Analysis of Pre-Monsoon Convective Systems over a Tropical Coastal Region Using C-Band Polarimetric Radar, Satellite and Numerical Simulation
Abstract
:1. Introduction
2. Materials and Methods
2.1. DWR Data and Quality Control
2.2. Convective-Stratiform Separation
2.3. Φdp Data Processing and Kdp Calculation
2.4. Hydrometeor Identification
2.5. Numerical Simulation
3. Results and Discussions
3.1. Statistics of Zh, Zdr and Kdp over Convective and Stratiform Regions
3.2. Case Study of a Deep Convective System—13 May 2018
3.2.1. Evolution of the Storm
3.2.2. Vertical Structure of the Storm
3.2.3. WRF Simulation of Reflectivity, Graupel Mixing Ratio and Rainfall
4. Conclusions
- The distribution of differential reflectivity (Zdr) and specific differential phase (kdp) have much higher spread over convective regions, particularly below 5 km height. The distribution of kdp is almost uniform across the vertical over the stratiform regions. The mean profile of Zdr over stratiform regions shows a distinct local maximum near melting level, which could be utilised to identify stratiform precipitation.
- The percentages of convective and stratiform pixels were found to be 22% and 78%, respectively. The distributions of the reflectivity values over convective and stratiform regions show that a single threshold for reflectivity or rain rate may not be useful for convective-stratiform separation as used in many studies.
- The analysis of the thunderstorm on 13 May 2018 clearly exemplifies that pre-monsoon deep convective systems can develop rapidly within a very short span of time and cause heavy precipitation. Satellite-based cloud top temperature reveals the development of much deeper cloud.
- Vertical structures inside the storm during the rapid development stage have been obtained by taking vertical cross sections of reflectivity through major convective regions. Convective cores reaching 10 km in height have been observed due to the strong updraft. High values of Zdr at lower levels were observed due to the oblate spheroid shape of the bigger raindrops. The structure of the Kdp field is quite similar to that of reflectivity. High values of Kdp reveals the presence of intense rainfall, as Kdp is mainly dominated by bigger raindrops.
- The implementation of fuzzy logic-based hydrometeor identification showed the presence of graupel at middle levels within the convective core regions, revealing the presence of strong updrafts. Ice aggregates and rain were the dominant hydrometeors above and below melting level, respectively. The presence of vertical ice signifies the presence of an electric field inside the storm. Such an electric field may be generated due to non-inductive charging via collision between graupel and smaller ice crystals.
- Numerical simulation using the WRF model with the spectral bin microphysics (SBM) scheme could produce most of the features of the storm reasonably well. In particular, the simulated reflectivity, graupel mixing ratio and rainfall were in good agreement with the observed values. These results show the capability of the SBM scheme in simulating deep convective clouds.
