days with T > 10 °C; NDT25 = number of days with T > 25 °C; NDT30 = number of days with T > 30 °C; NDT35 = number of days with T > 35 °C; NHH = Normal Heat Hours; Paut = autumn Precipitation; Pbl-vr = Precipitation from bloom to veraison; PET = Potential EvapoTranspiration; Pint = Precipitation intensity; Pmn = mean monthly Precipitation; Ps = summer Precipitation; Psp = spring Precipitation; SR = Solar Radiation; Tan = mean annual temperature; Tanmax = mean annual maximum temperature; Tanmin =mean annual minimum temperature; Tbud = budding season temperature; Tdmax = mean daily maximum temperature; Tmn = mean monthly temperature; Ts = summer temperature; Tsp = spring temperature; WI = Winkler Index. |
References
- Brooks, N.; Grist, N.; Brown, K. Development Futures in the Context of Climate Change: Challenging the Present and Learning from the Past. Dev. Policy Rev. 2009, 27, 741–765. [Google Scholar] [CrossRef]
- Core Writing Team; Pachauri, R.K.; Reisinger, A. (Eds.) IPCC, 2007: Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2007; p. 104. ISBN 92-9169-122-4. [Google Scholar]
- Core Writing Team; Pachauri, R.K.; Meyer, L. (Eds.) IPCC, 2014: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014; p. 151. ISBN 978-92-9169-143-2. [Google Scholar]
- Charalampopoulos, I.; Droulia, F. The Agro-Meteorological Caused Famines as an Evolutionary Factor in the Formation of Civilisation and History: Representative Cases in Europe. Climate 2021, 9, 5. [Google Scholar] [CrossRef]
- Houghton, J.T.; Ding, Y.; Griggs, D.J.; Noguer, N.; van der Linden, P.J.; Dai, X.; Maskell, K.; Johnson, C.A. (Eds.) IPCC, 2001: Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Cambridge, UK, 2001; p. 881. ISBN 0521-80767-0. [Google Scholar]
- Kostopoulou, E.; Jones, P.D. Assessment of Climate Extremes in the Eastern Mediterranean. Meteorol. Atmos. Phys. 2005, 89, 69–85. [Google Scholar] [CrossRef]
- Perkins-Kirkpatrick, S.E.; Lewis, S.C. Increasing Trends in Regional Heatwaves. Nat. Commun. 2020, 11, 3357. [Google Scholar] [CrossRef]
- Hari, V.; Rakovec, O.; Markonis, Y.; Hanel, M.; Kumar, R. Increased Future Occurrences of the Exceptional 2018–2019 Central European Drought under Global Warming. Sci. Rep. 2020, 10, 12207. [Google Scholar] [CrossRef]
- Zeder, J.; Fischer, E.M. Observed Extreme Precipitation Trends and Scaling in Central Europe. Weather Clim. Extrem. 2020, 29, 100266. [Google Scholar] [CrossRef]
- Harkness, C.; Semenov, M.A.; Areal, F.; Senapati, N.; Trnka, M.; Balek, J.; Bishop, J. Adverse Weather Conditions for UK Wheat Production under Climate Change. Agric. For. Meteorol. 2020, 282–283, 107862. [Google Scholar] [CrossRef]
- Lavalle, C.; Micale, F.; Houston, T.D.; Camia, A.; Hiederer, R.; Lazar, C.; Conte, C.; Amatulli, G.; Genovese, G. Climate Change in Europe. 3. Impact on Agriculture and Forestry. A Review. Agron. Sustain. Dev. 2009, 29, 433–446. [Google Scholar] [CrossRef] [Green Version]
- Jones, G.V. Climate, Grapes, and Wine: Structure and Suitability in a Changing Climate. Acta Hortic. 2012, 931, 19–28. [Google Scholar] [CrossRef]
- Ortiz-Bobea, A.; Ault, T.R.; Carrillo, C.M.; Chambers, R.G.; Lobell, D.B. Anthropogenic Climate Change Has Slowed Global Agricultural Productivity Growth. Nat. Clim. Chang. 2021, 11, 306–312. [Google Scholar] [CrossRef]
- Labriet, M.; Joshi, S.R.; Vielle, M.; Holden, P.B.; Edwards, N.R.; Kanudia, A.; Loulou, R.; Babonneau, F. Worldwide Impacts of Climate Change on Energy for Heating and Cooling. Mitig. Adapt. Strateg. Glob. Chang. 2015, 20, 1111–1136. [Google Scholar] [CrossRef] [Green Version]
- Venäläinen, A.; Lehtonen, I.; Laapas, M.; Ruosteenoja, K.; Tikkanen, O.-P.; Viiri, H.; Ikonen, V.-P.; Peltola, H. Climate Change Induces Multiple Risks to Boreal Forests and Forestry in Finland: A Literature Review. Glob. Chang. Biol. 2020, 26, 4178–4196. [Google Scholar] [CrossRef] [PubMed]
- Dogru, T.; Marchio, E.A.; Bulut, U.; Suess, C. Climate Change: Vulnerability and Resilience of Tourism and the Entire Economy. Tour. Manag. 2019, 72, 292–305. [Google Scholar] [CrossRef]
- Jones, G.V.; Duchêne, E.; Tomasi, D.; Yuste, J.; Braslavska, O.; Schultz, H.; Martinez, C.; Boso, S.; Langellier, F.; Perruchot, C.; et al. Changes in European Winegrape Phenology and Relationships with Climate. In Proceedings of the XIV International GESCO Viticulture Congress, Geisenheim, Germany, 23–27 August 2005; pp. 54–61. [Google Scholar]
- Droulia, F.; Charalampopoulos, I. Future Climate Change Impacts on European Viticulture: A Review on Recent Scientific Advances. Atmosphere 2021, 12, 495. [Google Scholar] [CrossRef]
- Jones, G.V.; White, M.A.; Cooper, O.R.; Storchmann, K. Climate Change and Global Wine Quality. Clim. Chang. 2005, 73, 319–343. [Google Scholar] [CrossRef]
- Grassi, F.; Labra, M.; Imazio, S.; Spada, A.; Sgorbati, S.; Scienza, A.; Sala, F. Evidence of a Secondary Grapevine Domestication Centre Detected by SSR Analysis. Theor. Appl. Genet. 2003, 107, 1315–1320. [Google Scholar] [CrossRef]
- Parker, A.K.; García de Cortázar-Atauri, I.; Gény, L.; Spring, J.-L.; Destrac, A.; Schultz, H.; Molitor, D.; Lacombe, T.; Graça, A.; Monamy, C.; et al. Temperature-Based Grapevine Sugar Ripeness Modelling for a Wide Range of Vitis vinifera L. Cultivars. Agric. For. Meteorol. 2020, 285–286, 107902. [Google Scholar] [CrossRef]
- Rodrigues, P.; Pedroso, V.; Gonçalves, F.; Reis, S.; Santos, J.A. Temperature-Based Grapevine Ripeness Modeling for Cv. Touriga Nacional and Encruzado in the Dão Wine Region, Portugal. Agronomy 2021, 11, 1777. [Google Scholar] [CrossRef]
- OIV. Statistical Report on World Vitiviniculture. International Organisation of Vine And Wine: Paris, France. 2019. Available online: https://www.oiv.int/public/medias/6782/oiv-2019-statistical-report-on-world-vitiviniculture.pdf (accessed on 25 November 2021).
