Evaluation and Application of MSWEP in Drought Monitoring in Central Asia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Datasets
2.2.1. Ground-Based Observations
2.2.2. MSWEP
2.3. Statistics Evaluation Metrics
2.4. Drought Index and Drought Characteristics
2.5. Trend Analysis Methods
3. Results
3.1. Evaluation of Precipitation
3.1.1. Evaluation of Precipitation from MSWEP
3.1.2. Evaluation of SPI Calculated from MSWEP
3.2. Application of MSWEP for Drought Monitoring
3.2.1. Dry/Wet Evolution
3.2.2. Temporal Evolution of Drought Area
3.2.3. Drought Events and Their Characteristics
3.2.4. Analysis of Typical Drought Events
4. Conclusions
- MSWEP data show a high correlation with ground site data (CC > 0.81, RMSE < 28.22), which can offer effective feedback on precipitation information. Meanwhile, MSWEP has the ability to capture dry/wet changes and characterize drought events. Compared with ground site data, its domain-averaged SPI3 values are highly correlated (CC > 0.79, RMSE < 1.08).
- On the whole, the four basins in Central Asia have been in a relatively stable dry/wet state in the past 40 years. However, after 2016, the drought areas of the four basins have been on the increase. The Amu Darya basin displays a slight drying trend (a slope of −4.55), while the Ili River basin shows a slight wetting trend (a slope of 7.91). There is no obvious trend change in both the Syr River basin and Chu-Talas River basin.
- In the past 40 years, a total of 27 drought events occurred in the four basins in Central Asia, most of which (about 81.5%) lasted between three and eight months, with only one lasting more than one year. The frequency of drought events was relatively higher during 1981–1985, the 1990s, and 2005–2010, but after 2010, the number of drought events decreased. Among all the drought events, 12 of them started in autumn, while only 3 began in summer. It shows that the time distribution of drought events in the four basins is uneven.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wilhite, D.A. Drought as a Natural Hazard: Concepts and Definitions. Drought A Glob. Assess. 2000, 1, 3–18. [Google Scholar]
- Wilhite, D.A.; Svoboda, M.D.; Hayes, M.J. Understanding the complex impacts of drought: A key to enhancing drought mitigation and preparedness. Water Resour. Manag. 2007, 21, 763–774. [Google Scholar] [CrossRef] [Green Version]
- Council, N.R. Grasslands and Grassland Sciences in Northern China; National Academies Press: Washington, DC, USA, 1992. [Google Scholar]
- Zambreski, Z.T.; Lin, X.; Aiken, R.M.; Kluitenberg, G.J.; Pielke Sr, R.A. Identification of hydroclimate subregions for seasonal drought monitoring in the U.S. Great Plains. J. Hydrol. 2018, 567, 370–381. [Google Scholar] [CrossRef]
- Orimoloye, I.R. Agricultural Drought and Its Potential Impacts: Enabling Decision-Support for Food Security in Vulnerable Regions. Front. Sustain. Food Syst. 2022, 6, 15. [Google Scholar] [CrossRef]
- Yan, G.; Wu, Z.; Li, D. Comprehensive Analysis of the Persistent Drought Events in Southwest China. Disaster Adv. 2013, 6, 306–315. [Google Scholar]
