Future Climate Projections Using SDSM and LARS-WG Downscaling Methods for CMIP5 GCMs over the Transboundary Jhelum River Basin of the Himalayas Region
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Description
2.3. Mann–Kendall Trend Model
2.4. Screening of the GCMs
2.5. Bias Correction
2.6. Statistical Downscaling Method
2.6.1. SDSM
2.6.2. LARS-WG Model
2.6.3. SDSM and LARS-WG Performance Evaluations
3. Results and Discussion
3.1. Temperature and Precipitation Trend Analysis for the Baseline Period
3.2. Selection of GCMs
3.3. Screening Predictor Variable of SDSM
3.4. Calibration and Validation of SDSM and LARS-WG
3.5. Future Climate Projections
4. Conclusions and Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. The Physical Science Basis; IPCC: Geneva, Switzerland, 2013. [Google Scholar]
- Ali, S.; Kiani, R.S.; Reboita, M.S.; Dan, L.; Eum, H.I.; Cho, J.; Dairaku, K.; Khan, F.; Shreshta, M.L. Identifying hotspots cities vulnerable to climate change in Pakistan under CMIP5 climate projections. Int. J. Climatol. 2021, 41, 559–581. [Google Scholar] [CrossRef]
- Moazzam, M.F.U.; Vansarochana, A.; Rahman, A.U. Analysis of flood susceptibility and zonation for risk management using frequency ratio model in District Charsadda, Pakistan. Int. J. Environ. Geoinf. 2018, 5, 140–153. [Google Scholar] [CrossRef]
- Rahman, G.; Rahman, A.-u.; Ullah, S.; Dawood, M.; Moazzam, M.F.U.; Lee, B.G. Spatio-temporal characteristics of meteorological drought in Khyber Pakhtunkhwa, Pakistan. PLoS ONE 2021, 16, e0249718. [Google Scholar] [CrossRef]
- Moazzam, M.F.U.; Rahman, G.; Munawar, S.; Tariq, A.; Safdar, Q.; Lee, B.-G. Trends of Rainfall Variability and Drought Monitoring Using Standardized Precipitation Index in a Scarcely Gauged Basin of Northern Pakistan. Water 2022, 14, 1132. [Google Scholar] [CrossRef]
- Fenta Mekonnen, D.; Disse, M. Analyzing the future climate change of Upper Blue Nile River basin using statistical downscaling techniques. Hydrol. Earth Syst. Sci. 2018, 22, 2391–2408. [Google Scholar] [CrossRef] [Green Version]
- Saddique, N.; Usman, M.; Bernhofer, C. Simulating the impact of climate change on the hydrological regimes of a sparsely gauged mountainous basin, Northern Pakistan. Water 2019, 11, 2141. [Google Scholar] [CrossRef] [Green Version]
- Munawar, S.; Tahir, M.N.; Baig, M.H.A. Twenty-first century hydrologic and climatic changes over the scarcely gauged Jhelum river basin of Himalayan region using SDSM and RCPs. Environ. Sci. Pollut. Res 2022, 29, 11196–11208. [Google Scholar] [CrossRef]
- Hansen, J.W.; Mavromatis, T. Correcting low-frequency variability bias in stochastic weather generators. Agric. For. Meteorol. 2001, 109, 297–310. [Google Scholar] [CrossRef]
- Dahri, Z.H.; Ludwig, F.; Moors, E.; Ahmad, S.; Ahmad, B.; Shoaib, M.; Ali, I.; Iqbal, M.S.; Pomee, M.S.; Mangrio, A.G. Spatio-temporal evaluation of gridded precipitation products for the high-altitude Indus basin. Int. J. Clim. 2021, 41, 4283–4306. [Google Scholar] [CrossRef]