- Tomasi, D.; Jones, G.V.; Giust, M.; Lovat, L.; Gaiotti, F. Grapevine Phenology and Climate Change: Relationships and Trends in the Veneto Region of Italy for 1964–2009. Am. J. Enol. Vitic. 2011, 62, 329–339. [Google Scholar] [CrossRef]
- Coombe, B.G. Influence of Temperature on Composition and Quality of Grapes. Acta Hortic. 1987, 206, 23–36. [Google Scholar] [CrossRef]
- Keller, M.; Tarara, J.M.; Mills, L.J. Spring Temperatures Alter Reproductive Development in Grapevines. Aust. J. Grape Wine Res. 2010, 16, 445–454. [Google Scholar] [CrossRef]
- Torregrosa, L.; Bigard, A.; Doligez, A.; Lecourieux, D.; Rienth, M.; Luchaire, N.; Pieri, P.; Chatbanyong, R.; Shahood, R.; Farnos, M.; et al. Developmental, Molecular and Genetic Studies on Grapevine Response to Temperature Open Breeding Strategies for Adaptation to Warming. OENO One 2017, 51, 155–165. [Google Scholar] [CrossRef]
- Gil, P.M.; Lobos, P.; Durán, K.; Olguín, J.; Cea, D.; Schaffer, B. Partial Root-Zone Drying Irrigation, Shading, or Mulching Effects on Water Savings, Productivity and Quality of ‘Syrah’ Grapevines. Sci. Hortic. 2018, 240, 478–483. [Google Scholar] [CrossRef]
- Romić, D.; Karoglan Kontić, J.; Preiner, D.; Romić, M.; Lazarević, B.; Maletić, E.; Ondrašek, G.; Andabaka, Ž.; Bakić Begić, H.; Bubalo Kovačić, M.; et al. Performance of Grapevine Grown on Reclaimed Mediterranean Karst Land: Appearance and Duration of High Temperature Events and Effects of Irrigation. Agric. Water Manag. 2020, 236, 106166. [Google Scholar] [CrossRef]
- Carbone, A.; Quici, L.; Pica, G. The Age Dynamics of Vineyards: Past Trends Affecting the Future. Wine Econ. Policy 2019, 8, 38–48. [Google Scholar] [CrossRef]
- Ramos, M.C.; Martínez de Toda, F. Variability in the Potential Effects of Climate Change on Phenology and on Grape Composition of Tempranillo in Three Zones of the Rioja DOCa (Spain). Eur. J. Agron. 2020, 115, 126014. [Google Scholar] [CrossRef]
- Sadras, V.O.; Moran, M.A. Elevated Temperature Decouples Anthocyanins and Sugars in Berries of Shiraz and Cabernet Franc. Aust. J. Grape Wine Res. 2012, 18, 115–122. [Google Scholar] [CrossRef]
- Gonzalez Antivilo, F.; Paz, R.C.; Echeverria, M.; Keller, M.; Tognetti, J.; Borgo, R.; Roig Juñent, F. Thermal History Parameters Drive Changes in Physiology and Cold Hardiness of Young Grapevine Plants during Winter. Agric. For. Meteorol. 2018, 262, 227–236. [Google Scholar] [CrossRef]
- Buttrose, M.S. Fruitfulness in Grapevines: Effects of Light Intensity and Temperature. Int. J. Plant Sci. 1969, 130, 166–173. [Google Scholar] [CrossRef]
- Greer, D.H.; Weedon, M.M. The Impact of High Temperatures on Vitis vinifera Cv. Semillon Grapevine Performance and Berry Ripening. Front. Plant Sci. 2013, 4, 491. [Google Scholar] [CrossRef] [Green Version]
- Keller, M.; Tarara, J.M. Warm Spring Temperatures Induce Persistent Season-Long Changes in Shoot Development in Grapevines. Ann. Bot. 2010, 106, 131–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Rességuier, L.; Mary, S.; Le Roux, R.; Petitjean, T.; Quénol, H.; van Leeuwen, C. Temperature Variability at Local Scale in the Bordeaux Area. Relations With Environmental Factors and Impact on Vine Phenology. Front. Plant Sci. 2020, 11, 515. [Google Scholar] [CrossRef] [PubMed]
- Amerine, M.A.; Winkler, A.J. Composition and Quality of Musts and Wines of California Grapes. Hilgardia 1944, 15, 493–675. [Google Scholar] [CrossRef] [Green Version]
- Dokoozlian, N.K. Chilling Temperature and Duration Interact on the Budbreak of ‘Perlette’ Grapevine Cuttings. Hortscience 1999, 34, 1–3. [Google Scholar] [CrossRef] [Green Version]
- Bates, T.; Dunst, R.; Forster, P. Seasonal Dry Matter, Starch, and Nutrient Distribution in ‘Concord’ Grapevine Roots. HortScience 2002, 37, 313–316. [Google Scholar] [CrossRef] [Green Version]
- Field, S.K.; Smith, J.P.; Holzapfel, B.P.; Hardie, W.; Emery, R. Grapevine Response to Soil Temperature: Xylem Cytokinins and Carbohydrate Reserve Mobilization from Budbreak to Anthesis. Am. J. Enol. Vitic. 2009, 60, 164–172. [Google Scholar]
- Spellman, G. Wine, Weather and Climate. Weather 1999, 54, 230–239. [Google Scholar] [CrossRef]
- Gonzalez Antivilo, F.; Paz, R.C.; Tognetti, J.; Keller, M.; Cavagnaro, M.; Barrio, E.E.; Roig Juñent, F. Winter Injury to Grapevine Secondary Phloem and Cambium Impairs Budbreak, Cambium Activity, and Yield Formation. J. Plant Growth Regul. 2020, 39, 1095–1106. [Google Scholar] [CrossRef]
- Winkler, A.J.; Cook, A.; Kliewer, W.M.; Lider, L.A. General Viticulture, 4th ed.; University of California Press: Berkeley, CA, USA, 1974; ISBN 978-0-520-01349-0. [Google Scholar]
- Fennell, A. Freezing Tolerance and Injury in Grapevines. J. Crop Improv. 2004, 10, 201–235. [Google Scholar] [CrossRef]
- Greer, D.H.; Weedon, M.M. Interactions between Light and Growing Season Temperatures on, Growth and Development and Gas Exchange of Semillon (Vitis vinifera L.) Vines Grown in an Irrigated Vineyard. Plant Physiol. Biochem. 2012, 54, 59–69. [Google Scholar] [CrossRef]
