Source Identification of PM2.5 during a Smoke Haze Period in Chiang Mai, Thailand, Using Stable Carbon and Nitrogen Isotopes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Site
2.2. Measurement of Stable Isotopes
2.3. Data Analysis
3. Results and Discussion
3.1. PM2.5 Mass Concentration
3.2. Temporal Variation in Stable Carbon and Nitrogen Isotopes in PM2.5
3.3. Contribution to PM2.5 from Burning C3 and C4 Plants
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Andreae, M.O. Emission of trace gases and aerosols from biomass burning—An updated assessment. Atmos. Chem. Phys. Discuss. 2019, 19, 1–27. [Google Scholar] [CrossRef] [Green Version]
- Bond, T.C.; Doherty, S.J.; Fahey, D.W.; Forster, P.M.; Berntsen, T.; DeAngelo, B.J.; Flanner, M.G.; Ghan, S.; Kärcher, B.; Koch, D. Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. Res. Atmos. 2013, 118, 5380–5552. [Google Scholar] [CrossRef]
- Mueller, W.; Loh, M.; Vardoulakis, S.; Johnston, H.J.; Steinle, S.; Precha, N.; Kliengchuay, W.; Tantrakarnapa, K.; Cherrie, J.W. Ambient particulate matter and biomass burning: An ecological time series study of respiratory and cardiovascular hospital visits in northern Thailand. Environ. Health 2020, 19, 77. [Google Scholar] [CrossRef] [PubMed]
- Petetin, H.; Sauvage, B.; Parrington, M.; Clark, H.; Fontaine, A.; Athier, G.; Blot, R.; Boulanger, D.; Cousin, J.M.; Nédélec, P.; et al. The role of biomass burning as derived from the tropospheric CO vertical profiles measured by IAGOS aircraft in 2002–2017. Atmos. Chem. Phys. 2018, 18, 17277–17306. [Google Scholar] [CrossRef] [Green Version]
- Yadav, I.; Devi, N.; Li, J.; Syed, J.H.; Zhang, G.; Watanabe, H. Biomass Burning in Indo-China Peninsula and its impacts on regional air quality and global climate change—A review. Environ. Pollut. 2017, 227, 414–427. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Zhang, X.; Zhang, S.; Chen, W.; Tong, D.Q.; Xiu, A. Effects of agricultural biomass burning on regional haze in China: A Review. Atmosphere 2017, 8, 88. [Google Scholar] [CrossRef] [Green Version]
- Simoneit, B.R.T. Biomass burning—A review of organic tracers for smoke from incomplete combustion. Appl. Geochem. 2002, 17, 129–162. [Google Scholar] [CrossRef]
- Aggarwal, S.G.; Kawamura, K.; Umarji, G.S.; Tachibana, E.; Patil, R.S.; Gupta, P.K. Organic and inorganic markers and stable C-, N-isotopic compositions of tropical coastal aerosols from megacity Mumbai: Sources of organic aerosols and atmospheric processing. Atmos. Chem. Phys. 2013, 13, 4667–4680. [Google Scholar] [CrossRef] [Green Version]
- Bikkina, S.; Kawamura, K.; Sarin, M. Stable carbon and nitrogen isotopic composition of fine mode aerosols (PM2.5) over the Bay of Bengal: Impact of continental sources. Tellus B Chem. Phys. Meteorol. 2016, 68, 31518. [Google Scholar] [CrossRef] [Green Version]
- Boreddy, S.K.R.; Parvin, F.; Kawamura, K.; Zhu, C.; Lee, C.T. Stable carbon and nitrogen isotopic compositions of fine aerosols (PM2.5) during an intensive biomass burning over Southeast Asia: Influence of SOA and aging. Atmos. Environ. 2018, 191, 478–489. [Google Scholar] [CrossRef]
- Cao, F.; Zhang, S.C.; Kawamura, K.; Zhang, Y.L. Inorganic markers, carbonaceous components and stable carbon isotope from biomass burning aerosols in Northeast China. Sci. Total Environ. 2016, 572, 1244–1251. [Google Scholar] [CrossRef]
