A Comparative Study on the Vertical Structures and Microphysical Properties of a Mixed Precipitation Process over Different Topographic Positions of the Liupan Mountains in Northwest China
Abstract
:1. Introduction
2. Observation Sites, Instruments, and Measurements
2.1. Observation Sites
2.2. Instruments and Measurements
2.3. Data Quality Control and Postprocessing
3. Results
3.1. Synoptic Condition
3.2. Evolution of the Cloud and Precipitation Process
3.3. Vertical Structures and Microphysical Properties of the Cloud Precipitation Process
3.3.1. Cumulus Mixed Cloud Precipitation Stage
3.3.2. Shallow Cloud Precipitation Stage
3.3.3. Stratiform Cloud and Precipitation Stage
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
No. | Abb. | Meaning | No. | Abb. | Meaning |
---|---|---|---|---|---|
1 | CR | Ka-band millimeter-wave cloud radar | 11 | V | Raindrop falling velocity |
2 | MRR | K-band micro rain radar | 12 | CR | Combined reflectivity |
3 | OTT | OTT laser-based disdrometer | 13 | Zcorrect | Radar reflectivity after attenuation correction |
4 | CTH | Cloud-top height | 14 | Va | Vertical air velocity |
5 | R | Rain rate | 15 | Dm | Mass-weighted mean diameter |
6 | Vt | Particle falling velocity | 16 | Nw | Generalized intercept parameter |
7 | Ze | Equivalent reflectivity factor | 17 | BB | Bright band |
8 | D | Raindrop diameter | 18 | σv | Standard deviation of rain rate |
9 | N(D) | Raindrop number concentration | 19 | Med | Median |
10 | SW | Spectral width | 20 | Ave | Average |
References
- Zhu, X.W.; Yang, J.L.; Cui, Y. Spatiotemporal distribution and formation causes of precipitation in the east of Northwest China during the period of 1961−2009. Arid Zone Res. 2013, 30, 1096–1099. (In Chinese) [Google Scholar]
- Zhang, P.; Yao, Z.Y.; Jia, S. Study of the characteristics of atmospheric water resources and hydrometeor precipitation efficiency over the Liupan Shan area. J. Chin. J. Atmos. Sci. 2020, 44, 421–434. (In Chinese) [Google Scholar]
- Houze, R.A. Orographic effects on precipitating clouds. Rev. Geophys. 2012, 50, RG1001. [Google Scholar] [CrossRef]
- Hu, L.; Deng, D.F.; Gao, S.T.; Xu, X.D. The seasonal variation of Tibetan convective systems Satellite observation. J. Geophys. Res. Atmos. 2016, 121, 5512–5525. [Google Scholar] [CrossRef]
- Wang, L.Z.; Miao, J.F.; Han, F.R. Overview of impact of topography on precipitation in China over last 10 years. Meteorol. Sci. Technol. 2018, 46, 12. (In Chinese) [Google Scholar]
- Li, J.J.; Zheng, J.F.; Liu, Y.X.; Cheng, Z.G.; He, J.S.; Ren, T.; Chen, S.J. A study on vertical structure and macro- to micro characteristics and differences of precipitation in Sichuan basin and the surrounding areas. Acta. Meteorol. Sin. 2022, 80, 205–223. [Google Scholar]
- Wang, Y.B.; Xie, X.H.; Meng, S.S.; Wu, D.D.; Chen, Y.C.; Jiang, F.X.; Zhu, B.W. Magnitude agreement, occurrence consistency, and elevation dependency of satellite-based precipitation products over the Tibetan Plateau. Remote Sens. 2020, 12, 1750. [Google Scholar] [CrossRef]
- Didlake, A.C.; Kumjian, M.R. Examining polarimetric radar observations of bulk microphysical structures and their relation to vortex kinematics in hurricane Arthur. Mon. Weather Rev. 2017, 145, 4521–4541. [Google Scholar] [CrossRef]
