Influence of Local Climate and ENSO on the Growth of Cedrela odorata L. in Suriname
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Climate Data
2.3. Tree Species
2.4. Sample Selection
2.5. Tree-Ring Measurement
- (1)
- The mean intertree correlation (rbt), which is calculated as the mean correlation between all possible pairs of individual series for the entire series or by using the windowing technology for a sequence of overlapping time intervals through the entire length of the chronology strength of the signal common to all trees [55];
- (2)
- The first-order autocorrelation (AC) within the series, which describes the influence of the previous year’s conditions on ring formation [23];
- (3)
- The expressed population signal (EPS), which quantifies the degree to which the chronology expresses the population chronology [56];
- (4)
- The degree of synchronicity (Gleichläufigkeit), which is a classical agreement test based on sign tests between the pairwise comparison of all records in a dataset for the conformity of slopes between successive years [57];
- (5)
- The t-value based on 5 year moving averages for the estimation of the cross-correlation between the sample and the reference [58].
2.6. Chronology Construction
2.7. Dendroclimatological Analysis
3. Results
3.1. Tree-Ring Chronology
3.2. Impact of Precipitation and El Niño on Tree Growth
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hall, T.C.; Sealy, A.M.; Stephenson, T.S.; Kusunoki, S.; Taylor, M.A.; Chen, A.A.; Kitoh, A. Future climate of the Caribbean from a super-high-resolution atmospheric general circulation model. Theor. Appl. Climatol. 2013, 113, 271–287. [Google Scholar] [CrossRef]
- Collins, M.; An, S.-I.; Cai, W.; Ganachaud, A.; Guilyardi, E.; Jin, F.-F.; Jochum, M.; Lengaigne, M.; Power, S.; Timmermann, A.; et al. The impact of global warming on the tropical Pacific Ocean and El Nino. Nat. Geosci. 2010, 3, 391–397. [Google Scholar] [CrossRef]
- Walsh, K.J.E.; McInnes, K.L.; McBride, J.L. Climate change impacts on tropical cyclones and extreme sea levels in the South Pacific—A regional assessment. Glob. Planet. Change 2012, 80, 149–164. [Google Scholar] [CrossRef]
- Nurmohamed, R.; Naipal, S.; Becker, C. Rainfall variability in Suriname and its relationship with the Tropical Pacific ENSO SST anomalies and the Atlantic SST anomalies. Acta Nova 2006, 3, 488–502. [Google Scholar] [CrossRef]
- Mol, J.H.; Resida, D.; Ramlal, J.S.; Becker, C.R. Effects of El nino-related drought on freshwater and brackish-water fishes in suriname, South America. Environ. Biol. Fishes 2000, 59, 429–440. [Google Scholar] [CrossRef]
- Iizumi, T.; Luo, J.-J.; Challinor, A.J.; Sakurai, G.; Yokozawa, M.; Sakuma, H.; Brown, M.E.; Yamagata, T. Impacts of El Niño Southern Oscillation on the global yields of major crops. Nat. Commun. 2014, 5, 3712. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schöngart, J.; Junk, W.J.; Piedade, M.T.F.; Ayres, J.M.; Hüttermann, A.; Worbes, M. Teleconnection between tree growth in the Amazonian floodplains and the El Nino–Southern Oscillation effect. Glob. Change Biol. 2004, 10, 683–692. [Google Scholar] [CrossRef]
- Rodriguez, R.; Mabres, A.; Luckman, B.; Evans, M.; Masiokas, M.; Ektvedt, T.M. “El Niño” events recorded in dry-forest species of the lowlands of northwest Peru. Dendrochronologia 2005, 22, 181–186. [Google Scholar] [CrossRef]
- Gebrekirstos, A.; Mitlöhner, R.; Teketay, D.; Worbes, M. Climate–growth relationships of the dominant tree species from semi-arid savanna woodland in Ethiopia. Trees 2008, 22, 631. [Google Scholar] [CrossRef] [Green Version]
- De Ridder, M.; Toirambe, B.; van den Bulcke, J.; Bourland, N.; van Acker, J.; Beeckman, H. Dendrochronological Potential in a Semi-Deciduous Rainforest. The Case of Pericopsis elata in Central Africa. Forests 2014, 5, 3087–3106. [Google Scholar] [CrossRef]
- Hofhansl, F.; Kobler, J.; Ofner, J.; Drage, S.; Polz, E.M.; Wanek, W. Sensitivity of tropical forest aboveground productivity to climate anomalies in SW Costa Rica. Glob. Biogeochem. Cycles 2014, 28, 1437–1454. [Google Scholar] [CrossRef]