- It would be worth studying the observed lightning activity (if any) during these events, as the presence of vertical ice indicates the presence of a strong electric field. If major lightning activity occurred during these events, then it would support the collision charging mechanism, as graupels were identified within the convective core regions.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tyagi, A.; Sikka, D.R.; Goyal, S.; Bhowmick, M. A satellite based study of pre-monsoon thunderstorms (Nor’westers) over eastern India and their organization into mesoscale convective complexes. MAUSAM 2012, 63, 29–54. [Google Scholar] [CrossRef]
- Saha, U.; Maitra, A.; Midya, S.K.; Das, G.K. Association of thunderstorm frequency with rainfall occurrences over an Indian urban metropolis. Atmos. Res. 2014, 138, 240–252. [Google Scholar] [CrossRef]
- Thakur, S.; Mondal, I.; Ghosh, P.B.; De, T.K. Thunderstorm Characteristics Over the Northeastern Region (NER) of India During the Pre-monsoon Season, 2011 Using Geosynchronous Satellite Data. In Advances in Intelligent Systems and Computing; Springer: Singapore, 2019; Volume 813. [Google Scholar]
- Christian, H.J.; Blakeslee, R.J.; Boccippio, D.J.; Boeck, W.L.; Buechler, D.E.; Driscoll, K.T.; Goodman, S.J.; Hall, J.M.; Koshak, W.J.; Mach, D.M.; et al. Global frequency and distribution of lightning as observed from space by the Optical Transient Detector. J. Geophys. Res. Atmos. 2003, 108, ACL-4. [Google Scholar] [CrossRef]
- Singh, O.; Bhardwaj, P. Spatial and temporal variations in the frequency of thunderstorm days over India. Weather 2019, 74, 138–144. [Google Scholar] [CrossRef]
- Bhardwaj, P.; Singh, O. Spatial and temporal analysis of thunderstorm and rainfall activity over India. Atmosfera 2018, 31, 255–284. [Google Scholar] [CrossRef]
- Cecil, D.J.; Buechler, D.E.; Blakeslee, R.J. Gridded lightning climatology from TRMM-LIS and OTD: Dataset description. Atmos. Res. 2014, 135–136, 404–414. [Google Scholar] [CrossRef]
- Halder, M.; Mukhopadhyay, P. Microphysical processes and hydrometeor distributions associated with thunderstorms over India: WRF (cloud-resolving) simulations and validations using TRMM. Nat. Hazards 2016, 83, 1125–1155. [Google Scholar] [CrossRef]
- Tyagi, A. Thunderstorm climatology over Indian region. MAUSAM 2007, 58, 189–212. [Google Scholar] [CrossRef]
- Manohar, G.K.; Kesarkar, A.P. Climatology of thunderstorm activity over the Indian region: II. Spatial distribution. Mausam 2004, 55, 31–40. [Google Scholar] [CrossRef]
- Unnikrishnan, C.K.; Pawar, S.; Gopalakrishnan, V. Satellite-observed lightning hotspots in India and lightning variability over tropical South India. Adv. Space Res. 2021, 68, 1690–1705. [Google Scholar] [CrossRef]
- Rao, Y.P.; Srinivasan, V. Discussion of typical synoptic weather situation: Winter western disturbances and their associated features. In Indian Meteorological Department: Forecasting Manual Part III; Indian Meteorological Department: New Delhi, India, 1969. [Google Scholar]
- Romatschke, U.; Houze, R.A. Characteristics of Precipitating Convective Systems in the Premonsoon Season of South Asia. J. Hydrometeorol. 2011, 12, 157–180. [Google Scholar] [CrossRef]
- Roy, S.S.; Mohapatra, M.; Tyagi, A.; Roy Bhowmik, S.K. A review of Nowcasting of convective weather over the Indian region. MAUSAM 2019, 70, 465–484. [Google Scholar] [CrossRef]