- Kao, S.-C.; Govindaraju, R.S. A copula-based joint deficit index for droughts. J. Hydrol. 2010, 380, 121–134. [Google Scholar] [CrossRef]
- John Keyantash, J.A.D. The Quantification of Drought: An Evaluation of Drought Indices. Bull. Am. Meteorol. Soc. 2002, 83, 1167–1180. [Google Scholar] [CrossRef]
- Heim, R.R., Jr. A review of twentieth-century drought indices used in the United States. Bull. Am. Meteorol. Soc. 2002, 83, 1149–1165. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Kim, Y.; Wang, D. Assessing the characteristics of recent drought events in South Korea using WRF-Hydro. J. Hydrol. 2022, 607, 127459. [Google Scholar] [CrossRef]
- Karthe, D.; Abdullaev, I.; Boldgiv, B.; Borchardt, D.; Chalov, S.; Jarsjö, J.; Li, L.; Nittrouer, J.A. Water in Central Asia: An integrated assessment for science-based management. Environ. Earth Sci. 2017, 76, 690. [Google Scholar] [CrossRef] [Green Version]
- Berndtsson, R.; Tussupova, K. The Future of Water Management in Central Asia. Water 2020, 12, 2241. [Google Scholar] [CrossRef]
- Kuzmits, B. Cross-bordering water management in Central Asia. ZEF Work. Pap. Ser. 2006, 66, 1–20. [Google Scholar]
- Sheffield, J.; Wood, E.F. Drought: Past problems and future scenarios. Int. J. Digit. Earth 2011, 5, 2456–2459. [Google Scholar] [CrossRef]
- Zou, X.; Zhai, P.; Zhang, Q. Variations in droughts over China: 1951–2003. Geophys. Res. Lett. 2005, 32, 353–368. [Google Scholar] [CrossRef]
- Lioubimtseva, E.; Henebry, G.M. Climate and environmental change in arid Central Asia: Impacts, vulnerability, and adaptations. J. Arid Environ. 2009, 73, 963–977. [Google Scholar] [CrossRef]
- de Beurs, K.M.; Henebry, G.M.; Owsley, B.C.; Sokolik, I. Using multiple remote sensing perspectives to identify and attribute land surface dynamics in Central Asia 2001–2013. Remote Sens. Environ. 2015, 170, 48–61. [Google Scholar] [CrossRef]
- He, B.; Lü, A.; Wu, J.; Zhao, L.; Liu, M. Drought hazard assessment and spatial characteristics analysis in China. J. Geogr. Sci. 2011, 21, 235–249. [Google Scholar] [CrossRef]
- Zhang, R.; Zhao, C.; Ma, X.; Karthikeyan, B.; Han, Q.; Li, C.; Zhao, X. Projected Spatiotemporal Dynamics of Drought under Global Warming in Central Asia. Sustainability 2019, 11, 4421. [Google Scholar] [CrossRef] [Green Version]
- Guo, H.; Li, M.; Nzabarinda, V.; Bao, A.; Meng, X.; Zhu, L.; De Maeyer, P. Assessment of Three Long-Term Satellite-Based Precipitation Estimates against Ground Observations for Drought Characterization in Northwestern China. Remote Sens. 2022, 14, 828. [Google Scholar] [CrossRef]
- Bhuvanamitra, S.; Deka, P.C. Evaluating the performance of CHIRPS satellite rainfall data for streamflow forecasting. Water Resour. Manag. 2019, 33, 3913–3927. [Google Scholar] [CrossRef]
- Duan, Z.; Liu, J.; Tuo, Y.; Chiogna, G.; Disse, M. Evaluation of eight high spatial resolution gridded precipitation products in Adige Basin (Italy) at multiple temporal and spatial scales. Sci. Total Environ. 2016, 573, 1536–1553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sahlu, D.; Moges, S.A.; Nikolopoulos, E.I.; Anagnostou, E.N.; Hailu, D. Evaluation of High-Resolution Multisatellite and Reanalysis Rainfall Products over East Africa. Adv. Meteorol. 2017, 2017, 4957960. [Google Scholar] [CrossRef]