- Bernardo, S.; Dinis, L.T.; Machado, N.; Moutinho-Pereira, J. Grapevine Abiotic Stress Assessment and Search for Sustainable Adaptation Strategies in Mediterranean-like Climates. A Review. Agron. Sustain. Dev. 2018, 38, 66. [Google Scholar] [CrossRef] [Green Version]
- Tombesi, S.; Cincera, I.; Frioni, T.; Ughini, V.; Gatti, M.; Palliotti, A.; Poni, S. Relationship among Night Temperature, Carbohydrate Translocation and Inhibition of Grapevine Leaf Photosynthesis. Environ. Exp. Bot. 2019, 157, 293–298. [Google Scholar] [CrossRef]
- De Orduña, R.M. Climate Change Associated Effects on Grape and Wine Quality and Production. Food Res. Int. 2010, 43, 1844–1855. [Google Scholar] [CrossRef]
- Gouot, J.C.; Smith, J.P.; Holzapfel, B.P.; Barril, C. Impact of Short Temperature Exposure of Vitis vinifera L. Cv. Shiraz Grapevine Bunches on Berry Development, Primary Metabolism and Tannin Accumulation. Environ. Exp. Bot. 2019, 168, 103866. [Google Scholar] [CrossRef]
- Zhang, L.; Li, X.; Pang, Y.; Cai, X.; Lu, J.; Ren, X.; Kong, Q. Phenolics Composition and Contents, as the Key Quality Parameters of Table Grapes, May Be Influenced Obviously and Differently in Response to Short-Term High Temperature. LWT 2021, 149, 111791. [Google Scholar] [CrossRef]
- Berry, J.; Bjorkman, O. Photosynthetic Response and Adaptation to Temperature in Higher Plants. Annu. Rev. Plant Physiol. 2003, 31, 491–543. [Google Scholar] [CrossRef]
- Venios, X.; Korkas, E.; Nisiotou, A.; Banilas, G. Grapevine Responses to Heat Stress and Global Warming. Plants 2020, 9, 1754. [Google Scholar] [CrossRef]
- Steel, C.C.; Greer, D.H. Effect of Climate on Vine and Bunch Characteristics: Bunch Rot Disease Susceptibility. Acta Hortic. 2008, 785, 253–262. [Google Scholar] [CrossRef]
- Poudel, P.R.; Mochioka, R.; Beppu, K.; Kataoka, I. Influence of Temperature on Berry Composition of Interspecific Hybrid Wine Grape ‘Kadainou R-1’ (Vitis Ficifolia Var. Ganebu × V. Vinifera ‘Muscat of Alexandria’). J. Jpn. Soc. Hort. Sci. 2009, 78, 169–174. [Google Scholar] [CrossRef] [Green Version]
- Petrie, P.R.; Sadras, V.O. Advancement of Grapevine Maturity in Australia between 1993 and 2006: Putative Causes, Magnitude of Trends and Viticultural Consequences. Aust. J. Grape Wine Res. 2008, 14, 33–45. [Google Scholar] [CrossRef]
- Pastore, C.; Dal Santo, S.; Zenoni, S.; Movahed, N.; Allegro, G.; Valentini, G.; Filippetti, I.; Tornielli, G.B. Whole Plant Temperature Manipulation Affects Flavonoid Metabolism and the Transcriptome of Grapevine Berries. Front. Plant Sci. 2017, 8, 929. [Google Scholar] [CrossRef] [PubMed]
- Arrizabalaga, M.; Morales, F.; Oyarzun, M.; Delrot, S.; Gomès, E.; Irigoyen, J.J.; Hilbert, G.; Pascual, I. Tempranillo Clones Differ in the Response of Berry Sugar and Anthocyanin Accumulation to Elevated Temperature. Plant Sci. 2018, 267, 74–83. [Google Scholar] [CrossRef] [PubMed]
- Duchêne, E.; Huard, F.; Dumas, V.; Schneider, C.; Merdinoglu, D. The Challenge of Adapting Grapevine Varieties to Climate Change. Clim. Res. 2010, 41, 193–204. [Google Scholar] [CrossRef] [Green Version]
- Ovadia, R.; Oren-Shamir, M.; Kaplunov, T.; Zutahy, Y.; Lichter, A.; Lurie, S. Effects of Plant Growth Regulators and High Temperature on Colour Development in ‘Crimson Seedless’ Grapes. J. Hortic. Sci. Biotechnol. 2013, 88, 387–392. [Google Scholar] [CrossRef]
- Mori, K.; Goto-Yamamoto, N.; Kitayama, M.; Hashizume, K. Loss of Anthocyanins in Red-Wine Grape under High Temperature. J. Exp. Bot. 2007, 58, 1935–1945. [Google Scholar] [CrossRef]
- González-Barreiro, C.; Rial-Otero, R.; Cancho-Grande, B.; Simal-Gándara, J. Wine Aroma Compounds in Grapes: A Critical Review. Crit. Rev. Food Sci. Nutr. 2015, 55, 202–218. [Google Scholar] [CrossRef]
- Asproudi, A.; Petrozziello, M.; Cavalletto, S.; Guidoni, S. Grape Aroma Precursors in Cv. Nebbiolo as Affected by Vine Microclimate. Food Chem. 2016, 211, 947–956. [Google Scholar] [CrossRef]
- Costa, C.; Graça, A.; Fontes, N.; Teixeira, M.; Gerós, H.; Santos, J.A. The Interplay between Atmospheric Conditions and Grape Berry Quality Parameters in Portugal. Appl. Sci. 2020, 10, 4943. [Google Scholar] [CrossRef]
- Ramos, M.C.; Martínez de Toda, F. Variability of Tempranillo Grape Composition in the Rioja DOCa (Spain) Related to Soil and Climatic Characteristics. J. Sci. Food Agric. 2019, 99, 1153–1165. [Google Scholar] [CrossRef]
- Barnuud, N.N.; Zerihun, A.; Gibberd, M.; Bates, B. Berry Composition and Climate: Responses and Empirical Models. Int. J. Biometeorol. 2014, 58, 1207–1223. [Google Scholar] [CrossRef] [Green Version]
- Pedneault, K.; Dorais, M.; Angers, P. Flavor of Cold-Hardy Grapes: Impact of Berry Maturity and Environmental Conditions. J. Agric. Food Chem. 2013, 61, 10418–10438. [Google Scholar] [CrossRef] [PubMed]
- Ubalde, J.M.; Sort, X.; Zayas, A.; Poch, R.M. Effects of Soil and Climatic Conditions on Grape Ripening and Wine Quality of Cabernet Sauvignon. J. Wine Res. 2010, 21, 1–17. [Google Scholar] [CrossRef]
- Meier, N.; Rutishauser, T.; Pfister, C.; Wanner, H.; Luterbacher, J. Grape Harvest Dates as a Proxy for Swiss April to August Temperature Reconstructions Back to AD 1480. Geophys. Res. Lett. 2007, 34, L20705. [Google Scholar] [CrossRef] [Green Version]