- Ravi, N.; Mohanty, U.C.; Madan, O.P.; Paliwal, R.K. Forecasting of thunderstorms in the pre-monsoon season at Delhi. Meteorol. Appl. 1999, 6, 29–38. [Google Scholar] [CrossRef]
- Dhawan, V.B.; Tyagi, A.; Bansal, M.C. Forecasting of thunderstorms in pre-monsoon season over northwest India. MAUSAM 2008, 59, 433–444. [Google Scholar] [CrossRef]
- Rajeevan, M.; Madhulatha, A.; Rajasekhar, M.; Bhate, J.; Kesarkar, A.; Appa Rao, B.V. Development of a perfect prognosis probabilistic model for prediction of lightning over south-east India. J. Earth Syst. Sci. 2012, 121, 355–371. [Google Scholar] [CrossRef]
- Purdom, J.F.W. Local severe storm monitoring and prediction using satellite data. MAUSAM 2003, 54, 141–154. [Google Scholar] [CrossRef]
- Umakanth, N.; Satyanarayana, G.C.; Naveena, N.; Srinivas, D.; Rao, D.V.B. Statistical and dynamical based thunderstorm prediction over southeast India. J. Earth Syst. Sci. 2021, 130, 71. [Google Scholar] [CrossRef]
- Abhilash, S.; Das, S.; Kalsi, S.R.; Das Gupta, M.; Mohankumar, K.; George, J.P.; Banerjee, S.K.; Thampi, S.B.; Pradhan, D. Assimilation of Doppler weather radar observations in a mesoscale model for the prediction of rainfall associated with mesoscale convective systems. J. Earth Syst. Sci. 2007, 116, 275–304. [Google Scholar] [CrossRef]
- Litta, A.J.; Mohanty, U.C. Simulation of a severe thunderstorm event during the field experiment of STORM programme 2006, using WRF-NMM model. Curr. Sci. 2008, 95, 204–215. [Google Scholar]
- Rajeevan, M.; Kesarkar, A.; Thampi, S.B.; Rao, T.N.; Radhakrishna, B.; Rajasekhar, M. Sensitivity of WRF cloud microphysics to simulations of a severe thunderstorm event over Southeast India. Ann. Geophys. 2010, 28, 603–619. [Google Scholar] [CrossRef]
- Litta, A.J.; Mohanty, U.C.; Das, S.; Mary Idicula, S. Numerical simulation of severe local storms over east India using WRF-NMM mesoscale model. Atmos. Res. 2012, 116, 161–184. [Google Scholar] [CrossRef]
- Madhulatha, A.; Rajeevan, M. Impact of different parameterization schemes on simulation of mesoscale convective system over south-east India. Meteorol. Atmos. Phys. 2018, 130, 49–65. [Google Scholar] [CrossRef]
- Leena, P.P.; Pandithurai, G.; Gayatri, K.; Murugavel, P.; Ruchith, R.D.; Sakharam, S.; Dani, K.K.; Patil, C.; Dharmaraj, T.; Patil, M.N.; et al. Analysing the characteristic features of a pre-monsoon thunderstorm event over Pune, India, using ground-based observations and WRF model. J. Earth Syst. Sci. 2019, 128, 108. [Google Scholar] [CrossRef]
- Sad, H.P.; Kumar, P.; Panda, S.K. Doppler weather radar data assimilation at convective-allowing grid spacing for predicting an extreme weather event in Southern India. Int. J. Remote Sens. 2021, 42, 3681–3707. [Google Scholar] [CrossRef]
- Elio, R.; De Haan, J.; Strong, G.S. METEOR: An Artificial Intelligence System for Convective Storm Forecasting. J. Atmos. Ocean. Technol. 1987, 4, 19–28. [Google Scholar] [CrossRef]
- Litta, A.J.; Mary Idicula, S.; Mohanty, U.C. Artificial Neural Network Model in Prediction of Meteorological Parameters during Premonsoon Thunderstorms. Int. J. Atmos. Sci. 2013, 2013, 525383. [Google Scholar] [CrossRef]
- Zhou, K.; Zheng, Y.; Li, B.; Dong, W.; Zhang, X. Forecasting Different Types of Convective Weather: A Deep Learning Approach. J. Meteorol. Res. 2019, 33, 797–809. [Google Scholar]