- Guo, H.; Bao, A.; Liu, T.; Chen, S.; Ndayisaba, F. Evaluation of PERSIANN-CDR for Meteorological Drought Monitoring over China. Remote Sens. 2016, 8, 379. [Google Scholar] [CrossRef] [Green Version]
- Alijanian, M.; Rakhshandehroo, G.R.; Mishra, A.; Dehghani, M. Evaluation of remotely sensed precipitation estimates using PERSIANN-CDR and MSWEP for spatio-temporal drought assessment over Iran. J. Hydrol. 2019, 579, 124189. [Google Scholar] [CrossRef]
- Suliman, A.H.A.; Awchi, T.A.; Al-Mola, M.; Shahid, S. Evaluation of remotely sensed precipitation sources for drought assessment in Semi-Arid Iraq. Atmos. Res. 2020, 242, 105007. [Google Scholar] [CrossRef]
- Alijanian, M.; Rakhshandehroo, G.R.; Mishra, A.K.; Dehghani, M. Evaluation of satellite rainfall climatology using CMORPH, PERSIANN-CDR, PERSIANN, TRMM, MSWEP over Iran. Int. J. Climatol. 2017, 37, 4896–4914. [Google Scholar] [CrossRef]
- Brasil Neto, R.M.; Santos, C.A.G.; Silva, J.; da Silva, R.M.; Dos Santos, C.A.C.; Mishra, M. Evaluation of the TRMM product for monitoring drought over Paraiba State, northeastern Brazil: A trend analysis. Sci. Rep. 2021, 11, 1097. [Google Scholar] [CrossRef]
- Sahoo, A.K.; Sheffield, J.; Pan, M.; Wood, E.F. Evaluation of the Tropical Rainfall Measuring Mission Multi-Satellite Precipitation Analysis (TMPA) for assessment of large-scale meteorological drought. Remote Sens. Environ. 2015, 159, 181–193. [Google Scholar] [CrossRef]
- Tan, X.; Ma, Z.; He, K.; Han, X.; Ji, Q.; He, Y. Evaluations on gridded precipitation products spanning more than half a century over the Tibetan Plateau and its surroundings. J. Hydrol. 2020, 582, 124455. [Google Scholar] [CrossRef]
- Chen, T.; Ren, L.; Yuan, F.; Tang, T.; Yang, X.; Jiang, S.; Liu, Y.; Zhao, C.; Zhang, L. Merging ground and satellite-based precipitation data sets for improved hydrological simulations in the Xijiang River basin of China. Stoch. Environ. Res. Risk Assess. 2019, 33, 1893–1905. [Google Scholar] [CrossRef]
- Guo, H.; Chen, S.; Bao, A.; Hu, J.; Yang, B.; Stepanian, P. Comprehensive Evaluation of High-Resolution Satellite-Based Precipitation Products over China. Atmosphere 2015, 7, 6. [Google Scholar] [CrossRef] [Green Version]
- Jiang, S.; Liu, R.; Ren, L.; Wang, M.; Shi, J.; Zhong, F.; Duan, Z. Evaluation and Hydrological Application of CMADS Reanalysis Precipitation Data against Four Satellite Precipitation Products in the Upper Huaihe River Basin, China. J. Meteorol. Res. 2020, 34, 1096–1113. [Google Scholar] [CrossRef]
- Su, J.; Lü, H.; Wang, J.; Sadeghi, A.; Zhu, Y. Evaluating the Applicability of Four Latest Satellite–Gauge Combined Precipitation Estimates for Extreme Precipitation and Streamflow Predictions over the Upper Yellow River Basins in China. Remote Sens. 2017, 9, 1176. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Xu, Z.; Wang, F.; He, H.; Zhou, J.; Wu, X.; Liu, Z. Hydrologic Evaluation of Multi-Source Satellite Precipitation Products for the Upper Huaihe River Basin, China. Remote Sens. 2018, 10, 840. [Google Scholar] [CrossRef] [Green Version]