- Jones, G.V.; Davis, R.E. Climate Influences on Grapevine Phenology, Grape Composition, and Wine Production and Quality for Bordeaux, France. Am. J. Enol. Vitic. 2000, 51, 249–261. [Google Scholar]
- Duchêne, E.; Schneider, C. Grapevine and Climatic Changes: A Glance at the Situation in Alsace. Agron. Sustain. Dev. 2005, 25, 93–99. [Google Scholar] [CrossRef]
- Ferretti, C. Topoclimate and Wine Quality: Results of Research on the Gewürztraminer Grape Variety in South Tyrol, Northern Italy. OENO One 2021, 55, 313–335. [Google Scholar] [CrossRef]
- Ramos, M.C.; Jones, G.V.; Martínez-Casasnovas, J.A. Structure and Trends in Climate Parameters Affecting Winegrape Production in Northeast Spain. Clim. Res. 2008, 38, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Camps, J.O.; Ramos, M.C. Grape Harvest and Yield Responses to Inter-Annual Changes in Temperature and Precipitation in an Area of North-East Spain with a Mediterranean Climate. Int. J. Biometeorol. 2012, 56, 853–864. [Google Scholar] [CrossRef]
- van Leeuwen, C.; Darriet, P. The Impact of Climate Change on Viticulture and Wine Quality. J. Wine Econ. 2016, 11, 150–167. [Google Scholar] [CrossRef] [Green Version]
- Drappier, J.; Thibon, C.; Rabot, A.; Geny-Denis, L. Relationship between Wine Composition and Temperature: Impact on Bordeaux Wine Typicity in the Context of Global Warming—Review. Crit. Rev. Food Sci. Nutr. 2019, 59, 14–30. [Google Scholar] [CrossRef]
- Schultz, H.R.; Lebon, E. Modelling the Effect of Climate Change on Grapevine Water Relations. Acta Hortic. 2005, 689, 71–78. [Google Scholar] [CrossRef]
- Ramos, M.C.; Martínez-Casasnovas, J.A. Soil Water Balance in Rainfed Vineyards of the Penedès Region (Northeastern Spain) Affected by Rainfall Characteristics and Land Levelling: Influence on Grape Yield. Plant Soil 2010, 333, 375–389. [Google Scholar] [CrossRef]
- Fraga, H.; Malheiro, A.C.; Moutinho-Pereira, J.; Cardoso, R.M.; Soares, P.M.M.; Cancela, J.J.; Pinto, J.G.; Santos, J.A. Integrated Analysis of Climate, Soil, Topography and Vegetative Growth in Iberian Viticultural Regions. PLoS ONE 2014, 9, e108078. [Google Scholar] [CrossRef] [PubMed]
- Sadras, V.; Moran, M.; Petrie, P. Resilience of Grapevine Yield in Response to Warming. OENO One 2017, 51, 381–386. [Google Scholar] [CrossRef] [Green Version]
- Santos, J.A.; Grätsch, S.D.; Karremann, M.K.; Jones, G.V.; Pinto, J.G. Ensemble Projections for Wine Production in the Douro Valley of Portugal. Clim. Chang. 2013, 117, 211–225. [Google Scholar] [CrossRef]
- Fraga, H.; Malheiro, A.C.; Moutinho-Pereira, J.; Santos, J.A. Climate Factors Driving Wine Production in the Portuguese Minho Region. Agric. For. Meteorol. 2014, 185, 26–36. [Google Scholar] [CrossRef]
- White, M.A.; Diffenbaugh, N.S.; Jones, G.V.; Pal, J.S.; Giorgi, F. Extreme Heat Reduces and Shifts United States Premium Wine Production in the 21st Century. Proc. Natl. Acad. Sci. USA 2006, 103, 11217–11222. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Shi, Z.H.; Zhu, H.D.; Zhang, H.Y.; Ai, L.; Yin, W. Soil Moisture Dynamics within Soil Profiles and Associated Environmental Controls. Catena 2016, 136, 189–196. [Google Scholar] [CrossRef]
- Schoener, G.; Stone, M.C. Monitoring Soil Moisture at the Catchment Scale—A Novel Approach Combining Antecedent Precipitation Index and Radar-Derived Rainfall Data. J. Hydrol. 2020, 589, 125–155. [Google Scholar] [CrossRef]
- Rodrigues, P.; Pedroso, V.; Gouveia, J.P.; Martins, S.; Lopes, C.; Alves, I. Influence of Soil Water Content and Atmospheric Conditions on Leaf Water Potential in Cv. “Touriga Nacional” Deep-Rooted Vineyards. Irrig. Sci. 2012, 30, 407–417. [Google Scholar] [CrossRef]
- Gaudin, R.; Roux, S.; Tisseyre, B. Linking the Transpirable Soil Water Content of a Vineyard to Predawn Leaf Water Potential Measurements. Agric. Water Manag. 2017, 182, 13–23. [Google Scholar] [CrossRef] [Green Version]
- Suter, B.; Triolo, R.; Pernet, D.; Dai, Z.; Van Leeuwen, C. Modeling Stem Water Potential by Separating the Effects of Soil Water Availability and Climatic Conditions on Water Status in Grapevine (Vitis vinifera L.). Front. Plant Sci. 2019, 10, 1485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nemani, R.R.; White, M.A.; Cayan, D.R.; Jones, G.V.; Running, S.W.; Coughlan, J.C.; Peterson, D.L. Asymmetric Warming over Coastal California and Its Impact on the Premium Wine Industry. Clim. Res. 2001, 19, 25–34. [Google Scholar] [CrossRef] [Green Version]
- Wheeler, S.J.; Pickering, G.J. The Effects of Soil Management Techniques on Grape and Wine Quality. In Fruits: Growth, Nutrition and Quality; Dris, R., Ed.; WFL Publisher, Meri-Rastilan tie 3 C: Helsinki, Finland, 2006; pp. 195–208. ISBN 978-952-99555-0-3. [Google Scholar]
- Kassemeyer, H.-H. Fungi of Grapes. In Biology of Microorganisms on Grapes, in Must and in Wine; König, H., Unden, G., Fröhlich, J., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 103–132. ISBN 978-3-319-60021-5. [Google Scholar]