- Mukhopadhyay, P.; Mahakur, M.; Singh, H.A.K. The interaction of large scale and mesoscale environment leading to formation of intense thunderstorms over Kolkata part I: Doppler radar and satellite observations. J. Earth Syst. Sci. 2009, 118, 441–466. [Google Scholar] [CrossRef]
- Agnihotri, G.; Gouda, K.C.; Das, S. Characteristics of pre-monsoon convective systems over south peninsular India and neighborhood using tropical rainfall measuring mission’s precipitation radar. Meteorol. Atmos. Phys. 2021, 133, 193–203. [Google Scholar] [CrossRef]
- Suresh, R. Forecasting and nowcasting convective weather phenomena over southern peninsular india—Part I: Thunderstorms. Indian J. Radio Space Phys. 2012, 41, 421–434. [Google Scholar]
- Srivastava, K.; Roy Bhowmik, S.K.; Sen Roy, S.; Thampi, S.B.; Reddy, Y.K. Simulation of high impact convective events over Indian region by ARPS model with assimilation of doppler weather radar radial velocity and reflectivity. Atmosfera 2010, 23, 53–73. [Google Scholar]
- Chandrasekar, V.; Bringi, V.N.; Balakrishnan, N.; Zrnić, D.S. Error structure of multiparameter radar and surface measurements of rainfall. Part III: Specific differential phase. J. Atmos. Ocean. Technol. 1990, 7, 621–629. [Google Scholar] [CrossRef]
- Bringi, V.N.; Thurai, M.; Nakagawa, K.; Huang, G.J.; Kobayashi, T.; Adachi, A.; Hanado, H.; Sekizawa, S. Rainfall Estimation from C-Band Polarimetric Radar in Okinawa, Japan: Comparisons with 2D-Video Disdrometer and 400 MHz Wind Profiler. J. Meteorol. Soc. Jpn. 2006, 84, 705–724. [Google Scholar] [CrossRef]
- Bringi, V.N.; Williams, C.R.; Thurai, M.; May, P.T. Using dual-polarized radar and dual-frequency profiler for DSD characterization: A case study from Darwin, Australia. J. Atmos. Ocean. Technol. 2009, 26, 2107–2122. [Google Scholar] [CrossRef]
- Cifelli, R.; Chandrasekar, V.; Lim, S.; Kennedy, P.C.; Wang, Y.; Rutledge, S.A. A new dual-polarization radar rainfall algorithm: Application in Colorado precipitation events. J. Atmos. Ocean. Technol. 2011, 28, 352–364. [Google Scholar] [CrossRef]
- Zrnic, D.S.; Ryzhkov, A.V. Polarimetry for Weather Surveillance Radars. Bull. Am. Meteorol. Soc. 1999, 80, 389–406. [Google Scholar] [CrossRef]
- Unal, C. Spectral Polarimetric Radar Clutter Suppression to Enhance Atmospheric Echoes. J. Atmos. Ocean. Technol. 2009, 26, 1781–1797. [Google Scholar] [CrossRef]
- Islam, T.; Rico-Ramirez, M.A.; Han, D.; Srivastava, P.K. Artificial intelligence techniques for clutter identification with polarimetric radar signatures. Atmos. Res. 2012, 109–110, 95–113. [Google Scholar] [CrossRef]
- Lakshmanan, V.; Karstens, C.; Krause, J.; Tang, L. Quality Control of Weather Radar Data Using Polarimetric Variables. J. Atmos. Ocean. Technol. 2014, 31, 1234–1249. [Google Scholar] [CrossRef]
- Vivekanandan, J.; Zrnic, D.S.; Ellis, S.M.; Oye, R.; Ryzhkov, A.V.; Straka, J. Cloud Microphysics Retrieval Using S-band Dual-Polarization Radar Measurements. Bull. Am. Meteorol. Soc. 1999, 80, 381–388. [Google Scholar] [CrossRef]
- Liu, H.; Chandrasekar, V. Classification of Hydrometeors Based on Polarimetric Radar Measurements: Development of Fuzzy Logic and Neuro-Fuzzy Systems, and In Situ Verification. J. Atmos. Ocean. Technol. 2000, 17, 140–164. [Google Scholar] [CrossRef]