- Araya-Osses, D.; Casanueva, A.; Román-Figueroa, C.; Uribe, J.M.; Paneque, M. Climate change projections of temperature and precipitation in Chile based on statistical downscaling. Clim. Dyn. 2020, 54, 4309–4330. [Google Scholar] [CrossRef]
- Hamlet, A.F.; Byun, K.; Robeson, S.M.; Widhalm, M.; Baldwin, M. Impacts of climate change on the state of Indiana: Ensemble future projections based on statistical downscaling. Clim. Change 2020, 163, 1881–1895. [Google Scholar] [CrossRef] [Green Version]
- Baghanam, A.H.; Eslahi, M.; Sheikhbabaei, A.; Seifi, A.J. Assessing the impact of climate change over the northwest of Iran: An overview of statistical downscaling methods. Theor. Appl. Climatol. 2020, 141, 1135–1150. [Google Scholar] [CrossRef]
- Fowler, H.J.; Blenkinsop, S.; Tebaldi, C. Linking climate change modelling to impacts studies: Recent advances in downscaling techniques for hydrological modelling. Int. J. Climatol. 2007, 27, 1547–1578. [Google Scholar] [CrossRef]
- Ali, S.; Eum, H.-I.; Cho, J.; Dan, L.; Khan, F.; Dairaku, K.; Shrestha, M.L.; Hwang, S.; Nasim, W.; Khan, I.A. Assessment of climate extremes in future projections downscaled by multiple statistical downscaling methods over Pakistan. Atmos. Res. 2019, 222, 114–133. [Google Scholar] [CrossRef]
- Wilby, R.L.; Dawson, C.W.; Barrow, E.M. SDSM—A decision support tool for the assessment of regional climate change impacts. Environ. Model. Softw. 2002, 17, 145–157. [Google Scholar] [CrossRef]
- Tahir, T.; Hashim, A.; Yusof, K. Statistical downscaling of rainfall under transitional climate in Limbang River Basin by using SDSM. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Langkawi, Malaysia, 4–5 December 2017; p. 012037. [Google Scholar]
- Saddique, N.; Bernhofer, C.; Kronenberg, R.; Usman, M. Downscaling of CMIP5 models output by using statistical models in a data scarce mountain environment (Mangla Dam Watershed), Northern Pakistan. Asia-Pac. J. Atmos. Sci. 2019, 55, 719–735. [Google Scholar] [CrossRef]
- Rather, M.A.; Satish Kumar, J.; Farooq, M.; Rashid, H. Assessing the influence of watershed characteristics on soil erosion susceptibility of Jhelum basin in Kashmir Himalayas. Arab. J. Geosci. 2017, 10, 1–25. [Google Scholar] [CrossRef]
- Malik, K.M.; Taylor, P.A.; Szeto, K.; Khan, A.H. Characteristics of central southwest Asian water budgets and their impacts on regional climate. Atmos. Clim. Sci. 2013, 3, 259–268. [Google Scholar] [CrossRef] [Green Version]
- Dawood, M. Spatio-statistical analysis of temperature fluctuation using Mann–Kendall and Sen’s slope approach. Clim. Dyn. 2017, 48, 783–797. [Google Scholar]
- Choi, K.-S.; Oh, S.-B.; Byun, H.-R.; Kripalani, R.; Kim, D.-W. Possible linkage between East Asian summer drought and North Pacific oscillation. Theor. Appl. Climatol. 2011, 103, 81–93. [Google Scholar] [CrossRef]
- Kling, H.; Fuchs, M.; Paulin, M. Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios. J. Hydrol. 2012, 424, 264–277. [Google Scholar] [CrossRef]