- Austin, C.N.; Wilcox, W.F. Effects of Sunlight Exposure on Grapevine Powdery Mildew Development. Phytopathology 2012, 102, 857–866. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valdés-Gómez, H.; Fermaud, M.; Roudet, J.; Calonnec, A.; Gary, C. Grey Mould Incidence Is Reduced on Grapevines with Lower Vegetative and Reproductive Growth. Crop Prot. 2008, 27, 1174–1186. [Google Scholar] [CrossRef]
- Agosta, E.; Canziani, P.; Cavagnaro, M. Regional Climate Variability Impacts on the Annual Grape Yield in Mendoza, Argentina. J. Appl. Meteorol. Climatol. 2012, 51, 993–1009. [Google Scholar] [CrossRef]
- Reynolds, A.G.; Naylor, A.P. ‘Pinot Noir’ and ‘Riesling’ Grapevines Respond to Water Stress Duration and Soil Water-Holding Capacity. HortScience 1994, 29, 1505–1510. [Google Scholar] [CrossRef] [Green Version]
- Storchi, P.; Costantini, E.A.C.; Bucelli, P. The Influence of Climate and Soil on Viticultural and Enological Parameters of ´Sangiovese´ Grapevines under Non-Irrigated Conditions. Acta Hortic. 2005, 689, 333–340. [Google Scholar] [CrossRef]
- Bondada, B.; Shutthanandan, J. Understanding Differential Responses of Grapevine (Vitis vinifera L.) Leaf and Fruit to Water Stress and Recovery Following Re-Watering. Am. J. Plant Sci. 2012, 3, 1232–1240. [Google Scholar] [CrossRef] [Green Version]
- dos Santos, T.P.; Lopes, C.M.; Rodrigues, M.L.; de Souza, C.R.; Maroco, J.P.; Pereira, J.S.; Silva, J.R.; Chaves, M.M. Partial Rootzone Drying: Effects on Growth and Fruit Quality of Field-Grown Grapevines (Vitis vinifera). Funct. Plant Biol. 2003, 30, 663–671. [Google Scholar] [CrossRef]
- Cifre, J.; Bota, J.; Escalona, J.M.; Medrano, H.; Flexas, J. Physiological Tools for Irrigation Scheduling in Grapevine (Vitis vinifera L.): An Open Gate to Improve Water-Use Efficiency? Agric. Ecosyst. Environ. 2005, 106, 159–170. [Google Scholar] [CrossRef]
- Alatzas, A.; Theocharis, S.; Miliordos, D.-E.; Leontaridou, K.; Kanellis, A.K.; Kotseridis, Y.; Hatzopoulos, P.; Koundouras, S. The Effect of Water Deficit on Two Greek Vitis vinifera L. Cultivars: Physiology, Grape Composition and Gene Expression during Berry Development. Plants 2021, 10, 1947. [Google Scholar] [CrossRef] [PubMed]
- Chacón-Vozmediano, J.L.; Martínez-Gascueña, J.; García-Navarro, F.J.; Jiménez-Ballesta, R. Effects of Water Stress on Vegetative Growth and ‘Merlot’ Grapevine Yield in a Semi-Arid Mediterranean Climate. Horticulturae 2020, 6, 95. [Google Scholar] [CrossRef]
- Cabral, I.L.; Teixeira, A.; Lanoue, A.; Unlubayir, M.; Munsch, T.; Valente, J.; Alves, F.; da Costa, P.L.; Rogerson, F.S.; Carvalho, S.M.P.; et al. Impact of Deficit Irrigation on Grapevine Cv. ‘Touriga Nacional’ during Three Seasons in Douro Region: An Agronomical and Metabolomics Approach. Plants 2022, 11, 732. [Google Scholar] [CrossRef] [PubMed]
- Gambetta, G.A.; Herrera, J.C.; Dayer, S.; Feng, Q.; Hochberg, U.; Castellarin, S.D. The Physiology of Drought Stress in Grapevine: Towards an Integrative Definition of Drought Tolerance. J. Exp. Bot. 2020, 71, 4658–4676. [Google Scholar] [CrossRef] [PubMed]
- Chaves, M.M.; Zarrouk, O.; Francisco, R.; Costa, J.M.; Santos, T.; Regalado, A.P.; Rodrigues, M.L.; Lopes, C.M. Grapevine under Deficit Irrigation: Hints from Physiological and Molecular Data. Ann. Bot. 2010, 105, 661–676. [Google Scholar] [CrossRef] [Green Version]
- Flexas, J.; Bota, J.; Escalona, J.M.; Sampol, B.; Medrano, H. Effects of Drought on Photosynthesis in Grapevines under Field Conditions: An Evaluation of Stomatal and Mesophyll Limitations. Funct. Plant Biol. 2002, 29, 461–471. [Google Scholar] [CrossRef] [Green Version]
- Maroco, J.P.; Rodrigues, M.L.; Lopes, C.; Chaves, M.M. Limitations to Leaf Photosynthesis in Field-Grown Grapevine under Drought—Metabolic and Modelling Approaches. Funct. Plant Biol. 2002, 29, 451–459. [Google Scholar] [CrossRef]
- Kizildeniz, T.; Irigoyen, J.J.; Pascual, I.; Morales, F. Simulating the Impact of Climate Change (Elevated CO2 and Temperature, and Water Deficit) on the Growth of Red and White Tempranillo Grapevine in Three Consecutive Growing Seasons (2013–2015). Agric. Water Manag. 2018, 202, 220–230. [Google Scholar] [CrossRef]
- Gambetta, G.A. Water Stress and Grape Physiology in the Context of Global Climate Change. J. Wine Econ. 2016, 11, 168–180. [Google Scholar] [CrossRef]
- Zhang, Q.; Chen, Y.; Xiong, Y.J.; Shigeoki, M.; Wu, X.; Yan, C.; Chen, X. Which Is More Sensitive to Water Stress for Irrigation Scheduling during the Maturation Stage: Grapevine Photosynthesis or Berry Size? Atmosphere 2021, 12, 845. [Google Scholar] [CrossRef]
- Beauchet, S.; Cariou, V.; Renaud-Gentié, C.; Meunier, M.; Siret, R.; Thiollet-Scholtus, M.; Jourjon, F. Modeling Grape Quality by Multivariate Analysis of Viticulture Practices, Soil and Climate. OENO One 2020, 54, 601–622. [Google Scholar] [CrossRef]
- Deluc, L.G.; Quilici, D.R.; Decendit, A.; Grimplet, J.; Wheatley, M.D.; Schlauch, K.A.; Mérillon, J.-M.; Cushman, J.C.; Cramer, G.R. Water Deficit Alters Differentially Metabolic Pathways Affecting Important Flavor and Quality Traits in Grape Berries of Cabernet Sauvignon and Chardonnay. BMC Genom. 2009, 10, 212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matthews, M.A.; Anderson, M.M. Fruit Ripening in Vitis vinifera L.: Responses to Seasonal Water Deficits. Am. J. Enol. Vitic. 1988, 39, 313–320. [Google Scholar]
