Bioaerosol Seasonal Variation and Contribution to Airborne Particulate Matter in Huangshi City of Central China
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Seasonal Variation in Bioaerosol Concentrations and Size Distribution
3.2. Contribution of Bioaerosol to PM Mass
3.3. Correlation between Bioaerosol and Environment Indices and Meteorological Conditions
3.4. Bioaerosol Concentrations and Size Distribution during a Dust Event
3.5. Bioaerosol Concentrations and Size Distribution during a Haze Event
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jaenicke, R. Abundance of Cellular Material and Proteins in the Atmosphere. Science 2005, 308, 73. [Google Scholar] [CrossRef] [PubMed]
- Després, V.; Huffman, J.A.; Burrows, S.M.; Hoose, C.; Safatov, A.; Buryak, G.; Fröhlich-Nowoisky, J.; Elbert, W.; Andreae, M.; Poeschl, U.; et al. Primary biological aerosol particles in the atmosphere: A review. Tellus B Chem. Phys. Meteorol. 2012, 64, 15598. [Google Scholar] [CrossRef] [Green Version]
- Douwes, J.; Thorne, P.; Pearce, N.; Heederik, D. Bioaerosol Health Effects and Exposure Assessment: Progress and Prospects. Ann. Occup. Hyg. 2003, 47, 187–200. [Google Scholar] [PubMed] [Green Version]
- Griffin, D.W. Atmospheric movement of microorganisms in clouds of desert dust and implications for human health. Clin. Microbiol. Rev. 2007, 20, 459–477. [Google Scholar] [CrossRef] [Green Version]
- Mbareche, H.; Morawska, L.; Duchaine, C. On the interpretation of bioaerosol exposure measurements and impacts on health. J. Air Waste Manag. Assoc. 2019, 69, 789–804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guzman, M.I. An overview of the effect of bioaerosol size in coronavirus disease 2019 transmission. Int. J. Health Plan. Manag. 2021, 36, 257–266. [Google Scholar] [CrossRef] [PubMed]
- Ilieș, D.C.; Marcu, F.; Caciora, T.; Indrie, L.; Ilieș, A.; Albu, A.; Costea, M.; Burtă, L.; Baias, Ș.; Ilieș, M.; et al. Investigations of Museum Indoor Microclimate and Air Quality. Case Study from Romania. Atmosphere 2021, 12, 286. [Google Scholar] [CrossRef]
- Caciora, T.; Herman, G.V.; Ilieș, A.; Baias, Ș.; Ilieș, D.C.; Josan, I.; Hodor, N. The Use of Virtual Reality to Promote Sustainable Tourism: A Case Study of Wooden Churches Historical Monuments from Romania. Remote Sens. 2021, 13, 1758. [Google Scholar] [CrossRef]
- Wang, C.T.; Fu, S.C.; Chao, C.Y.H. Short-range bioaerosol deposition and recovery of viable viruses and bacteria on surfaces from a cough and implications for respiratory disease transmission. Aerosol Sci. Technol. 2021, 55, 215–230. [Google Scholar] [CrossRef]
- Zhang, Y.; Shen, F.X.; Yang, Y.; Niu, M.T.; Chen, D.; Chen, L.F.; Wang, S.Q.; Zheng, Y.H.; Sun, Y.; Zhou, F.; et al. Insights into the Profile of the Human Expiratory Microbiota and Its Associations with Indoor Microbiotas. Environ. Sci. Technol. 2022, 56, 6282–6293. [Google Scholar] [CrossRef]
- Rolph, C.A.; Gwyther, C.L.; Tyrrel, S.F.; Nasir, Z.A.; Drew, G.H.; Jackson, S.K.; Khera, S.; Hayes, E.T.; Williams, B.; Bennett, A.; et al. Sources of Airborne Endotoxins in Ambient Air and Exposure of Nearby Communities—A Review. Atmosphere 2018, 9, 375. [Google Scholar] [CrossRef] [Green Version]