- Martinelli, L.A.; Camargo, P.B.; Lara, L.B.L.S.; Victoria, R.L.; Artaxo, P. Stable carbon and nitrogen isotopic composition of bulk aerosol particles in a C4 plant landscape of southeast Brazil. Atmos. Environ. 2002, 36, 2427–2432. [Google Scholar] [CrossRef]
- Mkoma, S.L.; Kawamura, K.; Tachibana, E.; Fu, P. Stable carbon and nitrogen isotopic compositions of tropical atmospheric aerosols: Sources and contribution from burning of C3 and C4 plants to organic aerosols. Tellus B Chem. Phys. Meteorol. 2014, 66, 20176. [Google Scholar] [CrossRef]
- Kawichai, S.; Prapamontol, T.; Cao, F.; Liu, X.Y.; Song, W.H.; Kiatwattanacharoen, S.; Zhang, Y.L. Significant contribution of C3—Type forest plants’ burning to airborne PM2.5 pollutions in Chiang Mai Province, Northern Thailand. Chiang Mai Univ. J. Nat. Sci. 2021, 20, 16. [Google Scholar] [CrossRef]
- Kawichai, S.; Prapamontol, T.; Chantara, S.; Kanyanee, T. Seasonal variation and sources estimation of PM2.5 bound PAHs from the ambient air of Chiang Mai City: An All-year-round Study in 2017. Chiang Mai J. Sci. 2020, 47, 958–972. [Google Scholar]
- Khamkaew, C.; Chantara, S.; Janta, R.; Pani, S.K.; Prapamontol, T.; Kawichai, S.; Wiriya, W.; Lin, N.H. Investigation of biomass burning chemical components over Northern Southeast Asia during 7-SEAS/BASELInE 2014 campaign. Aerosol Air Qual. Res. 2016, 16, 2655–2670. [Google Scholar] [CrossRef]
- Kiatwattanacharoen, S.; Prapamontol, T.; Singharat, S.; Chantara, S.; Thavornyutikarn, P. Exploring the sources of PM10 burning-season haze in Northern Thailand using nuclear analytical techniques. Chiang Mai Univ. J. Nat. Sci. 2017, 16, 307–325. [Google Scholar] [CrossRef]
- Punsompong, P.; Chantara, S. Identification of potential sources of PM10 pollution from biomass burning in northern Thailand using statistical analysis of trajectories. Atmos. Pollut. Res. 2019, 9, 1038–1051. [Google Scholar] [CrossRef] [Green Version]
- Thepnuan, D.; Chantara, S.; Lee, C.T.; Lin, N.H.; Tsai, Y.I. Molecular markers for biomass burning associated with the characterization of PM2.5 and component sources during dry season haze episodes in Upper South East Asia. Sci. Total Environ. 2019, 658, 708–722. [Google Scholar] [CrossRef]
- Hegde, P.; Kawamura, K.; Joshi, H.; Naja, M. Organic and inorganic components of aerosols over the central Himalayas: Winter and summer variations in stable carbon and nitrogen isotopic composition. Environ. Sci. Pollut. Res. 2016, 23, 6102–6118. [Google Scholar] [CrossRef]
- Sharma, S.K.; Mandal, T.K.; Shenoy, D.M.; Bardhan, P.; Srivastava, M.K.; Chatterjee, A.; Saxena, M.; Saraswati; Singh, B.P.; Ghosh, S.K. Variation of stable carbon and nitrogen isotopic composition of PM10 at urban sites of Indo Gangetic Plain (IGP) of India. Bull. Environ. Contam. Toxicol. 2015, 95, 661–669. [Google Scholar] [CrossRef] [PubMed]
- Fu, P.Q.; Kawamura, K.; Chen, J.; Li, J.; Sun, Y.L.; Liu, Y.; Tachibana, E.; Aggarwal, S.G.; Okuzawa, K.; Tanimoto, H.; et al. Diurnal variations of organic molecular tracers and stable carbon isotopic composition in atmospheric aerosols over Mt. Tai in the North China Plain: An influence of biomass burning. Atmos. Chem. Phys. 2012, 12, 8359–8375. [Google Scholar] [CrossRef] [Green Version]