- Ojeda, H.; Andary, C.; Kraeva, E.; Carbonneau, A.; Deloire, A. Influence of Pre- and Postveraison Water Deficit on Synthesis and Concentration of Skin Phenolic Compounds during Berry Growth of Vitis vinifera Cv. Shiraz. Am. J. Enol. Vitic. 2002, 53, 261–267. [Google Scholar]
- Roby, G.; Harbertson, J.F.; Adams, D.A.; Matthews, M.A. Berry Size and Vine Water Deficits as Factors in Winegrape Composition: Anthocyanins and Tannins. Aust. J. Grape Wine Res. 2004, 10, 100–107. [Google Scholar] [CrossRef]
- Castellarin, S.D.; Matthews, M.A.; Di Gaspero, G.; Gambetta, G.A. Water Deficits Accelerate Ripening and Induce Changes in Gene Expression Regulating Flavonoid Biosynthesis in Grape Berries. Planta 2007, 227, 101–112. [Google Scholar] [CrossRef]
- Castellarin, S.D.; Pfeiffer, A.; Sivilotti, P.; Degan, M.; Peterlunger, E.; Di Gaspero, G. Transcriptional Regulation of Anthocyanin Biosynthesis in Ripening Fruits of Grapevine under Seasonal Water Deficit. Plant Cell Environ. 2007, 30, 1381–1399. [Google Scholar] [CrossRef] [Green Version]
- Huglin, P. A new method of evaluating the heliothermal possibilities in the environment of grape culture. C. R. Acad. Agric. Fr. 1978, 64, 1117–1126. [Google Scholar]
- Tonietto, J.; Carbonneau, A. A Multicriteria Climatic Classification System for Grape-Growing Regions Worldwide. Agric. For. Meteorol. 2004, 124, 81–97. [Google Scholar] [CrossRef] [Green Version]
- Jones, G. Climate Change and Wine: Observations, Impacts and Future Implications. WIJ 2006, 21, 21–26. [Google Scholar]
- Kenny, G.J.; Harrison, P.A. The Effects of Climate Variability and Change on Grape Suitability in Europe. J. Wine Res. 1992, 3, 163–183. [Google Scholar] [CrossRef]
- Fraga, H.; Malheiro, A.C.; Moutinho-Pereira, J.; Santos, J.A. Future Scenarios for Viticultural Zoning in Europe: Ensemble Projections and Uncertainties. Int. J. Biometeorol. 2013, 57, 909–925. [Google Scholar] [CrossRef] [PubMed]
- Malheiro, A.C.; Santos, J.A.; Fraga, H.; Pinto, J.G. Climate Change Scenarios Applied to Viticultural Zoning in Europe. Clim. Res. 2010, 43, 163–177. [Google Scholar] [CrossRef] [Green Version]
- Moriondo, M.; Jones, G.V.; Bois, B.; Dibari, C.; Ferrise, R.; Trombi, G.; Bindi, M. Projected Shifts of Wine Regions in Response to Climate Change. Clim. Chang. 2013, 119, 825–839. [Google Scholar] [CrossRef]
- Charalampopoulos, I.; Polychroni, I.; Psomiadis, E.; Nastos, P. Spatiotemporal Estimation of the Olive and Vine Cultivations’ Growing Degree Days in the Balkans Region. Atmosphere 2021, 12, 148. [Google Scholar] [CrossRef]
- Charalampopoulos, I. Agrometeorological Conditions and Agroclimatic Trends for the Maize and Wheat Crops in the Balkan Region. Atmosphere 2021, 12, 671. [Google Scholar] [CrossRef]
- Teslić, N.; Zinzani, G.; Parpinello, G.P.; Versari, A. Climate Change Trends, Grape Production, and Potential Alcohol Concentration in Wine from the “Romagna Sangiovese” Appellation Area (Italy). Theor. Appl. Climatol. 2018, 131, 793–803. [Google Scholar] [CrossRef]
- Bock, A.; Sparks, T.; Estrella, N.; Menzel, A. Changes in the Phenology and Composition of Wine from Franconia, Germany. Clim. Res. 2011, 50, 69–81. [Google Scholar] [CrossRef] [Green Version]
- Webb, L.B.; Whetton, P.H.; Barlow, E.W.R. Observed Trends in Winegrape Maturity in Australia. Glob. Chang. Biol. 2011, 17, 2707–2719. [Google Scholar] [CrossRef]
- van Eck, N.; Waltman, L. Software Survey: VOSviewer, a Computer Program for Bibliometric Mapping. Scientometrics 2009, 84, 523–538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laget, F.; Tondut, J.-L.; Deloire, A.; Kelly, M.T. Climate Trends in a Specific Mediterranean Viticultural Area between 1950 and 2006. J. Int. Sci. Vigne Vin. 2008, 42, 113–123. [Google Scholar] [CrossRef]
- Neethling, E.; Barbeau, G.; Bonnefoy, C.; Quénol, H. Change in Climate and Berry Composition for Grapevine Varieties Cultivated in the Loire Valley. Clim. Res. 2012, 53, 89–101. [Google Scholar] [CrossRef] [Green Version]
- Cook, B.I.; Wolkovich, E.M. Climate Change Decouples Drought from Early Wine Grape Harvests in France. Nat. Clim. Chang. 2016, 6, 715–719. [Google Scholar] [CrossRef]
- Di Lena, B.; Silvestroni, O.; Lanari, V.; Palliotti, A. Climate Change Effects on Cv. Montepulciano in Some Wine-Growing Areas of the Abruzzi Region (Italy). Theor. Appl. Climatol. 2019, 136, 1145–1155. [Google Scholar] [CrossRef]
- Di Lena, B.; Silvestroni, O.; Mariani, L.; Parisi, S.; Antenucci, F. European Climate Variability Effects on Grapevine Harvest Date Time Series in the Abruzzi (Italy). Acta Hortic. 2012, 931, 63–69. [Google Scholar] [CrossRef]
- Di Carlo, P.; Aruffo, E.; Brune, W.H. Precipitation Intensity under a Warming Climate Is Threatening Some Italian Premium Wines. Sci. Total Environ. 2019, 685, 508–513. [Google Scholar] [CrossRef]
- Biasi, R.; Brunori, E.; Ferrara, C.; Salvati, L. Assessing Impacts of Climate Change on Phenology and Quality Traits of Vitis vinifera L.: The Contribution of Local Knowledge. Plants 2019, 8, 121. [Google Scholar] [CrossRef] [Green Version]