- Gollakota, A.R.K.; Gautam, S.; Santosh, M.; Sudan, H.A.; Gandhi, R.; Jebadurai, V.S.; Shu, C.M. Bioaerosols: Characterization, pathways, sampling strategies, and challenges to geo-environment and health. Gondwana Res. 2021, 99, 178–203. [Google Scholar] [CrossRef]
- Huang, S.; Hu, W.; Chen, J.; Wu, Z.J.; Zhang, D.Z.; Fu, P.Q. Overview of biological ice nucleating particles in the atmosphere. Environ. Int. 2021, 146, 106197. [Google Scholar] [CrossRef] [PubMed]
- Hauspie, R.C.; Pagezy, H. The contribution of bacterial and fungal spores to the organic carbon content of cloud water, precipitation and aerosols. Atmos. Res. 2002, 64, 109–119. [Google Scholar]
- Heidi, B.; Heinrich, G.; Regina, H.; Anne, K.; Georg, R.; Franziska, Z.; Hans, P. Airborne bacteria as cloud condensation nuclei. J. Geophys. Res. Atmos. 2003, 108, 1919–1964. [Google Scholar]
- Group, A.E. New Directions: The role of bioaerosols in atmospheric chemistry and physics. Atmos. Environ. 2004, 38, 1231–1232. [Google Scholar]
- Rosenfeld, D.; Lohmann, U.; Raga, G.B.; O’Dowd, C.D.; Kulmala, M.; Fuzzi, S.; Reissell, A.; Andreae, M.O. Flood or Drought: How Do Aerosols Affect Precipitation? Science 2008, 321, 1309–1313. [Google Scholar] [CrossRef] [Green Version]
- Fröhlich-Nowoisky, J.; Kampf, C.J.; Weber, B.; Huffman, J.A.; Pöhlker, C.; Andreae, M.O.; Lang-Yona, N.; Burrows, S.M.; Gunthe, S.S.; Elbert, W.; et al. Bioaerosols in the Earth system: Climate, health, and ecosystem interactions. Atmos. Res. 2016, 182, 346–376. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Chen, H.X.; Li, X.Y.; Wang, M.F.; Zhang, X.Y.; Cao, J.J.; Shen, F.X.; Wu, Y.; Xu, S.Y.; Fan, H.; et al. Differing toxicity of ambient particulate matter (PM) in global cities. Atmos. Environ. 2019, 212, 305–315. [Google Scholar] [CrossRef] [Green Version]
- Elbert, W.; Taylor, P.E.; Andreae, M.O.; Pöschl, U. Contribution of fungi to primary biogenic aerosols in the atmosphere: Wet and dry discharged spores, carbohydrates, and inorganic ions. Atmos. Chem. Phys. 2007, 7, 4569–4588. [Google Scholar] [CrossRef] [Green Version]
- Bauer, H.; Schueller, E.; Weinke, G.; Berger, A.; Hitzenberger, R.; Marr, I.L.; Puxbaum, H. Significant contributions of fungal spores to the organic carbon and to the aerosol mass balance of the urban atmospheric aerosol. Atmos. Environ. 2008, 42, 5542–5549. [Google Scholar] [CrossRef]
- Zhang, T.; Engling, G.; Chan, C.Y.; Zhang, Y.N.; Zhang, Z.S.; Lin, M.; Sang, X.F.; Li, Y.D.; Li, Y.S. Contribution of fungal spores to particulate matter in a tropical rainforest. Environ. Res. Lett. 2010, 5, 1–9. [Google Scholar] [CrossRef]
- Chow, J.C.; Yang, X.F.; Wang, X.L.; Kohl, S.D.; Hurbain, P.R.; Chen, L.-W.A.; Watson, J.G. Characterization of Ambient PM10 Bioaerosols in a California Agricultural Town. Aerosol Air Qual. Res. 2015, 15, 1433–1447. [Google Scholar] [CrossRef]