- Bachmann, K.; Keil, C.; Weissmann, M. Impact of radar data assimilation and orography on predictability of deep convection. Q. J. R. Meteorol. Soc. 2019, 145, 117–130. [Google Scholar] [CrossRef] [Green Version]
- Yan, Y.F.; Liu, Y.M. Vertical structures of convective and stratiform clouds in boreal summer over the Tibetan Plateau and its neighboring regions. Adv. Atmos. Sci. 2019, 36, 1089–1102. [Google Scholar] [CrossRef]
- Zhang, A.Q.; Fu, Y.F. Life cycle effects on the vertical structure of precipitation in east china measured by Himawari-8 and GPM DPR. Mon. Weather Rev. 2018, 146, 2183–2199. [Google Scholar] [CrossRef]
- Lin, Y.L.; Reeves, H.D.; Chen, S.Y.; Chiao, S. Formation mechanisms for convection over the Ligurian Sea during MAP IOP-8. Mon. Weather Rev. 2005, 133, 2227–2245. [Google Scholar] [CrossRef]
- Kirshbaum, D.J.; Bryan, G.H.; Rotunno, R.; Durran, D.R. The triggering of orographic rainbands by small-scale topography. J. Atmos. Sci. 2007, 64, 1530–1549. [Google Scholar] [CrossRef]
- Lee, J.T.; Ko, K.Y.; Lee, D.I.; You, C.H.; Liou, Y.C. Enhancement of orographic precipitation in Jeju Island during the passage of Typhoon Khanun. Atmos. Res. 2018, 201, 58–71. [Google Scholar] [CrossRef]
- Shao, Y.Y.; Liu, Q.J.; Jing, Z.J. Numerical simulation on macrophysics and microphysics structure of the orographic cloud and precipitation in summer of the Qilian Mountains. J. Arid Meteorol. 2013, 31, 18–23. (In Chinese) [Google Scholar]
- Yu, X.J.; Zhao, Y. Simulation of Orographic effects on summer rain in the Tian Mountains. J. Desert Res. 2016, 36, 1133–1143. (In Chinese) [Google Scholar]
- Cao, N.; Zhang, L.X.; Sang, J.R.; Yao, Z.Y.; Ma, N.; Tian, L. Observation and analysis on the macroscopic and microcosmic characteristics of topography, cloud and precipitation in Liupan Mountain area based on micro rain radar. J. Meteorol. Sci. 2019, 39, 775–785. (In Chinese) [Google Scholar]
- Fu, Y.F.; Pan, X.; Xian, T. Precipitation characteristics over the steep slope of the Himalayas in rainy season observed by TRMM PR and VIRS. Clim. Dyn. 2018, 51, 1971–1989. [Google Scholar] [CrossRef]
- He, J.S.; Zheng, J.F.; Zeng, Z.M.; Che, Y.Z.; Zheng, M.; Li, J.J. A comparative study on the vertical structures and microphysical properties of stratiform precipitation over south China and the Tibetan Plateau. Remote Sens. 2021, 13, 2897. [Google Scholar] [CrossRef]
- Zhong, L.Z.; Chen, L.; Yang, R.F. Variability in the vertical structure of precipitation in Sichuan and Chongqing based on 2004–2014 space-borne observations. Acta. Meteorol. Sin. 2018, 76, 213–227. (In Chinese) [Google Scholar]
- Luo, Y.L.; Zhang, R.H.; Qian, W.M. Intercomparison of deep convection over the Tibetan Plateau-Asian monsoon region and subtropical North America in Boreal summer using CloudSat/CALIPSO data. J. Clim. 2011, 24, 2164–2177. [Google Scholar] [CrossRef] [Green Version]
- Deng, P.Y.; Mu, J.H.; Shu, Z.L.; Li, J.Y.; Tian, L.; Yang, Y. Analysis on the weather background and the macroscopic characteristics of cloud radar during the primary precipitation in Liupan Mountain area. Ningxia Eng. Technol. 2021, 20, 23–28. (In Chinese) [Google Scholar]
