A Holistic Approach Based on Biomonitoring Techniques and Satellite Observations for Air Pollution Assessment and Health Risk Impact of Atmospheric Trace Elements in a Semi-Rural Area of Southern Italy (High Sauro Valley)
Abstract
:1. Introduction
- -
- The seventeen atmospheric trace elements (Al, Ca, Cd, Cr, Cu, Fe, K, Li, Mg, Mn, Na, Ni, P, Pb, S, Ti and Zn) were evaluated by biomonitoring techniques.
- -
- Photosynthetic activity levels of the vegetation units covering the study area were evaluated using satellite-derived NDVI, with the aim to characterize areas surrounding the sample points.
- -
- The principal component analysis (PCA) was used to better understand the main sources of air pollution in the studied area and to explore the possible relationships among the different variables considered.
- -
- Carcinogenic and non-carcinogenic human health risks, linked to exposition to the trace elements’ content in the atmospheric particles, were assessed both for adults and children.
2. Materials and Methods
2.1. Site Description
2.2. Bio-Monitors’ Sampling and Chemical Analysis
2.3. Pollution Assessment
2.4. Land Cover and Satellite Observations
- Estimation of mean values, μi(⋅), and standard deviation, σi(⋅), of NDVI for each CLC class type, with i = 1, …n, where n = number of different CLC classes characterizing the examined scene.
- Standardization of the NDVI distribution for each pixel of the given CLC class within the study area:
2.5. Principal Component Analysis (PCA)
2.6. Human Health Risk Assessment
3. Results
3.1. ATEs Concentration and Air Pollution Assessment
3.2. Satellite Observations
3.3. Sources’ Identification
3.4. Biplot PC1 vs. PC2
4. Carcinogenic and Non-Carcinogenic Human Health Risk
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, Y.; You, S.; Li, N.; Fang, J.; Jia, J.; Li, X.; Ren, J. Study on the Agricultural Air Pollution Aggravated by the Rural Labor Migration. Atmosphere 2022, 13, 174. [Google Scholar] [CrossRef]
- Bodor, K.; Szép, R.; Bodor, Z. Time Series Analysis of the Air Pollution around Ploiesti Oil Refining Complex, One of the Most Polluted Regions in Romania. Sci. Rep. 2022, 12, 11817. [Google Scholar] [CrossRef] [PubMed]
- Caggiano, R.; Sabia, S.; Speranza, A. Trace Elements and Human Health Risks Assessment of Finer Aerosol Atmospheric Particles (PM1). Environ. Sci. Pollut. Res. 2019, 26, 36423–36433. [Google Scholar] [CrossRef]
- Hien, T.T.; Chi, N.D.T.; Huy, D.H.; Le, H.A.; Oram, D.E.; Forster, G.L.; Mills, G.P.; Baker, A.R. Soluble Trace Metals Associated with Atmospheric Fine Particulate Matter in the Two Most Populous Cities in Vietnam. Atmos. Environ. X 2022, 15, 100178. [Google Scholar] [CrossRef]
- Kim, K.-H.; Kabir, E.; Kabir, S. A Review on the Human Health Impact of Airborne Particulate Matter. Environ. Int. 2015, 74, 136–143. [Google Scholar] [CrossRef]