- Perrino, C.; Marcovecchio, F. A new method for assessing the contribution of primary biological atmospheric particles to the mass concentration of the atmospheric aerosol. Environ. Int. 2016, 87, 108–115. [Google Scholar] [CrossRef] [PubMed]
- Li, W.J.; Liu, L.; Xu, L.; Zhang, J.; Yuan, Q.; Ding, X.K.; Hu, W.; Fu, P.Q.; Zhang, D.Z. Overview of primary biological aerosol particles from a Chinese boreal forest: Insight into morphology, size, and mixing state at microscopic scale. Sci. Total Environ. 2020, 719, 137520. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.-W.A.; Zhang, M.; Liu, T.; Fortier, K.; Chow, J.C.; Kolberg, R.; Cao, J.J.; Lin, G.; Patel, T.Y.; Cruz, P.; et al. Evaluation of Epifluorescence Methods for Quantifying Bioaerosols in Fine and Coarse Particulate Air Pollution. Atmos. Environ. 2019, 213, 620–628. [Google Scholar] [CrossRef]
- Liu, T.; Chen, L.-W.A.; Zhang, M.; Watson, J.G.; Chow, J.C.; Cao, J.J.; Chen, H.Y.; Wang, W.; Zhang, J.Q.; Zhan, C.L.; et al. Bioaerosol Concentrations and Size Distributions during the Autumn and Winter Seasons in an Industrial City of Central China. Aerosol Air Qual. Res. 2019, 19, 1095–1104. [Google Scholar] [CrossRef]
- Matthias-Maser, S.; Jaenicke, R. The size distribution of primary biological aerosol particles in the multiphase atmosphere. Aerobiologia. 2000, 16, 207–210. [Google Scholar] [CrossRef]
- Bertolini, V.; Gandolfi, I.; Ambrosini, R.; Bestetti, G.; Innocente, E.; Rampazzo, G.; Franzetti, A. Temporal variability and effect of environmental variables on airborne bacterial communities in an urban area of northern Italy. Appl. Microbiol. Biotechnol. 2013, 97, 6561–6570. [Google Scholar] [CrossRef] [Green Version]
- Zhen, Q.; Deng, Y.; Wang, Y.Q.; Wang, X.K.; Zhang, H.X.; Sun, X.; Ouyang, Z.Y. Meteorological factors had more impact on airborne bacterial communities than air pollutants. Sci. Total Environ. 2017, 601–602, 703–712. [Google Scholar] [CrossRef]
- Smets, W.; Moretti, S.; Denys, S.; Lebeer, S. Airborne bacteria in the atmosphere: Presence, purpose, and potential. Atmos. Environ. 2016, 139, 214–221. [Google Scholar] [CrossRef]
- Joung, Y.S.; Ge, Z.; Buie, C.R. Bioaerosol generation by raindrops on soil. Nature 2017, 8, 14668. [Google Scholar] [CrossRef] [PubMed]
- Hara, K.; Zhang, D.Z. Bacterial abundance and viability in long-range transported dust. Atmos. Environ. 2012, 47, 20–25. [Google Scholar] [CrossRef]
- Tang, K.; Huang, Z.W.; Huang, J.P.; Maki, T.; Zhang, S.; Shimizu, A.; Ma, X.J.; Shi, J.S.; Bi, J.R.; Zhou, T.; et al. Characterization of atmospheric bioaerosols along the transport pathway of Asian dust during the Dust-Bioaerosol 2016 Campaign. Atmos. Chem. Phys. 2018, 8, 7131–7148. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.Y.; Liu, X.R.; Li, Y.; Ran, Y.; Liu, Y.P.; Zhang, Q.C.; Li, Z.; He, Y.; Xu, J.M.; Di, H.J. High temperatures inhibited the growth of soil bacteria and archaea but not that of fungi and altered nitrous oxide production mechanisms from different nitrogen sources in an acidic soil. Soil Boil. Biochem. 2017, 107, 168–179. [Google Scholar] [CrossRef]