- Keenan, T. Hydrometeor classification with a C-band polarimetric radar. Aust. Meteorol. Mag. 2003, 52, 23–31. [Google Scholar]
- Marzano, F.S.; Scaranari, D.; Celano, M.; Alberoni, P.P.; Vulpiani, G.; Montopoli, M. Hydrometeor classification from dual-polarized weather radar: Extending fuzzy logic from S-band to C-band data. Adv. Geosci. 2006, 7, 109–114. [Google Scholar] [CrossRef]
- Dolan, B.; Rutledge, S.A. A Theory-Based Hydrometeor Identification Algorithm for X-Band Polarimetric Radars. J. Atmos. Ocean. Technol. 2009, 26, 2071–2088. [Google Scholar] [CrossRef]
- Dolan, B.; Rutledge, S.A.; Lim, S.; Chandrasekar, V.; Thurai, M. A Robust C-Band Hydrometeor Identification Algorithm and Application to a Long-Term Polarimetric Radar Dataset. J. Appl. Meteorol. Clim. 2013, 52, 2162–2186. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, T. Riming electrification as a charge generation mechanism in thunderstorms. J. Atmos. Sci. 1978, 35, 1536–1548. [Google Scholar] [CrossRef]
- Jayaratne, E.R.; Saunders, C.P.R.; Hallett, J. Laboratory studies of the charging of soft-hail during ice crystal interactions. Q. J. R. Meteorol. Soc. 1983, 109, 609–630. [Google Scholar] [CrossRef]
- Saunders, C.P.R.; Keith, W.D.; Mitzeva, R.P. The effect of liquid water on thunderstorm charging. J. Geophys. Res. Atmos. 1991, 96, 11007–11017. [Google Scholar] [CrossRef]
- Subrahmanyam, K.V.; Baby, S.R. C-band Doppler weather radar observations during the passage of tropical cyclone ‘Ockhi’. Nat. Hazards 2020, 104, 2197–2211. [Google Scholar] [CrossRef]
- Löffler-Mang, M.; Joss, J. An Optical Disdrometer for Measuring Size and Velocity of Hydrometeors. J. Atmos. Ocean. Technol. 2000, 17, 130–139. [Google Scholar] [CrossRef]
- Friedrich, K.; Higgins, S.; Masters, F.J.; Lopez, C.R. Articulating and Stationary PARSIVEL Disdrometer Measurements in Conditions with Strong Winds and Heavy Rainfall. J. Atmos. Ocean. Technol. 2013, 30, 2063–2080. [Google Scholar] [CrossRef]
- Clothiaux, E.E.; Ackerman, T.P.; Mace, G.G.; Moran, K.P.; Marchand, R.T.; Miller, M.A.; Martner, B.E. Objective determination of cloud heights and radar reflectivities using a combination of active remote sensors at the ARM CART sites. J. Appl. Meteorol. 2000, 39, 645–665. [Google Scholar] [CrossRef]
- Heese, B.; Flentje, H.; Althausen, D.; Ansmann, A.; Frey, S. Ceilometer lidar comparison: Backscatter coefficient retrieval and signal-to-noise ratio determination. Atmos. Meas. Tech. 2010, 3, 1763–1770. [Google Scholar] [CrossRef]
- Sumesh, R.K.; Resmi, E.A.; Unnikrishnan, C.K.; Jash, D.; Ramachandran, K.K. Signatures of Shallow and Deep Clouds Inferred From Precipitation Microphysics Over Windward Side of Western Ghats. J. Geophys. Res. Atmos. 2021, 126, e2020JD034312. [Google Scholar] [CrossRef]
- Doviak, R.J.; Zrni’c, D.S. Doppler Radar and Weather Observations, 2nd ed.; Academic Press: San Diego, CA, USA, 1993. [Google Scholar]
- Bringi, V.N.; Chandrasekar, V. Polarimetric Doppler Weather Radar: Principles and Applications; Cambridge University Press: Cambridge, UK, 2001; p. 636. [Google Scholar]
- Mishra, S.; Shanmuga Sundari, J.; Channabasava, B.; Anandan, V.K. First indigenously developed polarimetric C-band Doppler weather radar in India and its first hand validation results. J. Electromagn. Waves Appl. 2020, 34, 825–840. [Google Scholar] [CrossRef]