- Gautam, S.; Kumar, P.; Patra, A.K. Occupational Exposure to Particulate Matter in Three Indian Opencast Mines. Air Qual. Atmos. Health 2016, 9, 143–158. [Google Scholar] [CrossRef]
- Bunch, A.G.; Perry, C.S.; Abraham, L.; Wikoff, D.S.; Tachovsky, J.A.; Hixon, J.G.; Urban, J.D.; Harris, M.A.; Haws, L.C. Evaluation of Impact of Shale Gas Operations in the Barnett Shale Region on Volatile Organic Compounds in Air and Potential Human Health Risks. Sci. Total Environ. 2014, 468–469, 832–842. [Google Scholar] [CrossRef]
- Ramirez, M.I.; Arevalo, A.P.; Sotomayor, S.; Bailon-Moscoso, N. Contamination by Oil Crude Extraction—Refinement and Their Effects on Human Health. Environ. Pollut. 2017, 231, 415–425. [Google Scholar] [CrossRef]
- Hussain, I.; Puschenreiter, M.; Gerhard, S.; Sani, S.G.A.S.; Khan, W.; Reichenauer, T.G. Differentiation between Physical and Chemical Effects of Oil Presence in Freshly Spiked Soil during Rhizoremediation Trial. Environ. Sci. Pollut. Res. 2019, 26, 18451–18464. [Google Scholar] [CrossRef]
- Johnston, J.E.; Lim, E.; Roh, H. Impact of Upstream Oil Extraction and Environmental Public Health: A Review of the Evidence. Sci. Total Environ. 2019, 657, 187–199. [Google Scholar] [CrossRef]
- Besser, H.; Hamed, Y. Causes and Risk Evaluation of Oil and Brine Contamination in the Lower Cretaceous Continental Intercalaire Aquifer in the Kebili Region of Southern Tunisia Using Chemical Fingerprinting Techniques. Environ. Pollut. 2019, 253, 412–423. [Google Scholar] [CrossRef] [PubMed]
- Sahebari, M.; Ayati, R.; Mirzaei, H.; Sahebkar, A.; Hejazi, S.; Saghafi, M.; Saadati, N.; Ferns, G.A.; Ghayour-Mobarhan, M. Serum Trace Element Concentrations in Rheumatoid Arthritis. Biol. Trace Elem. Res. 2016, 171, 237–245. [Google Scholar] [CrossRef] [PubMed]
- Nunes, F.L.d.S.; Lima, S.C.V.C.; Lyra, C.d.O.; Marchioni, D.M.; Pedrosa, L.F.C.; Barbosa Junior, F.; Sena-Evangelista, K.C.M. The Impact of Essential and Toxic Elements on Cardiometabolic Risk Factors in Adults and Older People. J. Trace Elem. Med. Biol. 2022, 72, 126991. [Google Scholar] [CrossRef] [PubMed]
- Lukaski, H.C.; Klevay, L.M.; Milne, D.B. Effects of Dietary Copper on Human Autonomic Cardiovascular Function. Europ. J. Appl. Physiol. 1988, 58, 74–80. [Google Scholar] [CrossRef]
- Martin, S.; Griswold, W. Human Health Effects of Heavy Metals. Environ. Sci. Technol. Brief. Cit. 2009, 15, 1–6. [Google Scholar]
- Zeng, X.; Xu, C.; Xu, X.; Zhang, Y.; Huang, Y.; Huo, X. Elevated Lead Levels in Relation to Low Serum Neuropeptide Y and Adverse Behavioral Effects in Preschool Children with E-Waste Exposure. Chemosphere 2021, 269, 129380. [Google Scholar] [CrossRef]
- Rodriguez, J.H.; Weller, S.B.; Wannaz, E.D.; Klumpp, A.; Pignata, M.L. Air Quality Biomonitoring in Agricultural Areas Nearby to Urban and Industrial Emission Sources in Córdoba Province, Argentina, Employing the Bioindicator Tillandsia Capillaris. Ecol. Indic. 2011, 11, 1673–1680. [Google Scholar] [CrossRef]