- Casanova, C.F.; de Souza, M.A.; Fisher, B.; Colet, R.; Marchesi, C.M.; Zeni, J.; Cansian, R.L.; Backes, G.T.; Steffens, C. Bacterial growth in chicken breast fillet submitted to temperature abuse conditions. Food Sci. Technol. 2022, 42. [Google Scholar] [CrossRef]
- Tang, J.W. The effect of environmental parameters on the survival of airborne infectious agents. J. R. Soc. Interface 2009, 6, 737–746. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bowers, R.M.; McCubbin, I.B.; Hallar, A.G.; Fierer, N. Seasonal variability in airborne bacterial communities at a high-elevation site. Atmos. Environ. 2012, 50, 41–49. [Google Scholar] [CrossRef]
- Dong, L.J.; Qi, J.H.; Shao, C.C.; Zhong, X.; Gao, D.M.; Cao, W.W.; Gao, J.W.; Bai, R.; Long, G.Y.; Chu, C.C. Concentration and size distribution of total airborne microbes in hazy and foggy weather. Sci. Total Environ. 2016, 541, 1011–1018. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.S.; Li, Y.P.; Lu, R.; Li, W.X.; Fan, C.L.; Liu, P.X.; Wang, J.L.; Wang, W.K. Characteristics of total airborne microbes at various air quality levels. J. Aerosol Sci. 2018, 116, 57–65. [Google Scholar] [CrossRef]
- Watson, J.G.; Chow, J.C. Receptor Models and Measurements for Identifying and Quantifying Air Pollution Sources. In Introduction to Environmental Forensics, 3rd ed.; Murphy, B.L., Morrison, R.D., Eds.; Elsevier: Amsterdam, The Netherlands, 2015; pp. 677–706. [Google Scholar]
- Lin, W.H.; Li, C. Associations of fungal aerosols, air pollutants, and meteorological factors. Aerosol. Sci. Technol. 2000, 32, 359–368. [Google Scholar] [CrossRef]
- Ho, H.M.; Rao, C.Y.; Hsu, H.H.; Chiu, Y.H.; Liu, C.M.; Chao, H.J. Characteristics and determinants of ambient fungal spores in Hualien, Taiwan. Atmos. Environ. 2005, 39, 5839–5850. [Google Scholar] [CrossRef]
- Wei, K.; Zou, Z.L.; Zheng, Y.H.; Li, J.; Shen, F.X.; Wu, C.Y.; Wu, Y.S.; Hu, M.; Yao, M.S. Ambient bioaerosol particle dynamics observed during haze and sunny days in Beijing. Sci. Total Environ. 2016, 550, 751–759. [Google Scholar] [CrossRef]
- Yuan, H.L.; Zhang, D.Z.; Shi, Y.N.; Li, B.Z.; Yang, J.S.; Yu, X.J.; Chen, N.; Kakikawa, M. Cell concentration, viability and culture composition of airborne bacteria during a dust event in Beijing. J. Environ. Sci. 2017, 5, 33–40. [Google Scholar] [CrossRef]
- Zhang, D.Z.; Iwasaka, Y.; Shi, G.; Zang, J.; Hu, M.; Li, C. Separated status of the natural dust plume and polluted air masses in an Asian dust storm event at coastal areas of China. J. Geophys. Res. Atmos. 2005, 110, D06302. [Google Scholar] [CrossRef] [Green Version]
- Cao, J.J.; Shen, Z.X.; Chow, J.C.; Watson, J.G.; Lee, S.C.; Tie, X.X.; Han, Y.M. Winter and summer PM2.5 chemical compositions in fourteen Chinese Cities. J. Air. Waste Manag. 2012, 62, 1214–1226. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.J.; Zhang, Y.L.; Bozzetti, C.; Ho, K.F.; Cao, J.J.; Han, Y.M.; Daellenbach, K.R.; Slowik, J.G.; Platt, S.M.; Canonaco, F.; et al. High secondary aerosol contribution to particulate pollution during haze events in China. Nature 2014, 514, 218–222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Season | PM2.5 (µg m−3) | PM10 (µg m−3) | PM2.5 Bioaerosol (# cm−3) | PM10 Bioaerosol (# cm−3) |