- Urhausen, S.; Brienen, S.; Kapala, A.; Simmer, C. Climatic Conditions and Their Impact on Viticulture in the Upper Moselle Region. Clim. Chang. 2011, 109, 349–373. [Google Scholar] [CrossRef]
- Koch, B.; Oehl, F. Climate Change Favors Grapevine Production in Temperate Zones. Agric. Sci. 2018, 9, 247–263. [Google Scholar] [CrossRef] [Green Version]
- Karvonen, J. Changes in the Grapevine’s Growth Cycle in Southern Finland in the 2000s—Comparison between Two First Decades. Clim. Chang. 2020, 6, 94–99. [Google Scholar]
- Baduca Campeanu, C.; Beleniuc, G.; Simionescu, V.; Panaitescu, L.; Grigorica, L. Climate Change Effects on Ripening Process and Wine Composition in Oltenia’s Vineyards from Romania. Acta Hortic. 2012, 931, 47–54. [Google Scholar] [CrossRef]
- Lisek, J. Climatic Factors Affecting Development and Yielding of Grapevine in Central Poland. J. Fruit Ornam. Plant Res. 2008, 16, 285–293. [Google Scholar]
- Kovács, E.; Puskás, J.; Pozsgal, A.; Kozma, K. Shift in the Annual Growth Cycle of Grapevines (Vitis vinifera L.) in West Hungary. Appl. Ecol. Env. Res. 2018, 16, 2029–2042. [Google Scholar] [CrossRef]
- Ruml, M.; Korać, N.; Vujadinović, M.; Vuković, A.; Ivanišević, D. Response of Grapevine Phenology to Recent Temperature Change and Variability in the Wine-Producing Area of Sremski Karlovci, Serbia. J. Agric. Sci. 2016, 154, 186–206. [Google Scholar] [CrossRef]
- Ivanišević, D.; Kalajdžić, M.; Alesandar, T.; Jakšić, D. Phenological Stages of Some Grapevine Cultivars in North Serbia: Historical Data and Current State. BIO Web Conf. 2019, 15, 01023. [Google Scholar] [CrossRef]
- Vršič, S.; Vodovnik, T. Reactions of Grape Varieties to Climate Changes in North East Slovenia. Plant Soil Environ. 2012, 58, 34–41. [Google Scholar] [CrossRef] [Green Version]
- Vršič, S.; Šuštar, V.; Pulko, B.; Šumenjak, T.K. Trends in Climate Parameters Affecting Winegrape Ripening in Northeastern Slovenia. Clim. Res. 2014, 58, 257–266. [Google Scholar] [CrossRef]
- Bernáth, S.; Paulen, O.; Šiška, B.; Kusá, Z.; Tóth, F. Influence of Climate Warming on Grapevine (Vitis vinifera L.) Phenology in Conditions of Central Europe (Slovakia). Plants 2021, 10, 1020. [Google Scholar] [CrossRef]
- Koufos, G.; Mavromatis, T.; Koundouras, S.; Fyllas, N.M.; Jones, G.V. Viticulture–Climate Relationships in Greece: The Impacts of Recent Climate Trends on Harvest Date Variation. Int. J. Climatol. 2014, 34, 1445–1459. [Google Scholar] [CrossRef]
- Koufos, G.C.; Mavromatis, T.; Koundouras, S.; Jones, G.V. Adaptive Capacity of Winegrape Varieties Cultivated in Greece to Climate Change: Current Trends and Future Projections. OENO One 2020, 54, 1201–1219. [Google Scholar] [CrossRef]
- Lereboullet, A.-L.; Beltrando, G.; Bardsley, D.K.; Rouvellac, E. The Viticultural System and Climate Change: Coping with Long-Term Trends in Temperature and Rainfall in Roussillon, France. Reg. Environ. Chang. 2014, 14, 1951–1966. [Google Scholar] [CrossRef]
- Schultz, H.R.; Jones, G.V. Climate Induced Historic and Future Changes in Viticulture. J. Wine Res. 2010, 21, 137–145. [Google Scholar] [CrossRef]
- Bock, A.; Sparks, T.H.; Estrella, N.; Menzel, A. Climate-Induced Changes in Grapevine Yield and Must Sugar Content in Franconia (Germany) between 1805 and 2010. PLoS ONE 2013, 8, e69015. [Google Scholar] [CrossRef] [PubMed]
- Gentilucci, M.; Materazzi, M.; Pambianchi, G.; Burt, P.; Guerriero, G. Temperature Variations in Central Italy (Marche Region) and Effects on Wine Grape Production. Theor. Appl. Climatol. 2020, 140, 303–312. [Google Scholar] [CrossRef]
- Nesbitt, A.; Dorling, S.; Jones, R. Climate Resilience in the United Kingdom Wine Production Sector: CREWS-UK. BIO Web Conf. 2019, 15, 01011. [Google Scholar] [CrossRef]
- Nesbitt, A.; Kemp, B.; Steele, C.; Lovett, A.; Dorling, S. Impact of Recent Climate Change and Weather Variability on the Viability of UK Viticulture—Combining Weather and Climate Records with Producers’ Perspectives. Aust. J. Grape Wine Res. 2016, 22, 324–335. [Google Scholar] [CrossRef] [Green Version]
- Smith, V.; Bentzen, J. Which Factors Influence the Quality of Wine Produced in New Cool Climate Regions? IJWBR 2011, 23, 355–373. [Google Scholar] [CrossRef]
- Karvonen, J. Does Climate Change Allow Grapevine Growing in the Southernmost Finland. Int. J. Agric. Innov. Res. 2015, 4, 201–204. [Google Scholar]
- Maciejczak, M.; Mikiciuk, J. Climate Change Impact on Viticulture in Poland. Int. J. Clim. Chang. Strateg. 2019, 11, 254–264. [Google Scholar] [CrossRef] [Green Version]
- Mazurkiewicz-Pizło, A.; Pizło, W. Determinants of the Development of Vineyards and Wine Tourism in Poland. Acta Sci. Pol. Oecon. 2018, 17, 115–121. [Google Scholar] [CrossRef]
- Pijet-Migoń, E.; Królikowska, K. Rebirth of Viticulture and Associated Changes in the Rural Areas of Lower Silesia, SW Poland. Geogr. Pol. 2020, 93, 321–340. [Google Scholar] [CrossRef]
- Kovács, E.; Puskas, J.; Pozsgai, A. Positive Effects of Climate Change on the Field of Sopron Wine-Growing Region in Hungary. In Perspectives on Atmospheric Sciences; Karacostas, T., Bais, A., Nastos, P.T., Eds.; Springer Atmospheric Sciences; Springer International Publishing: Cham, Switzerland, 2017; pp. 607–613. ISBN 978-3-319-35095-0. [Google Scholar]