- Malaspina, P.; Casale, M.; Malegori, C.; Hooshyari, M.; Di Carro, M.; Magi, E.; Giordani, P. Combining Spectroscopic Techniques and Chemometrics for the Interpretation of Lichen Biomonitoring of Air Pollution. Chemosphere 2018, 198, 417–424. [Google Scholar] [CrossRef]
- Kardel, F.; Wuyts, K.; De Wael, K.; Samson, R. Biomonitoring of Atmospheric Particulate Pollution via Chemical Composition and Magnetic Properties of Roadside Tree Leaves. Environ. Sci. Pollut. Res. 2018, 25, 25994–26004. [Google Scholar] [CrossRef]
- Caggiano, R.; Calamita, G.; Sabia, S.; Trippetta, S. Biomonitoring of Atmospheric Pollution: A Novel Approach for the Evaluation of Natural and Anthropogenic Contribution to Atmospheric Aerosol Particles. Environ. Sci. Pollut. Res. 2017, 24, 8578–8587. [Google Scholar] [CrossRef]
- Caggiano, R.; Trippetta, S.; Sabia, S. Assessment of Atmospheric Trace Element Concentrations by Lichen-Bag near an Oil/Gas Pre-Treatment Plant in the Agri Valley (Southern Italy). Nat. Hazards Earth Syst. Sci. 2015, 15, 325–333. [Google Scholar] [CrossRef] [Green Version]
- Cucu-Man, S.-M.; Steinnes, E. Analysis of Selected Biomonitors to Evaluate the Suitability for Their Complementary Use in Monitoring Trace Element Atmospheric Deposition. Environ. Monit. Assess 2013, 185, 7775–7791. [Google Scholar] [CrossRef] [PubMed]
- Samela, C.; Imbrenda, V.; Coluzzi, R.; Pace, L.; Simoniello, T.; Lanfredi, M. Multi-Decadal Assessment of Soil Loss in a Mediterranean Region Characterized by Contrasting Local Climates. Land 2022, 11, 1010. [Google Scholar] [CrossRef]
- De Fioravante, P.; Luti, T.; Cavalli, A.; Giuliani, C.; Dichicco, P.; Marchetti, M.; Chirici, G.; Congedo, L.; Munafo, M. Multispectral Sentinel-2 and SAR Sentinel-1 Integration for Automatic Land Cover Classification. Land 2021, 10, 611. [Google Scholar] [CrossRef]
- Pflugmacher, D.; Rabe, A.; Peters, M.; Hostert, P. Mapping Pan-European Land Cover Using Landsat Spectral-Temporal Metrics and the European LUCAS Survey. Remote Sens. Environ. 2019, 221, 583–595. [Google Scholar] [CrossRef]
- D’Emilio, M.; Coluzzi, R.; Macchiato, M.; Imbrenda, V.; Ragosta, M.; Sabia, S.; Simoniello, T. Satellite Data and Soil Magnetic Susceptibility Measurements for Heavy Metals Monitoring: Findings from Agri Valley (Southern Italy). Environ. Earth Sci. 2018, 77, 63. [Google Scholar] [CrossRef]
- Zhang, H.; Lan, Y.; Lacey, R.; Hoffmann, W.C.; Huang, Y. Analysis of Vegetation Indices Derived from Aerial Multispectral and Ground Hyperspectral Data. Int. J. Agric. Biol. Eng. 2009, 2, 33–40. [Google Scholar] [CrossRef]
- Strong, C.J.; Burnside, N.G.; Llewellyn, D. The Potential of Small-Unmanned Aircraft Systems for the Rapid Detection of Threatened Unimproved Grassland Communities Using an Enhanced Normalized Difference Vegetation Index. PLoS ONE 2017, 12, e0186193. [Google Scholar] [CrossRef]