- Beck, H.E.; Wood, E.F.; Pan, M.; Fisher, C.K.; Miralles, D.G. MSWEP V2 global 3-hourly 0.1° precipitation: Methodology and quantitative assessment. Bull. Am. Meteorol. Soc. 2018, 100, 473–500. [Google Scholar] [CrossRef] [Green Version]
- Suryavanshi, S.; Pandey, A.; Chaube, U.C.; Joshi, N. Long-term historic changes in climatic variables of Betwa Basin, India. Theor. Appl. Climatol. 2013, 117, 403–418. [Google Scholar] [CrossRef]
- Guo, H.; Bao, A.; Liu, T.; Ndayisaba, F.; Jiang, L.; Zheng, G.; Chen, T.; De Maeyer, P. Determining variable weights for an Optimal Scaled Drought Condition Index (OSDCI): Evaluation in Central Asia. Remote Sens. Environ. 2019, 231, 111220. [Google Scholar] [CrossRef]
- Guo, H.; Bao, A.; Ndayisaba, F.; Liu, T.; Kurban, A.; De Maeyer, P. Systematical Evaluation of Satellite Precipitation Estimates Over Central Asia Using an Improved Error-Component Procedure. J. Geophys. Res. Atmos. 2017, 122, 10906–10927. [Google Scholar] [CrossRef]
- Guo, H.; Chen, S.; Bao, A.; Hu, J.; Gebregiorgis, A.; Xue, X.; Zhang, X. Inter-Comparison of High-Resolution Satellite Precipitation Products over Central Asia. Remote Sens. 2015, 7, 7181–7211. [Google Scholar] [CrossRef] [Green Version]
- AghaKouchak, A.; Farahmand, A.; Melton, F.S.; Teixeira, J.; Anderson, M.C.; Wardlow, B.D.; Hain, C.R. Remote sensing of drought: Progress, challenges and opportunities. Rev. Geophys. 2015, 53, 452–480. [Google Scholar] [CrossRef] [Green Version]
- Jiaguo, Q. An overview of environmental issues in Central Asia. Environmental. Nato Sci. Peace Secur. 2008, 3–14. [Google Scholar]
- Qi, J.; Bobushev, T.S.; Kulmatov, R.; Groisman, P.; Gutman, G. Addressing global change challenges for Central Asian socio-ecosystems. Front. Earth Sci. 2012, 6, 115–121. [Google Scholar] [CrossRef]
- Mandel, I.; Lipovetsky, S. Climate Change Report IPCC 2021–A Chimera of Science and Politics; Social Science Electronic Publishing: Rochester, NY, USA, 2021. [Google Scholar]
- Beck, H.E.; van Dijk, A.I.J.M.; Levizzani, V.; Schellekens, J.; Miralles, D.G.; Martens, B.; de Roo, A. MSWEP: 3-hourly 0.25° global gridded precipitation (1979–2015) by merging gauge, satellite, and reanalysis data. Hydrol. Earth Syst. Sci. 2017, 21, 589–615. [Google Scholar] [CrossRef] [Green Version]
- Beck, H.E.; Vergopolan, N.; Pan, M.; Levizzani, V.; van Dijk, A.I.J.M.; Weedon, G.; Brocca, L.; Pappenberger, F.; Huffman, G.J.; Wood, E.F. Global-scale evaluation of 22 precipitation datasets using gauge observations and hydrological modeling. Hydrol. Earth Syst. Sci. 2017, 21, 6201–6217. [Google Scholar] [CrossRef] [Green Version]
- Mckee, T.B.; Doesken, N.J.; Kleist, J. The Relationship of Drought Frequency and Duration to Time Scales. In Proceedings of the 8th Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993. [Google Scholar]
- Yevjevich, V. Objective Approach to Define and Investigations of Contienntal Hydrologic Droughts. 1967. Available online: http://www.sciencedirect.com/science/article/pii/0022169469901103 (accessed on 1 July 2021).