- Wen, L.; Zhao, K.; Zhang, G.; Xue, M.; Zhou, B.; Liu, S.; Chen, X. Statistical characteristics of raindrop size distributions observed in East China during the Asian summer monsoon season using 2-D video disdrometer and micro rain data. J. Geophys. Res. Atmos. 2016, 121, 2265–2282. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Lei, H.C.; Yang, J.F. Microphysical processes of a stratiform precipitation event over eastern China: Analysis using micro rain radar data. Adv. Atmos. Sci. 2017, 34, 1472–1482. [Google Scholar] [CrossRef]
- Peters, G.; Fischer, B.; Andersson, T. Rain observations with a vertically looking Micro Rain Radar (MRR). Boreal Environ. Res. 2002, 7, 353–362. [Google Scholar]
- Peters, G.; Fischer, B.; Munster, H.; Clemens, M.; Wagner, A. Profiles of raindrop size distributions as retrieved by micro rain radars. J. Appl. Meteorol. 2005, 44, 1930–1949. [Google Scholar] [CrossRef]
- Adirosi, E.; Baldini, L.; Roberto, N.; Gatlin, P.; Tokay, A. Improvement of vertical profiles of raindrop size distribution from micro rain radar using 2D video disdrometer measurements. Atmos. Res. 2016, 169, 404–415. [Google Scholar] [CrossRef]
- Wen, L.; Zhao, K.; Wang, M.Y.; Zhang, G.F. Seasonal variations of observed raindrop size distribution in East China. Adv. Atmos. Sci. 2019, 36, 346–362. [Google Scholar] [CrossRef]
- Zheng, J.F.; Zhang, P.W.; Liu, L.P.; Liu, Y.X.; Che, Y.Z. A study of vertical structures and microphysical characteristics of different convective cloud–precipitation types using Ka-Band millimeter wave radar measurements. Remote Sens. 2019, 11, 1810. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.P.; Zheng, J.F.; Ruan, Z.; Cui, Z.H.; Hu, Z.Q.; Wu, S.H.; Dai, G.Y.; Wu, Y.H. Comprehensive radar observations of clouds and precipitation over the Tibetan Plateau and preliminary analysis of cloud properties. J. Meteorol. Res. 2015, 29, 546–561. [Google Scholar] [CrossRef]
- Liu, L.P.; Ruan, Z.; Zheng, J.F.; Gao, W.H. Comparing and merging observation data from Ka-band cloud radar, C-band frequency-modulated continuous wave radar and ceilometer systems. Remote Sens. 2017, 9, 1282. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.P.; Zheng, J.F.; Wu, J. A Ka-band solid-state transmitter cloud radar and data merging algorithm for its measurements. Adv. Atmos. Sci. 2017, 34, 545–558. [Google Scholar] [CrossRef]
- Tokay, A.; Peterson, W.A.; Gatlin, P.; Wingo, M. Comparison of raindrop size distribution measurements by collocated disdrometers. J. Atmos. Ocean. Technol. 2013, 30, 1672–1690. [Google Scholar] [CrossRef]
- Gossard, E.E.; Snider, J.B.; Clothiaux, E.E.; Martner, B.J.; Gibson, S.; Kropfli, R.A.; Frisch, A.S. The potential of 8-mm radars for remotely sensing cloud drop size distributions. J. Atmos. Ocean. Technol. 1997, 13, 76–87. [Google Scholar] [CrossRef]
- Kollias, P.; Albrecht, B.A.; Lhermitte, R.; Savtchenko, A. Radar observations of updrafts, downdrafts, and turbulence in fair weather cumuli. J. Atmos. Sci. 2001, 58, 1750–1766. [Google Scholar] [CrossRef]
- Ren, T.; Zheng, J.F.; Liu, L.P.; Zou, M.L.; Chen, S.J.; He, J.S.; Li, J.J. Retrieval of supercooled water in convective clouds over Nagqu of the Tibetan Plateau using millimeter-wave radar measurements. J. Infrared Millim. Waves 2022, 41, 831–843. [Google Scholar]