- Jin, H.; Ju, Q.; Yu, Z.; Hao, J.; Gu, H.; Gu, H.; Li, W. Simulation of snowmelt runoff and sensitivity analysis in the Nyang River Basin, southeastern Qinghai-Tibetan Plateau, China. Nat. Hazards 2019, 99, 931–950. [Google Scholar] [CrossRef]
- Munawar, S.; Tahir, M.N.; Baig, M.H.A. Future climate change impacts on runoff of scarcely gauged Jhelum river basin using SDSM and RCPs. J. Water Clim. Change 2021, 12, 2993–3004. [Google Scholar] [CrossRef]
- Hassan, Z.; Shamsudin, S.; Harun, S. Application of SDSM and LARS-WG for simulating and downscaling of rainfall and temperature. Theor. Appl. Climatol. 2014, 116, 243–257. [Google Scholar] [CrossRef]
- Azmat, M.; Qamar, M.U.; Huggel, C.; Hussain, E. Future climate and cryosphere impacts on the hydrology of a scarcely gauged catchment on the Jhelum river basin, Northern Pakistan. Sci. Total Environ. 2018, 639, 961–976. [Google Scholar] [CrossRef] [PubMed]
Station Name | Station ID | Lat (°N) | Long (°E) | Elevation (m) amsl | Annual Prec (mm) | Mean Teemp(°C) |
---|---|---|---|---|---|---|
Jhelum | A | 33.1 | 73.74 | 614 | 1255 | 22.2 |
Kotli | B | 33.5 | 73.89 | 1402 | 1423 | 17.5 |
Plandri | C | 33.72 | 73.71 | 1676 | 1346 | 16.2 |
Rawlakot | D | 33.87 | 73.68 | 2213 | 1780 | 12.8 |
Murree | E | 33.92 | 73.38 | 845 | 1188 | 19.4 |
Garidopata | F | 34.22 | 73.61 | 702 | 1388 | 20.6 |
Muzaffarabad | G | 34.38 | 73.47 | 996 | 1693 | 18.3 |
Balakot | H | 34.56 | 73.34 | 2363 | 1301 | 6.18 |
Naran | I | 34.91 | 73.64 | 2220 | 1288 | 7 |
Astore | J | 35.1 | 74.82 | 2168 | 448 | 6.56 |
Poonch | K | 33.91 | 74.03 | 815 | 1516 | 19.4 |
Modelling Centre | GCM | Resolution |
---|---|---|
National Center for Atmospheric Research USA | CCSM4 | 0.9° × 1.25° |
UK Meteorological Office UK | HadCM3 | 2.5° × 3.75° |
Geophysical Fluid Dynamics Laboratory USA | GFDL-CM3 | 2° × 2.5° |
National Institute for Environmental Studies Japan | MRI-CGCM3 | 1.12° × 1.12° |
Canadian Centre for Climate Modelling and Analysis Canada | CanESM2 | 2.79° × 2.8° |
Beijing Climate Center, China | BCC-CSM1–1 | 2.81° × 2.81° |
No. | Predictor | Code | No. | Predictor | Code |
---|---|---|---|---|---|
1 | Mean sea level pressure | mslp | 11 | 500 hPa meridional velocity | p5_v |
2 | 500 hPa relative humidity | r500 | 12 | Surface specific humidity | Shum |
3 | 850 hPa vorticity | P8_z | 13 | Mean temperature at 2 m | temp |
4 | Surface zonal velocity | p_u | 14 | Surface airflow strength | p_f |
5 | 500 hPa vorticity | p5_z | 15 | Surface meridional velocity | p_v |
6 | Surface vorticity | p_z | 16 | Surface wind direction | p_th |
7 | 500 hPa wind direction | p5th | 17 | Surface divergence | p_zh |
8 | 850 hPa relative humidity | r850 | 18 | 500 hPa airflow strength | p5_f |
9 | Surface zonal velocity | p_u | 19 | 500 hPa zonal velocity | p5_u |
10 | 850 hPa meridional velocity | p8_v | 20 | 500 hPa geopotential height | p500 |
Station ID | Mann–Kendall Statistics | Kendall’s Tau | Variance (S) | p Value (Two Tailed Test) |
---|---|---|---|---|
A | 38 | 0.2000 | 950 | 0.2300 |
B | −32 | 0.1684 | 950 | 0.3145 |
C | 54 | 0.2842 | 950 | 0.0855 |