- Buitink, J.; Swank, A.M.; van der Ploeg, M.; Smith, N.E.; Benninga, H.-J.F.; van der Bolt, F.; Carranza, C.D.U.; Koren, G.; van der Velde, R.; Teuling, A.J. Anatomy of the 2018 Agricultural Drought in the Netherlands Using in Situ Soil Moisture and Satellite Vegetation Indices. Hydrol. Earth Syst. Sci. 2020, 24, 6021–6031. [Google Scholar] [CrossRef]
- Jiang, X.; Zhen, J.; Miao, J.; Zhao, D.; Shen, Z.; Jiang, J.; Gao, C.; Wu, G.; Wang, J. Newly-Developed Three-Band Hyperspectral Vegetation Index for Estimating Leaf Relative Chlorophyll Content of Mangrove under Different Severities of Pest and Disease. Ecol. Indic. 2022, 140, 108978. [Google Scholar] [CrossRef]
- Bedair, R.; Ibrahim, A.A.; Alyamani, A.A.; Aloufi, S.; Ramadan, S. Impacts of Anthropogenic Disturbance on Vegetation Dynamics: A Case Study of Wadi Hagul, Eastern Desert, Egypt. Plants 2021, 10, 1906. [Google Scholar] [CrossRef] [PubMed]
- Conti, M.E.; Iacobucci, M.; Cucina, D.; Mecozzi, M. Multivariate Statistical Methods Applied to Biomonitoring Studies. Int. J. Environ. Pollut. 2007, 29, 333–343. [Google Scholar] [CrossRef]
- Agnan, Y.; Probst, A.; Séjalon-Delmas, N. Evaluation of Lichen Species Resistance to Atmospheric Metal Pollution by Coupling Diversity and Bioaccumulation Approaches: A New Bioindication Scale for French Forested Areas. Ecol. Indic. 2017, 72, 99–110. [Google Scholar] [CrossRef]
- Hussain, S.; Hoque, R.R. Biomonitoring of Metallic Air Pollutants in Unique Habitations of the Brahmaputra Valley Using Moss Species—Atrichum Angustatum: Spatiotemporal Deposition Patterns and Sources. Environ. Sci. Pollut. Res. 2022, 29, 10617–10634. [Google Scholar] [CrossRef] [PubMed]
- Imbrenda, V.; Lanfredi, M.; Coluzzi, R.; Simoniello, T. A Smart Procedure for Assessing the Health Status of Terrestrial Habitats in Protected Areas: The Case of the Natura 2000 Ecological Network in Basilicata (Southern Italy). Remote Sens. 2022, 14, 2699. [Google Scholar] [CrossRef]
- Loppi, S.; Frati, L. Lichen Diversity and Lichen Transplants as Monitors of Air Pollution in a Rural Area of Central Italy. Environ. Monit. Assess 2006, 114, 361–375. [Google Scholar] [CrossRef]
- Boamponsem, L.K.; Adam, J.I.; Dampare, S.B.; Nyarko, B.J.B.; Essumang, D.K. Assessment of Atmospheric Heavy Metal Deposition in the Tarkwa Gold Mining Area of Ghana Using Epiphytic Lichens. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2010, 268, 1492–1501. [Google Scholar] [CrossRef]
- Tomlinson, D.L.; Wilson, J.G.; Harris, C.R.; Jeffrey, D.W. Problems in the Assessment of Heavy-Metal Levels in Estuaries and the Formation of a Pollution Index. Helgol. Meeresunters 1980, 33, 566–575. [Google Scholar] [CrossRef]
- Salo, H.; Bućko, M.S.; Vaahtovuo, E.; Limo, J.; Mäkinen, J.; Pesonen, L.J. Biomonitoring of Air Pollution in SW Finland by Magnetic and Chemical Measurements of Moss Bags and Lichens. J. Geochem. Explor. 2012, 115, 69–81. [Google Scholar] [CrossRef]