- Chen, B.J.; Wang, J.; Gong, D.L. Raindrop size distribution in a midlatitude continental squall line measured by thies optical disdrometers over east China. J. Appl. Meteorol. Climatol. 2016, 55, 621–634. [Google Scholar] [CrossRef]
- Das, S.K.; Konwar, M.; Chakravarty, K.; Deshpande, S.M. Raindrop size distribution of different cloud types over the Western Ghats using simultaneous measurements from Micro-Rain Radar and disdrometer. Atmos. Res. 2017, 186, 72–82. [Google Scholar] [CrossRef]
- Janapati, J.; Seela, B.K.; Lin, P.L.; Lee, M.T.; Joseph, E. Microphysical features of typhoon and non-typhoon rainfall observed in Taiwan, an island in the northwestern Pacific. Hydrol. Earth Syst. Sci. 2021, 25, 4025–4040. [Google Scholar] [CrossRef]
- Chen, B.; Hu, Z.; Liu, L.; Zhang, G. Raindrop size distribution measurements at 4,500 m on the Tibetan Plateau during TIPEX-III. J. Geophys. Res. Atmos. 2017, 122, 92–111. [Google Scholar] [CrossRef]
- Battaglia, A.; Rustemeier, E.; Tokay, A.; Blahak, U.; Simmer, C. PARSIVEL snow observations: A critical assessment. J. Atmos. Ocean. Technol. 2010, 27, 333–344. [Google Scholar] [CrossRef]
- Atlas, D.; Ulbrich, C.W. Path and area integrated rainfall measurement by microwave in the 1~3 cm band. J. Appl. Meteorol. 1977, 16, 1322–1331. [Google Scholar] [CrossRef]
- Bringi, V.N.; Chandrasekar, V.; Hubbert, J. Raindrop size distribution in different climatic regimes from disdrometer and dual-polarized radar analysis. J. Atmos. Sci. 2003, 60, 354–365. [Google Scholar] [CrossRef]
- Fabry, F.; Zawadzki, I. Long-term radar observations of the melting layer of precipitation and their interpretation. J. Atmos. Sci. 1995, 52, 838–851. [Google Scholar] [CrossRef]
- Chen, B.j.; Yang, J.; Pu, J.P. Statistical characteristics of raindrop size distribution in the Meiyu Season observed in Eastern China. J. Meteorol. Soc. Jpn. 2013, 91, 215–227. [Google Scholar] [CrossRef] [Green Version]
- Cha, J.-W.; Chang, K.-H.; Yum, S.S.; Choi, Y.-J. Comparison of the bright band characteristics measured by Micro Rain Radar (MRR) at a mountain and a coastal site in South Korea. Adv. Atmos. Sci. 2009, 26, 211–221. [Google Scholar] [CrossRef]
- Yu, F.; Yao, Z.Y. Numerical study on the complex of the stratiform and embedded convective cloud precipitation: A case study. Meteorol. Mon. 2009, 35. (In Chinese) [Google Scholar]
- Yuter, S.E.; Houze, R.A. Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus Part II: Frequency distributions of vertical velocity, reflectivity, and differential reflectivity. J. Mon. Weather Rev. 1995, 123, 1941–1963. [Google Scholar] [CrossRef]
- Fu, Y.F.; Lin, Y.H.; Liu, G.S. Seasonal characteristics of precipitation in 1998 over East Asia as derived from TRMM PR. Adv. Atmos. Sci. 2003, 20, 511–529. [Google Scholar]
- Luo, Y.L.; Zhang, R.H.; Wang, H. Comparing occurrences and vertical structures of hydrometeors between Eastern China and the Indian monsoon region using CloudSat/CALIPSO data. J. Clim. 2009, 22, 1052–1064. [Google Scholar] [CrossRef]
- Yuan, J.; Houze, R.A.; Heymsfield, A.J. Vertical structures of anvil clouds of tropical mesoscale convective systems observed by CloudSat. J. Atmos. Sci. 2011, 68, 1653–1674. [Google Scholar] [CrossRef]