- Moreno, M.M.; del Valle, J.I. Influence of local climate and ENSO on the growth of Abarco (Cariniana pyriformis) in Choc, Colombia. Trees 2015, 29, 97–107. [Google Scholar] [CrossRef]
- Rozas, V.; Camarero, J.J.; Sanguesa-Barreda, G.; Souto, M.; Garcia-Gonzalez, I. Summer drought and ENSO-related cloudiness distinctly drive Fagus sylvatica growth near the species rear-edge in northern Spain. Agric. For. Meteorol. 2015, 201, 153–164. [Google Scholar] [CrossRef] [Green Version]
- Perone, A.; Lombardi, F.; Marchetti, M.; Tognetti, R.; Lasserre, B. Evidence of solar activity and El Nino signals in tree rings of Araucaria araucana and A. angustifolia in South America. Glob. Planet. Change 2016, 145, 1–10. [Google Scholar] [CrossRef]
- Spannl, S.; Volland, F.; Pucha, D.; Peters, T.; Cueva, E.; Bräuning, A. Climate variability, tree increment patterns and ENSO-related carbon sequestration reduction of the tropical dry forest species Loxopterygium huasango of Southern Ecuador. Trees 2016, 30, 1245–1258. [Google Scholar] [CrossRef]
- Venegas-Gonzalez, A.; Chagas, M.P.; Anholetto, C.R.; Alvares, C.A.; Roig, F.A.; Tomazello, M. Sensitivity of tree ring growth to local and large-scale climate variability in a region of Southeastern Brazil. Theor. Appl. Climatol. 2016, 123, 233–245. [Google Scholar] [CrossRef]
- Alfaro-Sanchez, R.; Muller-Landau, H.C.; Wright, S.J.; Camarero, J.J. Growth and reproduction respond differently to climate in three Neotropical tree species. Oecologia 2017, 184, 531–541. [Google Scholar] [CrossRef] [Green Version]
- García-Cervigón, A.I.; Camarero, J.J.; Espinosa, C.I. Intra-annual stem increment patterns and climatic responses in five tree species from an Ecuadorian tropical dry forest. Trees 2017, 31, 1057–1067. [Google Scholar] [CrossRef]
- Berenguer, E.; Malhi, Y.; Brando, P.; Cardoso Nunes Cordeiro, A.; Ferreira, J.; Franca, F.; Chesini Rossi, L.; Maria Moraes de Seixas, M.; Barlow, J. Tree growth and stem carbon accumulation in human-modified Amazonian forests following drought and fire. Phil. Trans. R. Soc. B 2018, 373, 20170308. [Google Scholar] [CrossRef]
- Köhl, M.; Scott, C.T.; Zingg, A. Evaluation of Permanent Sample Surveys for Growth and Yield Studies. For. Ecol. Manag. 1995, 71, 187–194. [Google Scholar] [CrossRef]
- Nagel, J.; Spellmann, H.; Pretzsch, H. Zum Informationspotenzial langfristiger forstlicher Versuchsflächen und periodischer Waldinventuren für die waldwachstumskundliche Forschung. Allg. Forst-Und Jagdztg. 2012, 183, 111–116. [Google Scholar]
- Lutz, J.A. The Evolution of Long-Term Data for Forestry: Large Temperate Research Plots in an Era of Global Change. Northwest Sci. 2015, 89, 255–269. [Google Scholar] [CrossRef] [Green Version]
- Fritts, H.C. Tree Rings and Climate; Academic Press: London, UK, 1976. [Google Scholar]
- Schweingruber, F. Tree Rings: Basics and Applications of Dendrochronology; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Brienen, R.J.; Zuidema, P.A. Relating tree growth to rainfall in Bolivian rain forests: A test for six species using tree ring analysis. Oecologia 2005, 146, 1–12. [Google Scholar] [CrossRef]
- Garcıa-Suárez, A.M.; Butler, C.J.; Baillie, M.G.L. Climate signalintree-ringchronologiesinatemperateclimate: A multi-speciesapproach. Dendrochronologia 2009, 27, 183–190. [Google Scholar] [CrossRef] [Green Version]
- Van der Sleen, P.; Groenendijk, P.; Vlam, M.; Anten, N.P.R.; Bongers, F.; Zuidema, P.A. Trends in tropical tree growth: Re-analyses confirm earlier findings. Glob. Change Biol. 2017, 23, 1761–1762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindner, M.; Maroschek, M.; Netherer, S.; Kremer, A.; Barbati, A.; Garcia-Gonzalo, J.; Seidl, R.; Delzon, S.; Corona, P.; Kolstrom, M.; et al. Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For. Ecol. Manag. 2010, 259, 698–709. [Google Scholar] [CrossRef]