- Kumar, K.K.; Subrahmanyam, K.V.; Kumar, C.P.; Shanmugasundari, J.; Koushik, N.; Ajith, R.P.; Devi, L.G. C-band dual-polarization Doppler weather radar at Thumba (8.537 N, 76.865 E): Initial results and validation. J. Appl. Remote Sens. 2020, 14, 044509. [Google Scholar] [CrossRef]
- Ryzhkov, A.V.; Zrnic, D.S.; Hubbert, J.C.; Bringi, V.N.; Vivekanandan, J.; Brandes, E.A. Polarimetric Radar Observations and Interpretation of Co-cross-polarcorrelation Coefficients. J. Atmos. Ocean. Technol. 2002, 19, 340–354. [Google Scholar] [CrossRef]
- Friedrich, K.; Hagen, M.; Einfalt, T. A Quality Control Concept for Radar Reflectivity, Polarimetric Parameters, and Doppler Velocity. J. Atmos. Ocean. Technol. 2006, 23, 865–887. [Google Scholar] [CrossRef]
- Ryzhkov, A.V.; Zrnic, D.S. Polarimetric Rainfall Estimation in the Presence of Anomalous Propagation. J. Atmos. Ocean. Technol. 1998, 15, 1320–1330. [Google Scholar] [CrossRef]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The shuttle radar topography mission. Rev. Geophys. 2007, 45. [Google Scholar] [CrossRef]
- Bringi, V.N.; Chandrasekar, V.; Hubbert, J.; Gorgucci, E.; Randeu, W.L.; Schoenhuber, M. Raindrop size distribution in different climatic regimes from disdrometer and dual-polarized radar analysis. J. Atmos. Sci. 2003, 60, 354–365. [Google Scholar] [CrossRef]
- Testud, J.; Oury, S.; Black, R.A.; Amayenc, P.; Dou, X. The Concept of “Normalized” Distribution to Describe Raindrop Spectra: A Tool for Cloud Physics and Cloud Remote Sensing. J. Appl. Meteorol. 2001, 40, 1118–1140. [Google Scholar] [CrossRef]
- Tokay, A.; Short, D.A. Evidence from Tropical Raindrop Spectra of the Origin of Rain from Stratiform versus Convective Clouds. J. Appl. Meteorol. 1996, 35, 355–371. [Google Scholar] [CrossRef]
- Steiner, M.; Houze, R.A., Jr.; Yuter, S.E. Climatological characterization of three-dimensional storm structure from operational radar and rain gauge data. J. Appl. Meteorol. Climatol. 1995, 34, 1978–2007. [Google Scholar] [CrossRef]
- Thurai, M.; Bringi, V.N.; May, P.T. CPOL Radar-Derived Drop Size Distribution Statistics of Stratiform and Convective Rain for Two Regimes in Darwin, Australia. J. Atmos. Ocean. Technol. 2010, 27, 932–942. [Google Scholar] [CrossRef]
- Williams, C.R.; Ecklund, W.L.; Gage, K.S. Classification of Precipitating Clouds in the Tropics Using 915-MHz Wind Profilers. J. Atmos. Ocean. Technol. 1995, 12, 996–1012. [Google Scholar] [CrossRef]
- Ulbrich, C.W.; Atlas, D. On the Separation of Tropical Convective and Stratiform Rains. J. Appl. Meteorol. 2002, 41, 188–195. [Google Scholar] [CrossRef]
- Biggerstaff, M.I.; Listemaa, S.A. An Improved Scheme for Convective/Stratiform Echo Classification Using Radar Reflectivity. J. Appl. Meteorol. 2000, 39, 2129–2150. [Google Scholar] [CrossRef]
- Houze, R.A. Stratiform Precipitation in Regions of Convection: A Meteorological Paradox? Bull. Am. Meteorol. Soc. 1997, 78, 2179–2196. [Google Scholar] [CrossRef]
- Wang, Y.; Chandrasekar, V. Algorithm for Estimation of the Specific Differential Phase. J. Atmos. Ocean. Technol. 2009, 26, 2565–2578. [Google Scholar] [CrossRef]