- Starzec, M.; Mullendore, G.L.; Kucera, P.A. Using radar reflectivity to evaluate the vertical structure of forecasted convection. J. Appl. Meteorol. Climatol. 2018, 57, 2835–2849. [Google Scholar] [CrossRef]
- Wang, J.; Fan, J.; Houze, R.A.; Brodzik, S.R.; Zhang, K.; Zhang, G.J. Using radar observations to evaluate 3-d radar echo structure simulated by the energy exascale earth system model (E3SM) version 1. Geoscientific Model Development 2021, 14, 719–734. [Google Scholar] [CrossRef]
- Yin, J.F.; Wang, D.H.; Zhai, G.Q. A study of cloud vertical profiles from the Cloudsat data over the East Asian Continent. Acta. Meteorol. Sin. 2013, 71, 121–133. (In Chinese) [Google Scholar]
- Zhang, Y.; Zhou, Q.; Lv, S.S. Elucidating cloud vertical structures based on three-year Ka-band cloud radar observations from Beijing, China. Atmos. Res. 2019, 222, 88–99. [Google Scholar] [CrossRef]
- Sun, Y.T.; Dong, X.Q.; Cui, W.J. Vertical structures of typical Meiyu precipitation events retrieved from GPM-DPR. J. Geophys. Res. Atmos. 2020, 125, e2019JD031466. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.L.; Zhou, R.R.; Zhaxi, S.L.; Liu, S.N. Raindrop size distribution measurements on the Southeast Tibetan Plateau during the STEP project. Atmos. Res. 2021, 249, 105311. [Google Scholar] [CrossRef]
- Du, S.; Wang, D.H.; Li, G.P. Analysis of the vertical structure of precipitation in south China based on dual-frequency spaceborne precipitation radar GPM product. J. Trop. Meteorol. 2020, 36, 115–130. (In Chinese) [Google Scholar]
- Hobbs, P.V.; Easter, R.C.; Fraser, A.B. A theoretical study of the flow of air and fallout of solid precipitation over mountainous terrain. Part II: Microphysics. J. Atmos. Sci. 1973, 30, 813–823. [Google Scholar] [CrossRef]
- Sumesh, R.K.; Resmi, E.A.; Unnikrishnan, C.K.; Jash, D.; Sreekanth, T.S.; Resmi, M.C.M.; Rajeevan, K.; Nita, S.; Ramachandran, K.K. Microphysical aspects of tropical rainfall during bright band events at mid and high-altitude regions over southern Western Ghats, India. J. Atmos. Res. 2019, 227, 178–197. [Google Scholar] [CrossRef]
- Zhou, L.; Dong, X.; Fu, Z.; Wang, B.; Leng, L.; Xi, B.; Cui, C. Vertical distributions of raindrops and Z-R relationships using micro rain radar and 2-D-video disdrometer measurements during the Integrative Monsoon Frontal Rainfall Experiment (IMFRE). J. Geophys. Res. Atmos. 2019, 125, e2019JD031108. [Google Scholar]
- Low, T.B.; List, R. Collision, coalescence and breakup of raindrops. Part I: Experimentally established coalescence efficiencies and fragment size distributions in breakup. J. Atmos. Sci. 1982, 39, 1591–1606. [Google Scholar] [CrossRef]
- Huo, Z.Y.; Ruan, Z.; Wei, M. Statistical characteristics of raindrop size distribution in South China summer based on the vertical structure derived from VPR-CFMCW. Atmos. Res. 2019, 222, 47–61. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, L. Statistical characteristics of raindrop size distribution in the Tibetan Plateau and southern China. Adv. Atmos. Sci. 2017, 34, 727–736. [Google Scholar] [CrossRef]
- Niu, S.; An, X.; San, J. Observational research on physical feature of summer raindrop size distribution under synoptic systems in Ningxia. Plateau Meteorol. 2002, 21, 37–44. (In Chinese) [Google Scholar]