- Guo, H.; Bao, A.; Liu, T.; Ndayisaba, F.; He, D.; Kurban, A.; De Maeyer, P. Meteorological Drought Analysis in the Lower Mekong Basin Using Satellite-Based Long-Term CHIRPS Product. Sustainability 2017, 9, 901. [Google Scholar] [CrossRef] [Green Version]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- da Silva, R.M.; Santos, C.A.G.; Moreira, M.; Corte-Real, J.; Silva, V.C.L.; Medeiros, I.C. Rainfall and river flow trends using Mann–Kendall and Sen’s slope estimator statistical tests in the Cobres River basin. Nat. Hazards 2015, 77, 1205–1221. [Google Scholar] [CrossRef]
- Guo, H.; Bao, A.; Ndayisaba, F.; Liu, T.; Jiapaer, G.; El-Tantawi, A.M.; De Maeyer, P. Space-time characterization of drought events and their impacts on vegetation in Central Asia. J. Hydrol. 2018, 564, 1165–1178. [Google Scholar] [CrossRef]
- Hamed Khaled, H.; Ramachandra, R.A. A modifiedMann-Kendall trend test for autocorrelated data. J. Hydrol. 1998, 204, 182–196. [Google Scholar] [CrossRef]
- Joshi, N.; Gupta, D.; Suryavanshi, S.; Adamowski, J.; Madramootoo, C.A. Analysis of trends and dominant periodicities in drought variables in India: A wavelet transform based approach. Atmos. Res. 2016, 182, 200–220. [Google Scholar] [CrossRef]
- Merino, A.; López, L.; Hermida, L.; Sánchez, J.L.; García-Ortega, E.; Gascón, E.; Fernández-González, S. Identification of drought phases in a 110-year record from Western Mediterranean basin: Trends, anomalies and periodicity analysis for Iberian Peninsula. Glob. Planet. Chang. 2015, 133, 96–108. [Google Scholar] [CrossRef]
- Huang, Q.; Zhang, Q.; Singh, V.P.; Shi, P.; Zheng, Y. Variations of dryness/wetness across China: Changing properties, drought risks, and causes. Glob. Planet. Chang. 2017, 155, 1–12. [Google Scholar] [CrossRef]
- Cleveland, W.S.; Devlin, S.J. Locally Weighted Regression: An Approach to Regression Analysis by Local Fitting. J. Am. Stat. Assoc. 1988, 83, 596–610. [Google Scholar] [CrossRef]
- Cleveland, W.S. Robust Locally Weighted Regression and Smoothing Scatterplots. J. Am. Stat. Assoc. 1979, 74, 829–836. [Google Scholar] [CrossRef]
- Patrick, E. Drought characteristics and management in Central Asia and Turkey. FAO Water Rep. 2017, 44, 114. [Google Scholar]
- Sommer, R.; Djanibekov, N.; Salaev, O. Optimization of Land and Resource Use at Farm-Aggregated Level in the Aral Sea Basin of Uzbekistan with the Integrated Model FLEOM–Model Description and First Application; J. ZEF–Discussion Papers on Development Policy: Bonn, Germany, 2010; p. 102. [Google Scholar]
- Xu, H.J.; Wang, X.P.; Zhang, X.X. Decreased vegetation growth in response to summer drought in Central Asia from 2000 to 2012. Int. J. Appl. Earth Obs. 2016, 52, 390–402. [Google Scholar] [CrossRef]
- Wright, C.K.; de Beurs, K.M.; Henebry, G.M. Land surface anomalies preceding the 2010 Russian heat wave and a link to the North Atlantic oscillation. Environ. Res. Lett. 2014, 9, 124015. [Google Scholar] [CrossRef]
- Pollner, J.; Krypsin-Watson, J.; Nieuwejaar, S. Climate change adaptation in Europe and Central Asia: Disaster risk management. World Bank 2008, 22, 258598. [Google Scholar]