- Hanewinkel, M.; Cullmann, D.A.; Schelhaas, M.J.; Nabuurs, G.J.; Zimmermann, N.E. Climate change may cause severe loss in the economic value of European forest land. Nat. Clim. Change 2012, 3, 203–207. [Google Scholar] [CrossRef]
- Lamprecht, H. Silviculture in the Tropics: Tropical Forest Ecosystems and Their Tree Species. Possibilities and Methods for Their Long Term Utilization; GIZ: Eschborn, Germany, 1989. [Google Scholar]
- Newberry, D.M.; Ridsdale, W.E. Neighbourhood abundance and small-tree survival in a lowland Borneam rainforest. Ecol. Res. 2016, 31, 353–366. [Google Scholar] [CrossRef]
- Nguyen, H.H.; Uria-Diez, J.; Wiegand, K. Spatial distribution and association patterns in a tropical evergreen broad-leaved forest of north-central Vietnam. J. Veg. Sci. 2016, 27, 318–327. [Google Scholar] [CrossRef]
- Rodrigues, D.R.; Bovolenta, Y.R.; Pimenta, J.A.; Bianchini, E. Height structure and spatial pattern of five tropical tree species in two seasonal semideciduous forest fragments with different conservation histories. Rev. Arvore 2016, 40, 395–405. [Google Scholar] [CrossRef] [Green Version]
- Le Bec, J.; Courbaud, B.; Le Moguédec, G.; Pélissier, R. Characterizing tropical tree species growth strategies: Learning from inter-Individual variability and scale invariance. PLoS ONE 2015, 10, e0117028. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rapp, J.M.; Silman, M.R.; Clark, J.S.; Girardin, C.A.J.; Galiano, D.; Tito, R. Intra- and interspecific tree growth across a long altitudinal gradientin the Peruvian Andes. Ecology 2012, 93, 2061–2072. [Google Scholar] [CrossRef] [PubMed]
- Yoda, K.; Shinozaki, K.; Ogawa, H.; Hozumi, K.; Kira, T. Estimation of the total amount of respiration in woody organs of trees and forest communities. J. Biol. Osaka City Univ. 1965, 16, 15–26. [Google Scholar]
- Whittaker, R.H.; Woodwell, G.M. Surface area relations of woody plants and forest communities. Am. J. Botany 1967, 54, 931–939. [Google Scholar] [CrossRef]
- Coombs, J.; Hall, D.O.; Long, S.P.; Scurlock, J.M.O. Techniques in Bioproductivity and Photosynthesis, 2nd ed.; Pergamon: Oxford, UK, 1985. [Google Scholar]
- Ryan, M.G.; Phillips, N.; Bond, B.J. The hydraulic limitation hypothesis revisited. Plant Cell Environ. 2006, 29, 367–381. [Google Scholar] [CrossRef]
- Woodruff, D.R.; Meinzer, F.C. Size-dependent changes in biophysical control of tree growth: The role of turgor. In Size- and Age-Related Changes in Tree Structure and Function; Meinzer, F.C., Lachenbruch, B., Dawson, T.E., Eds.; Springer: Dordrecht, The Netherlands, 2011; Tree Physiology; Volume 4, pp. 363–384. [Google Scholar]
- Ryan, M.G.; Yoder, B.J. Hydraulic limits to tree height and tree growth. BioScience 1997, 47, 235–242. [Google Scholar] [CrossRef] [Green Version]
- Worbes, M. One hundred years of tree-ring research in the tropics—A brief history and an outlook to future challenges. Dendrochronologia 2002, 20, 217–231. [Google Scholar] [CrossRef] [Green Version]
- Lotfiomran, N.; Köhl, M. Retrospective analysis of growth: A contribution to sustainable forest management in the tropics. IAWA J. 2017, 38, 297-S221. [Google Scholar] [CrossRef] [Green Version]
- FAO. Global Forest Resources Assessment 2015; FAO: Rome, Italy, 2015. [Google Scholar]
- Werger, M.J.A. Sustainable Management of Tropical Rainforests—The CELOS Management System; Tropenbos International: Paramaribo, Suriname, 2011; p. 281. [Google Scholar]
- Rayner, N.A.; Parker, D.E.; Horton, E.B.; Folland, C.K.; Alexander, L.V.; Rowell, D.P.; Kent, E.C.; Kaplan, A. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. 2003, 108, 4407. [Google Scholar] [CrossRef]
- Burns, R.M.; Honkala, B.H. Silvics of North America: U.S.D.A. Forest Service Agriculture Handbook 654; Forest Service, United States Department of Agriculture: Washington, DC, USA, 1990. [Google Scholar]
- IUCN. The IUCN Red List of Threatened Species; Version 2015-4; International Union for Conservation of Nature: Gland, Switzerland, 2016; Available online: http://www.iucnredlist.org (accessed on 23 May 2016).