- Monteith, J.L. Agricultural Meteorology: Evolution and Application. Agric. For. Meteorol. 2000, 103, 5–9. [Google Scholar] [CrossRef]
- Field, C.B.; Barros, V.; Stocker, T.F.; Qin, D.; Dokken, D.J.; Ebi, K.L.; Mastandrea, M.D.; Mach, K.; Plattner, G.-K.; Allen, S.K.; et al. (Eds.) IPCC, 2012: Glossary of Terms. In Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2012; pp. 555–564. [Google Scholar]
- Robinson, J. The Oxford Companion to Wine, 4th ed.; Robinson, J., Harding, J., Eds.; Oxford University Press: Oxford, UK, 2015; ISBN 978-0-19-870538-3. [Google Scholar]
- Lereboullet, A.-L.; Beltrando, G.; Bardsley, D.K. Socio-Ecological Adaptation to Climate Change: A Comparative Case Study from the Mediterranean Wine Industry in France and Australia. Agric. Ecosyst. Environ. 2013, 164, 273–285. [Google Scholar] [CrossRef]
- van Leeuwen, C.; Destrac-Irvine, A.; de Resseguier, L.; Garcia de Cortazar-Atauri, I.; Duchêne, É.; Barbeau, G.; Dufourcq, T. Phenology: Follow the Internal Clock of the Vines. Available online: https://ives-technicalreviews.eu/article/view/2587 (accessed on 26 November 2021).
- Keller, M. Managing Grapevines to Optimise Fruit Development in a Challenging Environment: A Climate Change Primer for Viticulturists. Aust. J. Grape Wine Res. 2010, 16, 56–69. [Google Scholar] [CrossRef]
- USA National Phenology Network. Phenophase. Available online: https://usanpn.org/taxonomy/term/16 (accessed on 6 January 2022).
- Lorenz, D.H.; Eichhorn, K.W.; Bleiholder, H.; Klose, R.; Meier, U.; Weber, E. Growth Stages of the Grapevine: Phenological Growth Stages of the Grapevine (Vitis vinifera L. ssp. Vinifera)—Codes and Descriptions According to the Extended BBCH Scale. Aust. J. Grape Wine Res. 1995, 1, 100–103. [Google Scholar] [CrossRef]
- Fernández-González, M.; Escuredo, O.; Rodriguez Rajo, F.J.; Aira, M.; Jato, V. Prediction of Grape Production by Grapevine Cultivar Godello in North-West Spain. J. Agric. Sci. 2011, 149, 725–736. [Google Scholar] [CrossRef]
- McIntyre, G.N.; Lider, L.A.; Ferrari, N.L. The Chronological Classification of Grapevine Phenology. Am. J. Enol. Vitic. 1982, 33, 80–85. [Google Scholar]
- Santos, J.A.; Fraga, H.; Malheiro, A.C.; Moutinho-Pereira, J.; Dinis, L.-T.; Correia, C.; Moriondo, M.; Leolini, L.; Dibari, C.; Costafreda-Aumedes, S.; et al. A Review of the Potential Climate Change Impacts and Adaptation Options for European Viticulture. Appl. Sci. 2020, 10, 3092. [Google Scholar] [CrossRef]
- Souza Gonzaga, L.; Capone, D.L.; Bastian, S.E.P.; Jeffery, D.W. Defining Wine Typicity: Sensory Characterisation and Consumer Perspectives. Aust. J. Grape Wine Res. 2021, 27, 246–256. [Google Scholar] [CrossRef]
Keywords Related to: | |||
---|---|---|---|
Climate | Wine | Grape | Vine |
climate change | wine sector | grapevine (s) | vine grape yields |
climate warming | wine grapes | grapewine | viticulture |
thermal climate | wine production | grape quality | Vitis vinifera L. |
regional climate change | wine yields | grape maturity | viticultural zoning |
climate risk | wine grape production | grapevine yield | vineyard(s) |
climatic factors | wine regions | grape phenology | vine varieties |
wine quality | grape ripeness | European viticulture | |
wine typicity | grape harvest | ||
winegrapes | |||
Other supplementary or auxiliary keywords: growing season temperature; seasonal temperature; agrometeorology; agroclimatology; temperature; warming; global warming; precipitation; seasonal precipitation; rainfall; drying; water deficit; agricultural risk; agriculture; agricultural crops; impacts on agriculture; impacts on viticulture; terroir; topoclimate; bioclimatic indices; thermal indices; agro-climatic indices; Huglin index; growing degree days; growing season; development stages; phenological stages; phenological phases; phenophases; phenological intervals; growth period; early/late ripening; harvest dates; composition; fruit composition; quality; sugar concentration; titratable acidity; acid concentration; alcoholic content; alcoholic degree; berry sugar concentration; berry quality; berry ripening; flavour development; crop yields; yield formation; grapevine cultivars; adaptation |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Droulia, F.; Charalampopoulos, I. A Review on the Observed Climate Change in Europe and Its Impacts on Viticulture. Atmosphere 2022, 13, 837. https://doi.org/10.3390/atmos13050837
Droulia F, Charalampopoulos I. A Review on the Observed Climate Change in Europe and Its Impacts on Viticulture. Atmosphere. 2022; 13(5):837. https://doi.org/10.3390/atmos13050837
Chicago/Turabian StyleDroulia, Fotoula, and Ioannis Charalampopoulos. 2022. "A Review on the Observed Climate Change in Europe and Its Impacts on Viticulture" Atmosphere 13, no. 5: 837. https://doi.org/10.3390/atmos13050837
APA StyleDroulia, F., & Charalampopoulos, I. (2022). A Review on the Observed Climate Change in Europe and Its Impacts on Viticulture. Atmosphere, 13(5), 837. https://doi.org/10.3390/atmos13050837