- Coluzzi, R.; Fascetti, S.; Imbrenda, V.; Italiano, S.S.P.; Ripullone, F.; Lanfredi, M. Exploring the Use of Sentinel-2 Data to Monitor Heterogeneous Effects of Contextual Drought and Heatwaves on Mediterranean Forests. Land 2020, 9, 325. [Google Scholar] [CrossRef]
- Coluzzi, R.; D’Emilio, M.; Imbrenda, V.; Giorgio, G.A.; Lanfredi, M.; Macchiato, M.; Ragosta, M.; Simoniello, T.; Telesca, V. Investigating Climate Variability and Long-Term Vegetation Activity across Heterogeneous Basilicata Agroecosystems. Geomat. Nat. Hazards Risk 2019, 10, 168–180. [Google Scholar] [CrossRef] [Green Version]
- Greco, S.; Infusino, M.; De Donato, C.; Coluzzi, R.; Imbrenda, V.; Lanfredi, M.; Simoniello, T.; Scalercio, S. Late Spring Frost in Mediterranean Beech Forests: Extended Crown Dieback and Short-Term Effects on Moth Communities. Forests 2018, 9, 388. [Google Scholar] [CrossRef]
- Büttner, G.; Kosztra, B.; Soukup, T.; Sousa, A.; Langanke, T. CLC2018 Technical Guidelines; European Environment Agency: Copenhagen, Denmark, 2017. [Google Scholar]
- Lanfredi, M.; Coppola, R.; Simoniello, T.; Coluzzi, R.; D’Emilio, M.; Imbrenda, V.; Macchiato, M. Early Identification of Land Degradation Hotspots in Complex Bio-Geographic Regions. Remote Sens. 2015, 7, 8154–8179. [Google Scholar] [CrossRef]
- Gabriel, K.R. The Biplot Graphic Display of Matrices with Application to Principal Component Analysis. Biometrika 1971, 58, 453–467. [Google Scholar] [CrossRef]
- Jolliffe, I.T. Principal Component Analysis; Springer: Cambridge, UK, 2002; pp. 29–61. ISBN 978-0-387-22440-4. [Google Scholar]
- Kahle, D.; Wickham, H. Ggmap: Spatial Visualization with Ggplot2. R J. 2013, 5, 144. [Google Scholar] [CrossRef]
- Zhao, S.; Yu, Y.; Xia, D.; Yin, D.; He, J.; Liu, N.; Li, F. Urban Particle Size Distributions during Two Contrasting Dust Events Originating from Taklimakan and Gobi Deserts. Environ. Pollut. 2015, 207, 107–122. [Google Scholar] [CrossRef] [PubMed]
- US EPA. U.S. Environmental Protection Agency; Sacks, J. Integrated Science Assessment (ISA) for Particulate Matter (Final Report, December 2009). Available online: https://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=216546 (accessed on 19 July 2022).
- Hu, X.; Zhang, Y.; Ding, Z.; Wang, T.; Lian, H.; Sun, Y.; Wu, J. Bioaccessibility and Health Risk of Arsenic and Heavy Metals (Cd, Co, Cr, Cu, Ni, Pb, Zn and Mn) in TSP and PM2.5 in Nanjing, China. Atmos. Environ. 2012, 57, 146–152. [Google Scholar] [CrossRef]
- US EPA. Risk Assessment Guidance for Superfund (RAGS): Part A. Available online: https://www.epa.gov/risk/risk-assessment-guidance-superfund-rags-part (accessed on 21 July 2022).
- Wang, X.; Bi, X.; Sheng, G.; Fu, J. Chemical Composition and Sources of PM10 and PM2.5 Aerosols in Guangzhou, China. Environ. Monit. Assess 2006, 119, 425–439. [Google Scholar] [CrossRef]
- US EPA. Regional Screening Levels (RSLs)—Generic Tables. Available online: https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables (accessed on 21 July 2022).