- Kumar, S.; Silva, Y. Vertical characteristics of radar reflectivity and DSD parameters in intense convective clouds over South East South Asia during the Indian summer monsoon: GPM observations. Int. J. Remote Sens. 2019, 40, 9604–9628. [Google Scholar] [CrossRef]
- Wen, L.; Zhao, K.; Yang, Z.L. Microphysics of stratiform and convective precipitation during Meiyu season in Eastern China. J. Geophys. Res. Atmos. 2020, 125, e2020JD032677. [Google Scholar] [CrossRef]
- Wen, L.; Zhao, K.; Zhang, G.F.; Liu, S.; Chen, G. Impacts of instrument limitations on estimated raindrop size distribution, radar parameters, and model microphysics during Mei-Yu Season in East China. J. Atmos. Ocean. Technol. 2017, 34, 1021–1037. [Google Scholar] [CrossRef]
- Huang, X.Y.; Fan, Y.W.; Li, F.; Xiao, H.; Zhang, X. The attenuation correction for a 35GHz ground-based cloud radar. J. Infrared Millim. Waves 2013, 32, 325–330. (In Chinese) [Google Scholar] [CrossRef]
- Matrosov, S.Y. Attenuation-based estimates of rainfall rates aloft with vertically pointing Ka-band radars. J. Atmos. Ocean. Technol. 2005, 22, 43–54. [Google Scholar] [CrossRef]
Parameters | CR | MRR |
---|---|---|
Transmitting frequency | 35 GHz (Ka-band) | 24.23 GHz (K-band) |
Wavelength | 8.57 mm | 12.38 mm |
Detection mode | Vertically pointing | Vertically pointing |
Range resolution | 30 m | 150 m |
Temporal resolution | 5 s | 10–3600 s (adjustable) |
Nyquist velocity range | −13.92–13.92 m s−1 | −12.19–12.19 m s−1 |
Detectable height range | 0.12–20 km | 0–4.65 km |
Primary detection object | Non-precipitating clouds, weak precipitation | Precipitation |
Measurements | Equivalent reflectivity factor (Ze, dBZ), spectrum width (SW, m s−1), Doppler spectrum | Ze (dBZ), particle falling velocity (Vt, m s−1), raindrop spectrum |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, Y.; Shu, Z.; Zheng, J.; Jia, X.; Qiu, Y.; Deng, P.; Yan, X.; Lin, T.; Dang, Z.; Lu, C. A Comparative Study on the Vertical Structures and Microphysical Properties of a Mixed Precipitation Process over Different Topographic Positions of the Liupan Mountains in Northwest China. Atmosphere 2023, 14, 44. https://doi.org/10.3390/atmos14010044
He Y, Shu Z, Zheng J, Jia X, Qiu Y, Deng P, Yan X, Lin T, Dang Z, Lu C. A Comparative Study on the Vertical Structures and Microphysical Properties of a Mixed Precipitation Process over Different Topographic Positions of the Liupan Mountains in Northwest China. Atmosphere. 2023; 14(1):44. https://doi.org/10.3390/atmos14010044
Chicago/Turabian StyleHe, Ying, Zhiliang Shu, Jiafeng Zheng, Xingcan Jia, Yujun Qiu, Peiyun Deng, Xue Yan, Tong Lin, Zhangli Dang, and Chunsong Lu. 2023. "A Comparative Study on the Vertical Structures and Microphysical Properties of a Mixed Precipitation Process over Different Topographic Positions of the Liupan Mountains in Northwest China" Atmosphere 14, no. 1: 44. https://doi.org/10.3390/atmos14010044
APA StyleHe, Y., Shu, Z., Zheng, J., Jia, X., Qiu, Y., Deng, P., Yan, X., Lin, T., Dang, Z., & Lu, C. (2023). A Comparative Study on the Vertical Structures and Microphysical Properties of a Mixed Precipitation Process over Different Topographic Positions of the Liupan Mountains in Northwest China. Atmosphere, 14(1), 44. https://doi.org/10.3390/atmos14010044