- Guo, H.; Bao, A.; Liu, T.; Jiapaer, G.; Ndayisaba, F.; Jiang, L.; Kurban, A.; De Maeyer, P. Spatial and temporal characteristics of droughts in Central Asia during 1966–2015. Sci. Total Environ. 2018, 624, 1523–1538. [Google Scholar] [CrossRef]
Statistical Metric | Equation | Optimal Value |
---|---|---|
Relative bias (RB) 1 | 0 | |
Pearson linear correlation coefficient (CC) 1 | 1 | |
Root mean square error (RMSE) 1 | 0 |
SPI Value | Category |
---|---|
2.0 and above | Extremely wet |
1.5 to 1.99 | Severely wet |
1.0 to 1.49 | Moderately wet |
−0.99 to 0.99 | Near normal |
−1.0 to −1.49 | Moderately dry |
−1.5 to −1.99 | Severely dry |
−2.0 and less | Extremely dry |
DE | TS | TP | TE | DD | DI | DP | DS |
---|---|---|---|---|---|---|---|
D1 | 2007.06 | 2007.10 | 2008.09 | 16 | 0.98 | 2.29 | 15.66 |
D2 | 2010.11 | 2011.01 | 2011.09 | 11 | 1.02 | 2.63 | 11.17 |
D3 | 1986.01 | 1986.03 | 1986.10 | 10 | 1.09 | 2.23 | 10.93 |
D4 | 1984.06 | 1884.09 | 1984.10 | 5 | 2.17 | 3.39 | 10.83 |
D5 | 2001.01 | 2001.03 | 2001.08 | 8 | 1.24 | 2.06 | 9.90 |
D6 | 2000.02 | 2000.03 | 2000.07 | 6 | 1.62 | 2.32 | 9.74 |
D7 | 2012.02 | 2012.06 | 2012.12 | 11 | 0.73 | 1.15 | 8.09 |
D8 | 1981.11 | 1982.06 | 1982.08 | 10 | 0.79 | 1.74 | 7.90 |
D9 | 1997.08 | 1997.10 | 1997.12 | 5 | 1.42 | 2.06 | 7.11 |
D10 | 1995.11 | 1996.01 | 1996.03 | 5 | 1.42 | 2.71 | 7.09 |
D11 | 1983.08 | 1984.02 | 1984.02 | 7 | 0.88 | 1.34 | 6.18 |
D12 | 2014.03 | 2014.07 | 2014.09 | 7 | 0.78 | 1.42 | 5.45 |
D13 | 2006.04 | 2006.05 | 2006.09 | 6 | 0.91 | 1.32 | 5.44 |
D14 | 1995.02 | 1995.03 | 1995.07 | 6 | 0.89 | 1.60 | 5.35 |
D15 | 1985.04 | 1985.09 | 1985.09 | 6 | 0.85 | 1.24 | 5.08 |
D16 | 2017.07 | 2018.01 | 2018.02 | 8 | 0.63 | 1.29 | 5.05 |
D17 | 1998.10 | 1998.12 | 1999.03 | 6 | 0.68 | 1.41 | 4.06 |
D18 | 2020.10 | 2020.12 | 2020.12 | 3 | 1.30 | 2.06 | 3.89 |
D19 | 1996.11 | 1996.12 | 1997.04 | 6 | 0.63 | 1.27 | 3.75 |
D20 | 2005.09 | 2005.11 | 2006.01 | 5 | 0.72 | 1.38 | 3.60 |
D21 | 1983.02 | 1983.02 | 1983.04 | 3 | 1.16 | 1.46 | 3.48 |
D22 | 2002.09 | 2002.10 | 2003.01 | 5 | 0.61 | 1.12 | 3.05 |
D23 | 1991.09 | 1991.10 | 1991.11 | 3 | 0.97 | 1.62 | 2.92 |
D24 | 1992.11 | 1992.11 | 1993.01 | 3 | 0.96 | 1.38 | 2.89 |
D25 | 2013.09 | 2013.11 | 2013.12 | 4 | 0.72 | 1.43 | 2.88 |
D26 | 2007.01 | 2007.02 | 2007.03 | 3 | 0.79 | 1.34 | 2.36 |
D27 | 1988.11 | 1988.11 | 1989.01 | 3 | 0.52 | 1.00 | 1.55 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Lv, X.; Zhu, L.; Uchenna Ochege, F.; Guo, H. Evaluation and Application of MSWEP in Drought Monitoring in Central Asia. Atmosphere 2022, 13, 1053. https://doi.org/10.3390/atmos13071053
Li M, Lv X, Zhu L, Uchenna Ochege F, Guo H. Evaluation and Application of MSWEP in Drought Monitoring in Central Asia. Atmosphere. 2022; 13(7):1053. https://doi.org/10.3390/atmos13071053
Chicago/Turabian StyleLi, Min, Xiaoyu Lv, Li Zhu, Friday Uchenna Ochege, and Hao Guo. 2022. "Evaluation and Application of MSWEP in Drought Monitoring in Central Asia" Atmosphere 13, no. 7: 1053. https://doi.org/10.3390/atmos13071053
APA StyleLi, M., Lv, X., Zhu, L., Uchenna Ochege, F., & Guo, H. (2022). Evaluation and Application of MSWEP in Drought Monitoring in Central Asia. Atmosphere, 13(7), 1053. https://doi.org/10.3390/atmos13071053