- Jung, J.; Kawamura, K. Springtime carbon emission episodes at the Gosan background site revealed by total carbon, stable carbon isotopic composition, and thermal characteristics of carbonaceous particles. Atmos. Chem. Phys. 2011, 11, 10911–10928. [Google Scholar] [CrossRef] [Green Version]
- Widory, D. Combustibles, fuels and their combustion products: A view through carbon isotopes. Combust. Theory Model. 2006, 10, 831–841. [Google Scholar] [CrossRef]
- Widory, D. Nitrogen isotopes: Tracers of origin and processes affecting PM10 in the atmosphere of Paris. Atmos. Environ. 2007, 41, 2382–2390. [Google Scholar] [CrossRef]
- Kundu, S.; Kawamura, K.; Andreae, T.; Hoffer, A.; Andreae, M. Diurnal variation in the water-soluble inorganic ions, organic carbon and isotopic compositions of total carbon and nitrogen in biomass burning aerosols from the LBA-SMOCC campaign in Rondonia, Brazil. J. Aerosol Sci. 2010, 41, 118–133. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.K.; Mandal, T.; De, A.K.; Deb, N.; Jain, S.; Saxena, M.; Pal, S.; Choudhuri, A.K.; Yadav, S. Carbonaceous and inorganic species in PM10 during wintertime over Giridih, Jharkhand (India). J. Atmos. Chem. 2018, 75, 219–233. [Google Scholar] [CrossRef]
- Turekian, V.C.; Macko, S.; Ballentine, D.; Swap, R.J.; Garstang, M. Causes of bulk carbon and nitrogen isotopic fractionations in the products of vegetation burns: Laboratory studies. Chem. Geol. 1998, 152, 181–192. [Google Scholar] [CrossRef]
- Bond, T.C.; Streets, D.G.; Yarber, K.F.; Nelson, S.M.; Woo, J.H.; Klimont, Z. A technology-based global inventory of black and organic carbon emissions from combustion. J. Geophys. Res. Atmos. 2004, 109, D14203. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Li, C.; Ristovski, Z.; Milic, A.; Gu, Y.; Islam, M.S.; Wang, S.; Hao, J.; Zhang, H.; He, C.; et al. A review of biomass burning: Emissions and impacts on air quality, health and climate in China. Sci. Total Environ. 2017, 579, 1000–1034. [Google Scholar] [CrossRef] [Green Version]
- Johnston, H.J.; Mueller, W.; Steinle, S.; Vardoulakis, S.; Tantrakarnapa, K.; Loh, M.; Cherrie, J.W. How harmful is particulate matter emitted from biomass burning? A Thailand Perspective. Curr. Pollut. Rep. 2019, 5, 353–377. [Google Scholar] [CrossRef] [Green Version]
- Grieshop, A.; Logue, J.; Donahue, N.; Robinson, A. Laboratory investigation of photochemical oxidation of organic aerosol from wood fires 1: Measurement and simulation of organic aerosol evolution. Atmos. Chem. Phys. 2009, 9, 9951–9963. [Google Scholar] [CrossRef] [Green Version]
- Kawashima, H.; Haneishi, Y. Effects of combustion emissions from the Eurasian continent in winter on seasonal δ13C of elemental carbon in aerosols in Japan. Atmos. Environ. 2012, 46, 568–579. [Google Scholar] [CrossRef]
- Zhang, F.; Xu, L.; Chen, J.; Chen, X.; Niu, Z.; Lei, T.; Li, C.; Zhao, J. Chemical characteristics of PM2.5 during haze episodes in the urban of Fuzhou, China. Particuology 2013, 11, 264–272. [Google Scholar] [CrossRef]