- Worbes, M. Annual growth rings, rainfall-dependent growth and long-term growth patterns of tropical trees from the Caparo Forest Reserve in Venezuela. J. Ecol. 1999, 87, 391–403. [Google Scholar] [CrossRef]
- Dünisch, O.; Bauch, J.; Gasparotto, L. Formation of increment zones and intraannual growth dynamics in the xylem of Swietenia Macrophylla, Carapa guianensis, and Cedrela odorata (Meliaceae). IAWA J. 2002, 23, 101–119. [Google Scholar] [CrossRef]
- Worbes, M. How to measure growth dynamics in tropical trees—A review. IAWA J. 1995, 16, 337–351. [Google Scholar] [CrossRef]
- Rinn, F. LINTAB 6 Tree-Ring Measurement Station; Rinntech: Heidelberg, Germany.
- Rinn, F. TSAP-Win—Time Series Analysis and Presentation Dendrochronology and Related Applications; Rinntech: Heidelberg, Germany, 2003. [Google Scholar]
- Stokes, M.A.; Smiley, T.L. An Introduction to Tree-Ring Dating; University of Arizona Press: Tucson, AZ, USA, 1996. [Google Scholar]
- Briffa, K.R.; Jones, P.D. Basic chronology statistics and assessment. In Methods of Dendrochronology: Applications in the Environmental Sciences; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1990. [Google Scholar]
- Wigley, T.M.; Briffa, K.R.; Jones, P.D. On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. J. Clim. Appl. Meteorol. 1984, 23, 201–213. [Google Scholar] [CrossRef]
- Eckstein, D.; Bauch, J. Beitrag zur Rationalisierung eines dendrochronologischen Verfahrens und zur Analyse seiner Aussagesicherheit. Forstwiss. Centralblatt 1969, 88, 230–250. [Google Scholar] [CrossRef]
- Baillie, M.; Pilcher, J. A simple cross-dating program for tree-ring research. Tree-Ring Bull. 1973, 38, 35–43. [Google Scholar]
- Holmes, R.L. Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bull. 1983, 44, 69–75. [Google Scholar]
- Bunn, A.; Korpela, M.; Biondi, F.; Campelo, F.; Mérian, P.; Qeadan, F.; Zang, C. DplR: Dendrochronology Program Library in R. R Package Version 1.6.5. 2017. Available online: https://CRAN.R-project.org/package=dplR (accessed on 14 June 2022).