D | 88 | 0.4632 | 950 | 0.0048 |
E | 7 | 0.0369 | 949 | 0.8456 |
F | 16 | 0.0842 | 950 | 0.6265 |
G | 16 | 0.0842 | 950 | 0.6265 |
H | −44 | −0.1534 | 950 | 0.2845 |
I | 24 | 0.187 | 950 | 0.0756 |
J | 26 | 0.094 | 950 | 0.5265 |
K | 33 | 0.048 | 950 | 0.2651 |
Station ID | Mann–Kendall Statistics | Kendall’s Tau | Variance (S) | p Value (Two Tailed Test) |
---|---|---|---|---|
A | 36 | 0.1895 | 950 | 0.2561 |
B | 44 | 0.2316 | 950 | 0.1630 |
C | −68 | −0.3579 | 950 | 0.0297 |
D | 93 | 0.4908 | 949 | 0.0028 |
E | 36 | 0.1895 | 950 | 0.2561 |
F | −20 | −0.1053 | 950 | 0.5376 |
G | 27 | 0.2571 | 408 | 0.1982 |
H | −34 | −0.197 | 860 | 0.2131 |
I | 58 | 0.2876 | 950 | 0.0341 |
J | 34 | 0.1951 | 950 | 0.261 |
K | 45 | 0.3161 | 950 | 0.130 |
Stations ID | Mann–Kendall Statistics | Kendall’s Tau | Variance (S) | p Value (Two Tailed Test) |
---|---|---|---|---|
A | 14 | 0.0737 | 950 | 0.6732 |
B | −20 | −0.1053 | 950 | 0.5376 |
C | 34 | 0.1789 | 950 | 0.2843 |
D | 36 | 0.1895 | 950 | 0.2561 |
E | 38 | 0.2000 | 950 | 0.2300 |
F | 54 | 0.2842 | 950 | 0.0855 |
G | −19 | −0.1810 | 408 | 0.3731 |
H | −24 | −0.1245 | 450 | 0.4786 |
I | 28 | 0.1345 | 950 | 0.2785 |
J | 16 | 0.0973 | 950 | 0.5732 |
K | −13 | −0.131 | 950 | 0.3761 |
GCM Models | Pearson’s Correlation Coefficient (r) | KGE | NSE | Rank | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Tmax | Tmin | P | Tmax | Tmin | P | Tmax | Tmin | P | ||
CCSM4 | 0.82 | 0.93 | 0.79 | 0.47 | 0.49 | 0.42 | 0.78 | 0.89 | 0.79 | 0.71 |
GFDL-CM3 | 0.49 | 0.56 | 0.61 | 0.39 | 0.34 | 0.21 | 0.51 | 0.68 | 0.57 | 0.48 |
HadCM3 | 0.72 | 0.83 | 0.77 | 0.47 | 0.39 | 0.32 | 0.88 | 0.79 | 0.91 | 0.68 |
MRI-CGCM3 | 0.59 | 0.67 | 0.51 | 0.29 | 0.33 | 0.27 | 0.61 | 0.58 | 0.64 | 0.49 |
CanESM2 | 0.62 | 0.57 | 0.49 | 0.29 | 0.34 | 0.37 | 0.71 | 0.67 | 0.64 | 0.52 |
BCC-CSM1–1 | 0.77 | 0.81 | 0.67 | 0.49 | 0.43 | 0.33 | 0.78 | 0.89 | 0.81 | 0.66 |
Models | MAE | RMSE | Bias | KGE | NSE | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Tmax | Tmin | P | Tmax | Tmin | P | Tmax | Tmin | P | Tmax | Tmin | P | Tmax | Tmin | P | |
CCSM4 RCP-4.5 | |||||||||||||||
SDSM | 0.72 | 0.93 | 0.79 | 0.5 | 0.69 | 0.42 | 0.78 | 0.89 | 0.79 | 0.68 | 0.53 | 0.48 | 0.61 | 0.72 | 0.42 |
LARS-WG | 0.49 | 0.56 | 0.61 | 0.9 | 0.42 | 0.72 | 0.51 | 0.68 | 0.57 | 0.48 | 0.58 | 0.62 | 0.62 | 0.57 | 0.69 |
CCSM4 RCP-8.5 | |||||||||||||||
SDSM | 0.52 | 0.65 | 0.67 | 0.4 | 0.92 | 0.51 | 0.73 | 0.53 | 0.65 | 0.42 | 0.59 | 0.61 | 0.44 | 0.57 | 0.59 |
LARS-WG | 0.3 | 0.49 | 0.39 | 0.89 | 0.84 | 0.56 | 0.68 | 0.62 | 0.64 | 0.5 | 0.46 | 0.55 | 0.36 | 0.38 | 0.41 |
HadCM3 RCP-4.5 | |||||||||||||||
SDSM | 0.79 | 0.77 | 0.51 | 0.41 | 0.43 | 0.32 | 0.61 | 0.58 | 0.64 | 0.49 | 0.5 | 0.54 | 0.59 | 0.67 | 0.58 |
LARS-WG | 0.62 | 0.57 | 0.49 | 0.21 | 0.67 | 0.71 | 0.71 | 0.67 | 0.64 | 0.52 | 0.71 | 0.65 | 0.69 | 0.71 | 0.65 |
HadCM3 RCP-8.5 | |||||||||||||||
SDSM | 0.64 | 0.81 | 0.51 | 0.53 | 0.81 | 0.53 | 0.65 | 0.57 | 0.71 | 0.67 | 0.64 | 0.52 | 0.73 | 0.69 | 0.55 |