- Sullivan, A.; Frank, N.; Onstad, G.; Simpson, C.; Collet, J.L., Jr. Application of high-performance anion-exchange chromatography-pulsed amperometric detection for measuring carbohydrates in routine daily filter samples collected by a national network: 1. Determination of the impact of biomass burning in the upper Midwest. J. Geophys. Res. 2011, 116, D08302. [Google Scholar] [CrossRef] [Green Version]
- Urban, R.C.; Lima-Souza, M.; Caetano-Silva, L.; Queiroz, M.E.C.; Nogueira, R.F.P.; Allen, A.G.; Cardoso, A.A.; Held, G.; Campos, M.L.A.M. Use of levoglucosan, potassium, and water-soluble organic carbon to characterize the origins of biomass-burning aerosols. Atmos. Environ. 2012, 61, 562–569. [Google Scholar] [CrossRef]
- Wu, S.P.; Dai, L.H.; Zhu, H.; Zhang, N.; Yan, J.P.; Schwab, J.J.; Yuan, C.S. The impact of sea-salt aerosols on particulate inorganic nitrogen deposition in the western Taiwan Strait region, China. Atmos. Res. 2019, 228, 68. [Google Scholar] [CrossRef]
- Naksen, W.; Kawichai, S.; Srinual, N.; Salrasee, W.; Prapamontol, T. First evidence of high urinary 1-hydroxypyrene level among rural school children during smoke haze episode in Chiang Mai Province, Thailand. Atmos. Res. 2016, 8, 418–427. [Google Scholar] [CrossRef]
- Phornwisetsirikun, W.; Prapamontol, T.; Rangkakulnuwat, S.; Chantara, S.; Tavornyutikarn, P. Elevated ambient PM10 levels affecting respiratory health of schoolchildren in Chiang Mai, Thailand. Chiang Mai Univ. J. Nat. Sci. 2014, 13, 345–354. [Google Scholar] [CrossRef] [Green Version]
- Kawamura, K.; Kobayashi, M.; Tsubonuma, N.; Mochida, M.; Watanabe, T.; Lee, M. Organic and Inorganic Compositions of Marine Aerosols from East Asia: Seasonal Variations of Water-Soluble Dicarboxylic Acids, Major Ions, Total Carbon and Nitrogen, and Stable C and N Isotopic Composition; Elsevier: Amsterdam, The Netherlands, 2004; Volume 9, pp. 243–265. [Google Scholar]
- Vodička, P.; Kawamura, K.; Schwarz, J.; Kunwar, B.; Ždímal, V. Seasonal study of stable carbon and nitrogen isotopic composition in fine aerosols at a Central European rural background station. Atmos. Chem. Phys. 2019, 19, 3463–3479. [Google Scholar] [CrossRef] [Green Version]
- Martinsson, J.; Andersson, A.; Sporre, M.K.; Friberg, J.; Kristensson, A.; Swietlicki, E.; Olsson, P.A.; Stenström, K.E. Evaluation of δ13C in Carbonaceous aerosol source apportionment at a rural measurement site. Aerosol Air Qual. Res. 2017, 17, 2081–2094. [Google Scholar] [CrossRef] [Green Version]
- López-Veneroni, D. The stable carbon isotope composition of PM2.5 and PM10 in Mexico City metropolitan area air. Atmos. Environ. 2009, 43, 4491–4502. [Google Scholar] [CrossRef]
- Das, O.; Wang, Y.; Hsieh, Y.-P. Chemical and carbon isotopic characteristics of ash and smoke derived from burning of C3 and C4 grasses. Org. Geochem. 2010, 41, 263–269. [Google Scholar] [CrossRef]
- Krull, E.S.; Skjemstad, J.O.; Graetz, D.; Grice, K.; Dunning, W.; Cook, G.; Parr, J.F. 13C-depleted charcoal from C4 grasses and the role of occluded carbon in phytoliths. Org. Geochem. 2003, 34, 1337–1352. [Google Scholar] [CrossRef]