- Cook, E.; Peters, K. The smoothing spline: A new approach to standardizing forest interior tree-ring width series for dendroclimatic studies. Tree-Ring Bull. 1980, 41, 45–53. [Google Scholar]
- Bunn, A.G. Statistical and visual crossdating in R using the dplR library. Dendrochronologia 2010, 28, 251–258. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2017. [Google Scholar]
- Guiot, J. The bootstrapped response function. Tree Ring Bull. 1991, 51, 39–41. [Google Scholar]
- Zang, C.; Biondi, F. Dendroclimatic calibration in R: The bootRes package for response and correlation function analysis. Dendrochronologia 2013, 31, 68–74. [Google Scholar] [CrossRef]
- Zang, C.; Biondi, F. treeclim: An R package for the numerical calibration of proxy-climate relationships. Ecography 2015, 38, 431–436. [Google Scholar] [CrossRef]
- Garcia-Gonzalo, J.; Peltola, H.; Briceño-Elizondo, E.; Kellomäki, S. Effects of climate change and management on timber yield in boreal forests, with economic implications: A case study. Clim. Change 2007, 81, 431–454. [Google Scholar] [CrossRef]
- Brienen, R.J.W.; Gloor, M.; Ziv, G. Tree demography dominates long-term growth trends inferred from tree rings. Glob. Change Biol. 2017, 23, 474–484. [Google Scholar] [CrossRef] [PubMed]
- Wilcox, R. Introduction to Robust Estimation and Hypothesis Testing; Elsevier: Burlington, MA, USA, 2005. [Google Scholar]
- Borchert, R. Climatic periodicity, phenology, and cambium activity in tropical dry forest trees. IAWA J. 1999, 20, 239–247. [Google Scholar] [CrossRef]
- Sauter, J. Photosynthate allocation of the vascular cambium: Facts and problems. In Cell and Molecular Biology of Wood Formation; Savidge, R.A., Barnett, J.R., Napier, R., Eds.; BIOS Scientific: Oxford, UK, 2000; pp. 71–84. [Google Scholar]
Tree | 1850–1899 | 1875–1924 | 1900–1949 | 1925–1974 | 1950–1999 | Overall |
---|---|---|---|---|---|---|
CEDRO16M | 0.62 | 0.21 | 0.34 | 0.49 | 0.30 | 0.39 |
CEDRO60M | 0.67 | 0.53 | 0.36 | 0.32 | 0.47 | 0.52 |
CEDRO17M | 0.19 | 0.26 | 0.50 | 0.32 | 0.29 | |
CEDRO19M | 0.73 | 0.60 | 0.63 | 0.53 | 0.49 | 0.65 |
CEDR03MV | 0.26 | 0.39 | 0.49 | 0.45 | 0.39 | |
CEDRO10M | 0.25 | 0.23 | 0.44 | 0.49 | 0.40 | |
CEDRO80M | 0.62 | 0.57 | 0.48 | 0.52 | ||
CEDRO24M | 0.58 | 0.56 | 0.54 | 0.60 | ||
CEDRO25M | 0.40 | 0.38 | 0.61 | 0.54 | ||
CEDRO15M | 0.64 | 0.56 | 0.53 | 0.57 | ||
CEDRO26M | 0.55 | 0.42 | 0.49 | 0.55 | ||
CEDRO90M | 0.45 | 0.53 | 0.50 | 0.48 | ||
CEDRO22M | 0.46 | 0.26 | 0.33 | 0.44 | ||
CEDRO50M | 0.60 | 0.53 | 0.36 | 0.44 | ||
CEDRO13M | 0.33 | 0.46 | 0.37 | |||
CEDRO21M | 0.46 | 0.55 | 0.46 | |||
CEDRO4MV | 0.07 | 0.24 | 0.20 | |||
CEDRO20M | 0.43 | 0.55 | 0.47 | |||
CEDRO23M | 0.43 | 0.24 | 0.50 | |||
CEDRO70M | 0.57 | 0.62 |
Month | Precipitation | Index | |||||||
---|---|---|---|---|---|---|---|---|---|
Niño 1 + 2 | Niño 3 .4 | MEI | SOI | NAO | TSA | TNA | |||
Previous year | January | ||||||||
February | |||||||||
March | X | ||||||||
April | X | ||||||||
May | |||||||||
June | X | X | X | ||||||
July | X | ||||||||
August | X | X | |||||||
September | X | ||||||||
October | X | X | |||||||
November | X | X | |||||||
December | X | ||||||||
Current year | January | X | |||||||
February | X | X | |||||||
March | |||||||||
April | |||||||||
May | X | ||||||||
June | X | ||||||||
July | X | ||||||||
August | X | X | |||||||
September | |||||||||
October | |||||||||
November | |||||||||
December |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Köhl, M.; Lotfiomran, N.; Gauli, A. Influence of Local Climate and ENSO on the Growth of Cedrela odorata L. in Suriname. Atmosphere 2022, 13, 1119. https://doi.org/10.3390/atmos13071119
Köhl M, Lotfiomran N, Gauli A. Influence of Local Climate and ENSO on the Growth of Cedrela odorata L. in Suriname. Atmosphere. 2022; 13(7):1119. https://doi.org/10.3390/atmos13071119
Chicago/Turabian StyleKöhl, Michael, Neda Lotfiomran, and Archana Gauli. 2022. "Influence of Local Climate and ENSO on the Growth of Cedrela odorata L. in Suriname" Atmosphere 13, no. 7: 1119. https://doi.org/10.3390/atmos13071119
APA StyleKöhl, M., Lotfiomran, N., & Gauli, A. (2022). Influence of Local Climate and ENSO on the Growth of Cedrela odorata L. in Suriname. Atmosphere, 13(7), 1119. https://doi.org/10.3390/atmos13071119