LARS-WG | 0.65 | 0.59 | 0.47 | 0.76 | 0.79 | 0.45 | 0.29 | 0.28 | 0.62 | 0.51 | 0.73 | 0.54 | 0.63 | 0.67 | 0.61 |
Season/Period | RCP-4.5 | RCP-8.5 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
CCSM4 | HadCM3 | Average | CCSM4 | HadCM3 | Average | |||||||
2021–2060 | 2061–2099 | 2021–2060 | 2061–2099 | 2021–2060 | 2061–2099 | 2021–2060 | 2061–2099 | 2021–2060 | 2061–2099 | 2021–2060 | 2061–2099 | |
Tmax °C | ||||||||||||
Annual (J–D) | 1.36 | 2.46 | 1.22 | 2.62 | 1.29 | 2.54 | 2.34 | 4.61 | 2.41 | 4.71 | 2.37 | 4.66 |
Winter (D–F) | 1.46 | 2.59 | 1.35 | 2.76 | 1.4 | 2.67 | 2.59 | 4.8 | 2.62 | 4.71 | 2.6 | 4.75 |
Pre-monsoon (A–J) | 1.5 | 2.54 | 1.26 | 2.86 | 1.38 | 2.7 | 2.34 | 4.71 | 2.51 | 4.58 | 2.42 | 4.64 |
Monsoon (J–S) | 1.12 | 2.1 | 1.06 | 2.24 | 1.09 | 2.17 | 2.09 | 4.34 | 2.1 | 4.56 | 2.09 | 4.45 |
Tmin °C | ||||||||||||
Annual (J–D) | 1.35 | 2.54 | 1.22 | 2.52 | 1.96 | 2.53 | 2.43 | 4.53 | 2.52 | 4.51 | 2.47 | 4.52 |
Winter (D–F) | 1.48 | 2.76 | 1.36 | 2.75 | 1.42 | 2.75 | 2.66 | 4.65 | 2.72 | 4.61 | 2.69 | 4.63 |
Pre-monsoon (A–J) | 1.56 | 2.54 | 1.25 | 2.46 | 1.40 | 2.5 | 2.34 | 4.59 | 2.51 | 4.57 | 2.42 | 4.58 |
Monsoon (J–S) | 1.02 | 2.34 | 1.06 | 2.36 | 1.04 | 2.35 | 2.29 | 4.36 | 2.35 | 4.36 | 2.32 | 4.36 |
Precipitation (%) | ||||||||||||
Annual (J–D) | 6.77 | 12.62 | 6.17 | 12.51 | 6.47 | 12.56 | 7.41 | 10.58 | 7.4 | 12.5 | 7.4 | 11.54 |
Winter (D–F) | 5.49 | 13.56 | 4.84 | 14.9 | 5.1 | 14.23 | 6.51 | 11.68 | 7.45 | 14.5 | 6.98 | 13.09 |
Pre-monsoon (A–J) | 6.52 | 11.45 | 5.78 | 10.89 | 6.15 | 11.17 | 7.53 | 9.53 | 6.65 | 10.4 | 7.09 | 9.96 |
Monsoon (J–S) | 8.3 | 12.87 | 7.89 | 11.76 | 8.09 | 12.3 | 8.21 | 10.55 | 8.1 | 12.6 | 8.1 | 11.57 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Munawar, S.; Rahman, G.; Moazzam, M.F.U.; Miandad, M.; Ullah, K.; Al-Ansari, N.; Linh, N.T.T. Future Climate Projections Using SDSM and LARS-WG Downscaling Methods for CMIP5 GCMs over the Transboundary Jhelum River Basin of the Himalayas Region. Atmosphere 2022, 13, 898. https://doi.org/10.3390/atmos13060898
Munawar S, Rahman G, Moazzam MFU, Miandad M, Ullah K, Al-Ansari N, Linh NTT. Future Climate Projections Using SDSM and LARS-WG Downscaling Methods for CMIP5 GCMs over the Transboundary Jhelum River Basin of the Himalayas Region. Atmosphere. 2022; 13(6):898. https://doi.org/10.3390/atmos13060898
Chicago/Turabian StyleMunawar, Saira, Ghani Rahman, Muhammad Farhan Ul Moazzam, Muhammad Miandad, Kashif Ullah, Nadhir Al-Ansari, and Nguyen Thi Thuy Linh. 2022. "Future Climate Projections Using SDSM and LARS-WG Downscaling Methods for CMIP5 GCMs over the Transboundary Jhelum River Basin of the Himalayas Region" Atmosphere 13, no. 6: 898. https://doi.org/10.3390/atmos13060898
APA StyleMunawar, S., Rahman, G., Moazzam, M. F. U., Miandad, M., Ullah, K., Al-Ansari, N., & Linh, N. T. T. (2022). Future Climate Projections Using SDSM and LARS-WG Downscaling Methods for CMIP5 GCMs over the Transboundary Jhelum River Basin of the Himalayas Region. Atmosphere, 13(6), 898. https://doi.org/10.3390/atmos13060898