- You, C.-H.; Lee, D.-I.; Kang, M.-Y. Rainfall Estimation Using Specific Differential Phase for the First Operational Polarimetric Radar in Korea. Adv. Meteorol. 2014, 2014, 413717. [Google Scholar] [CrossRef]
- Seliga, T.A.; Bringi, V.N. Differential reflectivity and differential phase shift: Applications in radar meteorology. Radio Sci. 1978, 13, 271–275. [Google Scholar] [CrossRef]
- Jameson, A. Microphysical interpretation of multiparameter radar measurements in rain. Part III: Interpretation and measurement of propagation differential phase shift between orthogonal linear polarizations. J. Atmos. Sci. 1985, 42, 607–614. [Google Scholar] [CrossRef]
- Aydin, K.; Bringi, V.N.; Liu, L. Rain-Rate Estimation in the Presence of Hail Using S-Band Specific Differential Phase and Other Radar Parameters. J. Appl. Meteorol. 1995, 34, 404–410. [Google Scholar] [CrossRef]
- Zrnić, D.S.; Ryzhkov, A. Advantages of Rain Measurements Using Specific Differential Phase. J. Atmos. Ocean. Technol. 1996, 13, 454–464. [Google Scholar] [CrossRef]
- Parks, T.W.; Burrus, C.S. Digital Filter Design; John Wiley and Sons: Hoboken, NJ, USA, 1987; Chapter 7. [Google Scholar]
- Proakis, J.G.; Manolakis, D.G. Introduction to Digital Signal Processing; MacMillan Publishing Company: New York, NY, USA, 1988. [Google Scholar]
- Hubbert, J.; Chandrasekar, V.; Bringi, V.N.; Meischner, P. Processing and Interpretation of Coherent Dual-Polarized Radar Measurements. J. Atmos. Ocean. Technol. 1993, 10, 155–164. [Google Scholar] [CrossRef]
- Balakrishnan, N.; Zrnić, D.S. Estimation of Rain and Hail Rates in Mixed-Phase Precipitation. J. Atmos. Sci. 1990, 47, 565–583. [Google Scholar] [CrossRef]
- Kain, J.S. The Kain–Fritsch convective parameterization: An update. J. Appl. Meteorol. 2004, 43, 170–181. [Google Scholar] [CrossRef]
- Lynn, B.H.; Khain, A.P.; Dudhia, J.; Rosenfeld, D.; Pokrovsky, A.; Seifert, A. Spectral (Bin) Microphysics Coupled with a Mesoscale Model (MM5). Part I: Model Description and First Results. Mon. Weather Rev. 2005, 133, 44–58. [Google Scholar] [CrossRef]
- Lynn, B.H.; Khain, A.P.; Dudhia, J.; Rosenfeld, D.; Pokrovsky, A.; Seifert, A. Spectral (Bin) Microphysics Coupled with a Mesoscale Model (MM5). Part II: Simulation of a CaPE Rain Event with a Squall Line. Mon. Weather Rev. 2005, 133, 59–71. [Google Scholar] [CrossRef]
- Machado, L.A.; Calheiros, A.J.; Biscaro, T.; Giangrande, S.; Silva Dias, M.A.; Cecchini, M.A.; Wendisch, M. Overview: Precipitation characteristics and sensitivities to environmental conditions during GoAmazon2014/5 and ACRIDICON-CHUVA. Atmos. Chem. Phys. 2018, 18, 6461–6482. [Google Scholar] [CrossRef]
- Zipser, E.J.; Lutz, K.R. The Vertical Profile of Radar Reflectivity of Convective Cells: A Strong Indicator of Storm Intensity and Lightning Probability? Mon. Weather Rev. 1994, 122, 1751–1759. [Google Scholar] [CrossRef]
- Jash, D.; Resmi, E.A.; Unnikrishnan, C.K.; Sumesh, R.K.; Sreekanth, T.S.; Sukumar, N.; Ramachandran, K.K. Variation in rain drop size distribution and rain integral parameters during southwest monsoon over a tropical station: An inter-comparison of disdrometer and Micro Rain Radar. Atmos. Res. 2019, 217, 24–36. [Google Scholar] [CrossRef]
- Sisodiya, A.; Pattnaik, S.; Baisya, H. Characterization of Different Rainfall Types from Surface Observations over a Tropical Location. Pure Appl. Geophys. 2020, 177, 1111–1123. [Google Scholar] [CrossRef]