- Frati, L.; Brunialti, G.; Loppi, S. Problems Related to Lichen Transplants to Monitor Trace Element Deposition in Repeated Surveys: A Case Study from Central Italy. J. Atmos. Chem. 2005, 52, 221–230. [Google Scholar] [CrossRef]
- Quaranta, G.; Salvia, R.; Salvati, L.; Paola, V.D.; Coluzzi, R.; Imbrenda, V.; Simoniello, T. Long-Term Impacts of Grazing Management on Land Degradation in a Rural Community of Southern Italy: Depopulation Matters. Land Degrad. Dev. 2020, 31, 2379–2394. [Google Scholar] [CrossRef]
- Khillare, P.S.; Balachandran, S.; Meena, B.R. Spatial and Temporal Variation of Heavy Metals in Atmospheric Aerosol of Delhi. Environ. Monit. Assess 2004, 90, 1–21. [Google Scholar] [CrossRef]
- Begum, B.A.; Biswas, S.K.; Hopke, P.K. Key Issues in Controlling Air Pollutants in Dhaka, Bangladesh. Atmos. Environ. 2011, 45, 7705–7713. [Google Scholar] [CrossRef]
- Begum, B.A.; Hossain, A.; Saroar, G.; Biswas, S.K.; Nasiruddin, M.; Nahar, N.; Chowdury, Z.; Hopke, P.K. Sources of Carbonaceous Materials in the Airborne Particulate Matter of Dhaka. Asian J. Atmos. Environ. 2011, 5, 237–246. [Google Scholar] [CrossRef]
- Jain, S.; Sharma, S.K.; Mandal, T.K.; Saxena, M. Source Apportionment of PM10 in Delhi, India Using PCA/APCS, UNMIX and PMF. Particuology 2018, 37, 107–118. [Google Scholar] [CrossRef]
- Chandra Mouli, P.; Venkata Mohan, S.; Balaram, V.; Praveen Kumar, M.; Jayarama Reddy, S. A Study on Trace Elemental Composition of Atmospheric Aerosols at a Semi-Arid Urban Site Using ICP-MS Technique. Atmos. Environ. 2006, 40, 136–146. [Google Scholar] [CrossRef]
- Wang, Y.-F.; Huang, K.-L.; Li, C.-T.; Mi, H.-H.; Luo, J.-H.; Tsai, P.-J. Emissions of Fuel Metals Content from a Diesel Vehicle Engine. Atmos. Environ. 2003, 37, 4637–4643. [Google Scholar] [CrossRef]
- Lilli, M.A.; Moraetis, D.; Nikolaidis, N.P.; Karatzas, G.P.; Kalogerakis, N. Characterization and Mobility of Geogenic Chromium in Soils and River Bed Sediments of Asopos Basin. J. Hazard. Mater. 2015, 281, 12–19. [Google Scholar] [CrossRef]
- Gupta, A.K.; Karar, K.; Srivastava, A. Chemical Mass Balance Source Apportionment of PM10 and TSP in Residential and Industrial Sites of an Urban Region of Kolkata, India. J. Hazard. Mater. 2007, 142, 279–287. [Google Scholar] [CrossRef]
- Chelani, A.B.; Gajghate, D.G.; Devotta, S. Source Apportionment of PM10 in Mumbai, India Using CMB Model. Bull Environ. Contam. Toxicol. 2008, 81, 190–195. [Google Scholar] [CrossRef]
- Andreae, M.O.; Merlet, P. Emission of Trace Gases and Aerosols from Biomass Burning. Glob. Biogeochem. Cycles 2001, 15, 955–966. [Google Scholar] [CrossRef]
- Akagi, S.K.; Yokelson, R.J.; Wiedinmyer, C.; Alvarado, M.J.; Reid, J.S.; Karl, T.; Crounse, J.D.; Wennberg, P.O. Emission Factors for Open and Domestic Biomass Burning for Use in Atmospheric Models. Atmos. Chem. Phys. 2011, 11, 4039–4072. [Google Scholar] [CrossRef] [Green Version]