- Kunwar, B.; Kawamura, K.; Zhu, C. Stable carbon and nitrogen isotopic compositions of ambient aerosols collected from Okinawa Island in the western North Pacific Rim, an outflow region of Asian dusts and pollutants. Atmos. Environ. 2016, 131, 243–253. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Li, X.; Bai, H.; Mu, L.; Li, Y.; Zhang, D. Stable carbon isotopic compositions and source apportionment of the carbonaceous components in PM2.5 in Taiyuan, China. Atmos. Environ. 2021, 261, 118601. [Google Scholar] [CrossRef]
- Bender, M.M. Variations in the 13C/12C ratios of plants in relation to the pathway of photosynthetic carbon dioxide fixation. Phytochemistry 1971, 10, 1239–1244. [Google Scholar] [CrossRef]
- Smith, B.N.; Epstein, S. Two categories of c/c ratios for higher plants. Plant Physiol. 1971, 47, 380–384. [Google Scholar] [CrossRef] [Green Version]
- Kawamura, K.; Sakaguchi, F. Molecular distributions of water soluble dicarboxylic acids in marine aerosols over the Pacific Ocean including tropics. J. Geophys. Res. Atmos. 1999, 104, 3501–3509. [Google Scholar] [CrossRef]
- Kelly, S.; Stein, C.; Jickells, T. Carbon and nitrogen isotopic analysis of atmospheric organic matter. Atmos. Environ. 2005, 39, 6007–6011. [Google Scholar] [CrossRef]
- Widory, D.; Javoy, M. The carbon isotope composition of atmospheric CO2 in Paris. Earth Planet Sci. Lett. 2003, 215, 289–298. [Google Scholar] [CrossRef]
- Pavuluri, C.M.; Kawamura, K.; Tachibana, E.; Swaminathan, T. Elevated nitrogen isotope ratios of tropical Indian aerosols from Chennai: Implication for the origins of aerosol nitrogen in South and Southeast Asia. Atmos. Environ. 2010, 44, 3597–3604. [Google Scholar] [CrossRef] [Green Version]
Parameter | January | February | March | April | May | Mean ± S.D. |
---|---|---|---|---|---|---|
PM2.5 (µg/m3) | 19.9 ± 5.33 | 39.6 ± 9.92 | 44.5 ± 6.65 | 51.2 ± 11.2 | 23.1 ± 19.2 | 35.8 ± 16.3 |
TC (µg/m3) | 9.90 ± 1.84 | 14.7 ± 3.13 | 14.8 ± 4.25 | 15.3 ± 5.31 | 6.23 ± 4.91 | 12.0 ± 5.32 |
TN (µg/m3) | 1.10 ± 0.29 | 1.87 ± 0.71 | 1.90 ± 0.76 | 2.99 ± 0.76 | 1.76 ± 1.47 | 1.83 ± 0.89 |
TC/TN | 9.23 ± 1.46 | 9.09 ± 4.21 | 7.47 ± 2.04 | 5.15 ± 1.64 | 3.85 ± 1.58 | 6.82 ± 3.15 |
δ13C (‰) | −25.3 ± 0.46 | −25.5 ± 0.79 | −26.6 ± 0.53 | −26.7 ± 0.39 | −26.2 ± 0.42 | −26.1 ± 0.77 |
δ15N (‰) | 7.77 ± 1.32 | 9.38 ± 2.25 | 10.5 ± 1.71 | 12.7 ± 1.61 | 11.1 ± 3.89 | 10.3 ± 0.86 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kawichai, S.; Prapamontol, T.; Cao, F.; Song, W.; Zhang, Y. Source Identification of PM2.5 during a Smoke Haze Period in Chiang Mai, Thailand, Using Stable Carbon and Nitrogen Isotopes. Atmosphere 2022, 13, 1149. https://doi.org/10.3390/atmos13071149
Kawichai S, Prapamontol T, Cao F, Song W, Zhang Y. Source Identification of PM2.5 during a Smoke Haze Period in Chiang Mai, Thailand, Using Stable Carbon and Nitrogen Isotopes. Atmosphere. 2022; 13(7):1149. https://doi.org/10.3390/atmos13071149
Chicago/Turabian StyleKawichai, Sawaeng, Tippawan Prapamontol, Fang Cao, Wenhuai Song, and Yanlin Zhang. 2022. "Source Identification of PM2.5 during a Smoke Haze Period in Chiang Mai, Thailand, Using Stable Carbon and Nitrogen Isotopes" Atmosphere 13, no. 7: 1149. https://doi.org/10.3390/atmos13071149
APA StyleKawichai, S., Prapamontol, T., Cao, F., Song, W., & Zhang, Y. (2022). Source Identification of PM2.5 during a Smoke Haze Period in Chiang Mai, Thailand, Using Stable Carbon and Nitrogen Isotopes. Atmosphere, 13(7), 1149. https://doi.org/10.3390/atmos13071149