- Hamada, A.; Nishi, N. Development of a Cloud-Top Height Estimation Method by Geostationary Satellite Split-Window Measurements Trained with CloudSat Data. J. Appl. Meteorol. Clim. 2010, 49, 2035–2049. [Google Scholar] [CrossRef] [Green Version]
- Schuur, T.J.; Ryzhkov, A.V.; Zrnić, D.S.; Schönhuber, M. Drop Size Distributions Measured by a 2D Video Disdrometer: Comparison with Dual-Polarization Radar Data. J. Appl. Meteorol. 2001, 40, 1019–1034. [Google Scholar] [CrossRef]
- Pruppacher, H.R.; Beard, K.V. A wind tunnel investigation of the internal circulation and shape of water drops falling at terminal velocity in air. Q. J. R. Meteorol. Soc. 1970, 96, 247–256. [Google Scholar] [CrossRef]
- Anderson, M.E.; Carey, L.D.; Petersen, W.A.; Knupp, K.R. C-band dual-polarimetric radar signatures of hail. Electron. J. Oper. Meteorol. 2011, 12, 1–30. [Google Scholar]
- Hubbert, J.; Bringi, V.N.; Carey, L.D.; Bolen, S. CSU-CHILL Polarimetric Radar Measurements from a Severe Hail Storm in Eastern Colorado. J. Appl. Meteorol. 1998, 37, 749–775. [Google Scholar] [CrossRef]
Data Source | Parameters Used in the Study | Spatial Resolution | Temporal Resolution |
---|---|---|---|
C-band polarimetric Doppler weather radar | Reflectivity at horizontal polarisation (dBZ), differential reflectivity (dB), differential propagation phase (deg.), cross-correlation | 150 m along radial and 1° along azimuth | ~15 min |
Disdrometer (OTT parsivel) | Rain rate (mm h−1), concentration of precipitation particles in diameter classes 0.2–25 mm (m−3 mm−1). | In-situ | 1 min |
Ceilometer (CHM15k) | Cloud base height (m), cloud cover (oktas), cloud penetration depth (m) | - | 15 s |
INSAT-3DR | Brightness temperature (K) | 4 × 4 km | 30 min |
ERA-5 | u-wind (m s−1), v-wind (m s−1), geopotential (m2 s−2) | 0.25° × 0.25° | 1 h |
Radiosonde | Temperature (K), mixing ratio (g kg−1), wind speed (m s−1), wind direction (deg.), CAPE (J kg−1) etc. | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jash, D.; Resmi, E.A.; Unnikrishnan, C.K.; Sumesh, R.K.; Kumar, S.; Sukumar, N. Analysis of Pre-Monsoon Convective Systems over a Tropical Coastal Region Using C-Band Polarimetric Radar, Satellite and Numerical Simulation. Atmosphere 2022, 13, 1349. https://doi.org/10.3390/atmos13091349
Jash D, Resmi EA, Unnikrishnan CK, Sumesh RK, Kumar S, Sukumar N. Analysis of Pre-Monsoon Convective Systems over a Tropical Coastal Region Using C-Band Polarimetric Radar, Satellite and Numerical Simulation. Atmosphere. 2022; 13(9):1349. https://doi.org/10.3390/atmos13091349
Chicago/Turabian StyleJash, Dharmadas, Eruthiparambil Ayyappan Resmi, Chirikandath Kalath Unnikrishnan, Ramesh Kala Sumesh, Sumit Kumar, and Nita Sukumar. 2022. "Analysis of Pre-Monsoon Convective Systems over a Tropical Coastal Region Using C-Band Polarimetric Radar, Satellite and Numerical Simulation" Atmosphere 13, no. 9: 1349. https://doi.org/10.3390/atmos13091349
APA StyleJash, D., Resmi, E. A., Unnikrishnan, C. K., Sumesh, R. K., Kumar, S., & Sukumar, N. (2022). Analysis of Pre-Monsoon Convective Systems over a Tropical Coastal Region Using C-Band Polarimetric Radar, Satellite and Numerical Simulation. Atmosphere, 13(9), 1349. https://doi.org/10.3390/atmos13091349