- Ballabio, C.; Panagos, P.; Lugato, E.; Huang, J.-H.; Orgiazzi, A.; Jones, A.; Fernández-Ugalde, O.; Borrelli, P.; Montanarella, L. Copper Distribution in European Topsoils: An Assessment Based on LUCAS Soil Survey. Sci. Total Environ. 2018, 636, 282–298. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Gao, Y.; Yang, A. Sulfur Homeostasis in Plants. Int. J. Mol. Sci. 2020, 21, 8926. [Google Scholar] [CrossRef] [PubMed]
- Bai, C.; Reilly, C.C.; Wood, B.W. Nickel Deficiency Disrupts Metabolism of Ureides, Amino Acids, and Organic Acids of Young Pecan Foliage. Plant Physiol. 2006, 140, 433–443. [Google Scholar] [CrossRef] [PubMed]
- Rooney, C.P.; Zhao, F.-J.; McGrath, S.P. Phytotoxicity of Nickel in a Range of European Soils: Influence of Soil Properties, Ni Solubility and Speciation. Environ. Pollut. 2007, 145, 596–605. [Google Scholar] [CrossRef]
- Sánchez-Soberón, F.; Rovira, J.; Mari, M.; Sierra, J.; Nadal, M.; Domingo, J.L.; Schuhmacher, M. Main Components and Human Health Risks Assessment of PM10, PM2.5, and PM1 in Two Areas Influenced by Cement Plants. Atmos. Environ. 2015, 120, 109–116. [Google Scholar] [CrossRef]
- Hieu, N.T.; Lee, B.-K. Characteristics of Particulate Matter and Metals in the Ambient Air from a Residential Area in the Largest Industrial City in Korea. Atmos. Res. 2010, 98, 526–537. [Google Scholar] [CrossRef]
- Abas, A. A Systematic Review on Biomonitoring Using Lichen as the Biological Indicator: A Decade of Practices, Progress and Challenges. Ecol. Indic. 2021, 121, 107197. [Google Scholar] [CrossRef]
- Huang, R.; Ju, T.; Dong, H.; Duan, J.; Fan, J.; Liang, Z.; Geng, T. Analysis of Atmospheric SO2 in Sichuan-Chongqing Region Based on OMI Data. Environ. Monit. Assess 2021, 193, 849. [Google Scholar] [CrossRef]
- Garty, J.; Kloog, N.; Cohen, Y.; Wolfson, R.; Karnieli, A. The Effect of Air Pollution on the Integrity of Chlorophyll, Spectral Reflectance Response, and on Concentrations of Nickel, Vanadium, and Sulfur in the LichenRamalina Duriaei (De Not.) Bagl. Environ. Res. 1997, 74, 174–187. [Google Scholar] [CrossRef]
- Garty, J.; Weissman, L.; Cohen, Y.; Karnieli, A.; Orlovsky, L. Transplanted Lichens in and around the Mount Carmel National Park and the Haifa Bay Industrial Region in Israel: Physiological and Chemical Responses. Environ. Res. 2001, 85, 159–176. [Google Scholar] [CrossRef] [Green Version]
- Incerti, G.; Cecconi, E.; Capozzi, F.; Adamo, P.; Bargagli, R.; Benesperi, R.; Carniel, F.C.; Cristofolini, F.; Giordano, S.; Puntillo, D.; et al. Infraspecific Variability in Baseline Element Composition of the Epiphytic Lichen Pseudevernia Furfuracea in Remote Areas: Implications for Biomonitoring of Air Pollution. Environ. Sci. Pollut. Res. 2017, 24, 8004–8016. [Google Scholar] [CrossRef] [PubMed]
- Nannoni, F.; Santolini, R.; Protano, G. Heavy Element Accumulation in Evernia Prunastri Lichen Transplants around a Municipal Solid Waste Landfill in Central Italy. Waste Manag. 2015, 43, 353–362. [Google Scholar] [CrossRef] [PubMed]
- Loppi, S.; Paoli, L. Comparison of the Trace Element Content in Transplants of the Lichen Evernia Prunastri and in Bulk Atmospheric Deposition: A Case Study from a Low Polluted Environment (C Italy). Biologia 2015, 70, 460–466. [Google Scholar] [CrossRef]
