Sensitivity Analysis of the Land Surface Characteristic Parameters in Different Climatic Regions of the Loess Plateau
Abstract
:1. Introduction
2. Data and Methods
2.1. Observation Stations and Data Introduction
2.2. Noah-MP Model
2.3. Sensitivity Analysis
3. Results
3.1. Model Validation
3.2. Sensitivity of the Land Surface Parameters in the Semiarid Region of the Loess Plateau
3.2.1. First-Order Sensitivity
3.2.2. Global Sensitivity
3.2.3. Annual Variation Characteristics of the Main Sensitivity Parameters
3.3. Sensitivity of the Land Surface Parameters in the Semi-Humid Region of the Loess Plateau
3.3.1. First-Order Sensitivity
3.3.2. Global Sensitivity
3.3.3. Annual Variation Characteristics of the Main Sensitivity Parameters
3.4. Statistical Sensitivity Characteristics of the Land Surface Parameters in the Loess Plateau
3.4.1. Sensitivity Probability Density Distribution of the Parameters
3.4.2. Cumulative Variance Contribution Rate of the Parameters
3.4.3. Seasonal Sensitivity Distribution Characteristics of the Parameters
4. Discussion
5. Conclusions
- (1)
- With sensible and latent heat fluxes as the sensitivity criteria, the main land surface parameters were Z0, QUARTZ, MAXSMC, and BEXP. Comparing the global and first-order sensitivity analyses of the parameters obtained a similar order, but the global sensitivity values were numerically greater than the first-order sensitivity values. Moreover, the coupling effect between the parameters had a significant influence on their sensitivity analysis. Seasonal differences were observed in the sensitivities of land surface parameters, which were largely related to their attribute characteristics.
- (2)
- The first-order sensitivity had the same pattern as the global sensitivity probability density distribution. However, the global sensitivity probability density in each interval was slightly lower than the first-order sensitivity probability density. The sensitivities of the first three main parameters were almost evenly distributed in each interval, while the sensitivity probability densities of the other parameters were distributed within 0–0.2 of the standardized value. Almost half of the 20 land surface parameters accounted for 80% of the total sensitivity. The sensitivities of the first half were high, while the sensitivities of the latter parameters were negligible.
- (3)
- The sensitivities of different land surface parameters varied in different seasons, and their seasonal sensitivity distributions were inconsistent with varying criteria. Their sensitivities also fluctuated in different seasons due to the attribute characteristics of the parameters. Although Z0 occupied an absolutely dominant position in all four seasons, the position occupied by the spring QUARTZ could not be ignored, whereas the winter MAXSMC and QUARTZ had higher sensitivities.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jiang, X.; Niu, G.-Y.; Yang, Z.-L. Impacts of vegetation and groundwater dynamics on warm season precipitation over the Central United States. J. Geophys. Res. Atmos. 2009, 114, D06109. [Google Scholar] [CrossRef]
- Niu, G.-Y.; Yang, Z.-L.; Mitchell, K.E.; Chen, F.; Ek, M.B.; Barlage, M.; Kumar, A.; Manning, K.; Niyogi, D.; Rosero, E.; et al. The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res. 2011, 116, D12109. [Google Scholar] [CrossRef]
- Taylor, C.M.; de Jeu, R.A.M.; Guichard, F.; Harris, P.P.; Dorigo, W.A. Afternoon rain more likely over drier soils. Nature 2012, 489, 423–426. [Google Scholar] [CrossRef] [PubMed]
- Dickinson, R.E. Land-atmosphere interaction. Rev. Geophys. 1995, 33, 917–922. [Google Scholar] [CrossRef]
- Sun, S. The Physical, Biochemical, Mechanisms and Parameterization Model of Land Surface Processes; Meteorological Press: Beijing, China, 2005. (In Chinese) [Google Scholar]
- Zeng, Q.; Zhou, G.; Pu, Y. Research on the Earth System Dynamic Model and Some Related Numerical Simulations. Chin. J. Atmos. Sci. 2008, 32, 653–690. (In Chinese) [Google Scholar] [CrossRef]