---|---|---|---|---|
Spring | 46 | 115 | 5.72 | 7.68 |
Summer | 20 | 40 | 1.15 | 1.37 |
Fall | 37 | 62 | 2.66 | 5.23 |
Winter | 58 | 83 | 1.88 | 3.74 |
Location | Site Type | Season | Bioaerosol Type | PM Size | Contribution (%) to PM Mass 1 | Reference |
---|---|---|---|---|---|---|
Balbina, Amazonia, Brazil | Tropical rainforest | Dry season | Fungal spores | 1–10 µm | 35 | [20] |
Schafberg, Vienna, Austria | Suburban | Spring | Fungal spores | PM10 | 3 | [21] |
Summer | 7 | |||||
Rinnböckstrasse, Vienna, Austria | Urban | Spring | Fungal spores | PM10 | 1 | [21] |
Summer | 4 | |||||
Jianfengling Mountain, Hainan, China | Tropical rainforest | Spring | Fungal spores | PM10 | 7.9 | [22] |
Corcoran, CA, USA | Rural | Fall | Fungal spores, pollen grains and plant detritus | PM10 | 11.2–14.8 2 | [23] |
Montelibretti, Rome, Italy | Peri urban | Summer | Bioaerosol > 0.4 μm | PM10 | 6–18 | [24] |
Winter | 0.3–3.2 | |||||
Las Vegas, NV, USA | Urban | Spring | Bioaerosol 0.37–10 μm 3 | PM10 | 17 | [26] |
Huangshi, Hubei, China | Urban | Fall and winter | Bioaerosol 0.37–10 μm 3 | PM10 | 4.8 | [27] |
Huangshi, Hubei, China | Urban | Spring | Bioaerosol 0.37–10 μm 3 | PM10 | 23.7 | This study |
Summer | 9.1 | |||||
Fall | 25.8 | |||||
Winter | 11.3 |
PM2.5 Bioaerosols | PM10 Bioaerosols | |
---|---|---|
PM2.5 | 0.53 ** | 0.51 ** |
PM10 | 0.71 ** | 0.7 ** |
Temperature | 0.12 | 0.02 |
RH | −0.49 ** | −0.53 ** |
WindSpeed | −0.13 | −0.07 |
O3 | 0.38 ** | 0.31 ** |
NO2 | 0.29 ** | 0.33 ** |
SO2 | 0.71 ** | 0.63 ** |
CO | 0.36 ** | 0.38 ** |
Weather Condition | Date | PM2.5 (µg m−3) | PM10 (µg m−3) | PM2.5 Bioaerosol (µg m−3) | PM10 Bioaerosol (µg m−3) |
---|---|---|---|---|---|
Before dust day | 14 April 2018 | 33 | 44 | 4.39 | 10.41 |
Dust day | 15 April 2018 | 56 | 361 | 32.2 | 56.29 |
Dust day | 16 April 2018 | 43 | 213 | 28.14 | 59.70 |
Haze day | 1 December 2018 | 141 | 208 | 5.45 | 15.49 |
After haze day | 3 December 2018 | 34 | 43 | 0.25 | 5.61 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Liu, T.; Zhang, J.; Zhu, B.; Xiang, D.; Zhao, X.; Liu, X. Bioaerosol Seasonal Variation and Contribution to Airborne Particulate Matter in Huangshi City of Central China. Atmosphere 2022, 13, 909. https://doi.org/10.3390/atmos13060909
Zhang L, Liu T, Zhang J, Zhu B, Xiang D, Zhao X, Liu X. Bioaerosol Seasonal Variation and Contribution to Airborne Particulate Matter in Huangshi City of Central China. Atmosphere. 2022; 13(6):909. https://doi.org/10.3390/atmos13060909
Chicago/Turabian StyleZhang, Lili, Ting Liu, Jiaquan Zhang, Bo Zhu, Dong Xiang, Xude Zhao, and Xianli Liu. 2022. "Bioaerosol Seasonal Variation and Contribution to Airborne Particulate Matter in Huangshi City of Central China" Atmosphere 13, no. 6: 909. https://doi.org/10.3390/atmos13060909
APA StyleZhang, L., Liu, T., Zhang, J., Zhu, B., Xiang, D., Zhao, X., & Liu, X. (2022). Bioaerosol Seasonal Variation and Contribution to Airborne Particulate Matter in Huangshi City of Central China. Atmosphere, 13(6), 909. https://doi.org/10.3390/atmos13060909