- Vannini, A.; Paoli, L.; Nicolardi, V.; Di Lella, L.A.; Loppi, S. Seasonal Variations in Intracellular Trace Element Content and Physiological Parameters in the Lichen Evernia Prunastri Transplanted to an Urban Environment. Acta Bot. Croat. 2017, 76, 171–176. [Google Scholar] [CrossRef]
- Cioffi, M. Air quality monitoring with the lichen biodiversity index (lbi) in the district of Faenza (Italy). EQA Int. J. Environ. Qual. 2009, 1, 1–6. [Google Scholar] [CrossRef]
- Sharma, A.; Patni, B.; Shankhdhar, D.; Shankhdhar, S.C. Zin—An Indispensable Micronutrient. Physiol. Mol. Biol. Plants 2013, 19, 11–20. [Google Scholar] [CrossRef]
Elements | HQinh | HQing | HQderm | |||
---|---|---|---|---|---|---|
Children | Adult | Children | Adult | Children | Adult | |
Cd | 4.26 × 10−1 | 2.22 × 10−2 | 2.22 × 10−6 | 9.51 × 10−7 | 6.22 × 10−8 | 6.28 × 10−8 |
Cr(VI) | 9.29 × 10−2 | 4.84 × 10−3 | 1.61 × 10−6 | 6.92 × 10−7 | 4.52 × 10−8 | 4.57 × 10−8 |
Cu | 2.27 × 10−2 | 1.18 × 10−3 | 2.81 × 10−7 | 1.20 × 10−7 | 7.86 × 10−9 | 7.94 × 10−9 |
Ni | 1.39 | 7.25 × 10−2 | 9.23 × 10−7 | 3.95 × 10−7 | 2.58 × 10−8 | 2.61 × 10−8 |
Pb | 1.35 × 10−1 | 7.03 × 10−3 | 1.20 × 10−5 | 5.13 × 10−6 | 3.35 × 10−7 | 3.39 × 10−7 |
Zn | 1.09 × 10−1 | 5.67 × 10−3 | 6.34 × 10−7 | 2.72 × 10−7 | 1.78 × 10−8 | 1.79 × 10−8 |
ΣHI | 2.18 | 1.13 × 10−1 | 1.77x 10−5 | 7.57 × 10−6 | 4.94 × 10−7 | 4.99 × 10−7 |
Elements | ELRC | |
---|---|---|
Children | Adult | |
Cd | 3.43 × 10−8 | 1.37 × 10−7 |
Cr(VI) | 3.49 × 10−6 | 1.40 × 10−5 |
Ni | 2.09 × 10−7 | 8.35 × 10−7 |
Pb | 4.31 × 10−9 | 1.73 × 10−8 |
ΣELRC | 3.74 × 10−6 | 1.49 × 10−5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caggiano, R.; Speranza, A.; Imbrenda, V.; Afflitto, N.; Sabia, S. A Holistic Approach Based on Biomonitoring Techniques and Satellite Observations for Air Pollution Assessment and Health Risk Impact of Atmospheric Trace Elements in a Semi-Rural Area of Southern Italy (High Sauro Valley). Atmosphere 2022, 13, 1501. https://doi.org/10.3390/atmos13091501
Caggiano R, Speranza A, Imbrenda V, Afflitto N, Sabia S. A Holistic Approach Based on Biomonitoring Techniques and Satellite Observations for Air Pollution Assessment and Health Risk Impact of Atmospheric Trace Elements in a Semi-Rural Area of Southern Italy (High Sauro Valley). Atmosphere. 2022; 13(9):1501. https://doi.org/10.3390/atmos13091501
Chicago/Turabian StyleCaggiano, Rosa, Antonio Speranza, Vito Imbrenda, Nicola Afflitto, and Serena Sabia. 2022. "A Holistic Approach Based on Biomonitoring Techniques and Satellite Observations for Air Pollution Assessment and Health Risk Impact of Atmospheric Trace Elements in a Semi-Rural Area of Southern Italy (High Sauro Valley)" Atmosphere 13, no. 9: 1501. https://doi.org/10.3390/atmos13091501
APA StyleCaggiano, R., Speranza, A., Imbrenda, V., Afflitto, N., & Sabia, S. (2022). A Holistic Approach Based on Biomonitoring Techniques and Satellite Observations for Air Pollution Assessment and Health Risk Impact of Atmospheric Trace Elements in a Semi-Rural Area of Southern Italy (High Sauro Valley). Atmosphere, 13(9), 1501. https://doi.org/10.3390/atmos13091501