- Bonan, G.B. The land surface climatology of the NCAR land surface model coupled to the NCAR community climate model. J. Clim. 1998, 11, 1307–1326. [Google Scholar] [CrossRef]
- Kahan, D.S.; Xue, Y.; Allen, S.J. The impact of vegetation and soil parameters in simulations of surface energy and water balance in the semi-arid Sahel: A case study using SEBEX and HAPEX-Sahel data. J. Hydrometeorol. 2006, 320, 238–259. [Google Scholar] [CrossRef]
- Liu, S.; Wen, P.; Zhang, Y.; Hong, Z.; Hu, F.; Liu, H. Sensitivity tests of interaction between land surface physical process and atmospheric boundary layer. Acta Meteorol. Sin. 2001, 59, 533–548. (In Chinese) [Google Scholar]
- Gupta, H.V.; Bastidas, L.A.; Sorooshian, S.; Shuttleworth, W.J.; Yang, Z.L. Parameter estimation of a land surface scheme using multicriteria methods. J. Geophys. Res. 1999, 104, 19491–19503. [Google Scholar] [CrossRef]
- Bastidas, L.A.; Hogue, T.S.; Sorooshian, S.; Gupta, H.V.; Shuttleworth, W.J. Parameter sensitivity analysis for different complexity land surface models using multicriteria methods. J. Geophys. Res. Atmos. 2006, 111, 1–19. [Google Scholar] [CrossRef]
- Liu, H.; Tu, G.; Dong, W. Variation characteristics of surface albedo of different underlying surfaces in semi-arid region. Chin. Sci. Bull. 2008, 53, 1220–1227. (In Chinese) [Google Scholar]
- Yao, T.; Zhang, Q. Study on land-surface albedo over different types of underlying surfaces in North China. Acta. Phys. Sin. 2014, 63, 089201. (In Chinese) [Google Scholar] [CrossRef]
- Yang, K.; Koike, T.; Ishikawa, H.; Kim, J.; Li, X.; Liu, H.; Liu, S.; Ma, Y.; Wang, J. Turbulent flux transfer over bare-soil surfaces: Characteristics and parameterization. J. Appl. Meteorol. Climatol. 2008, 47, 276–290. [Google Scholar] [CrossRef]
- Lu, S.; Guo, W.; Ge, J.; Zhang, Y. Impacts of Land Surface Parameterizations on Simulations over the Arid and Semiarid Regions: The Case of the Loess Plateau in China. J. Hydrometeorol. 2022, 23, 891–907. [Google Scholar] [CrossRef]
- Sewall, J.O.; Sloan, L.C.; Huber, M.; Wing, S. Climate sensitivity to changes in land surface characteristics. Glob. Planet. Chang. 2000, 26, 445–465. [Google Scholar] [CrossRef]
- Firozjaei, M.K.; Kiavarz, M.; Alavipanah, S.K. Impact of surface characteristics and their adjacency effects on urban land surface temperature in different seasonal conditions and latitudes. Build. Environ. 2022, 219, 109145. [Google Scholar] [CrossRef]
- Geletič, J.; Lehnert, M.; Dobrovolný, P. Land Surface Temperature Differences within Local Climate Zones, Based on Two Central European Cities. Remote Sens. 2016, 8, 788. [Google Scholar] [CrossRef]
- Seneviratne, S.I.; Corti, T.; Davin, E.L.; Hirschi, M.; Jaeger, E.B.; Lehner, I.; Orlowsky, B.; Teuling, A.J. Investigating soil moisture—Climate interactions in a changing climate: A review. Earth Sci. Rev. 2010, 99, 125–161. [Google Scholar] [CrossRef]
- Li, Y.; Huang, C.; Lu, L. Global Sensitivity Analysis of SEBS Model Parameters based on EFAST Method. Remote Sens. Technol. Appl. 2014, 29, 719–726. (In Chinese) [Google Scholar] [CrossRef]
- Li, D.; Duan, Y.; Zhang, S.; Wen, X. Quantifying parameter sensitivity and calibration in simulating soil temperature and moisture. Chin. J. Atmos. Sci. 2015, 39, 991–1010. (In Chinese) [Google Scholar] [CrossRef]
- Rosero, E.; Yang, Z.; Wagener, T.; Gulden, L.E.; Yatheendradas, S.; Niu, G. Quantifying parameter sensitivity, interaction, and transferability in hydrologically enhanced versions of the Noah land surface model over transition zones during the warm season. J. Geophys. Res. 2010, 115, D03106. [Google Scholar] [CrossRef]
- Wang, J.-D.; Guo, W.-D.; Li, H.-Q. Application of extended Fourier amplitude sensitivity test (EFAST) method in land surface parameter sensitivity analysis. Acta Phys. Sin. 2013, 62, 050202. [Google Scholar] [CrossRef]
- Li, H. Applications of random balance design Fourier amplitude sensitivity test and extended Fourier amplitude sensitivity test in the parameter sensitivity analysis of land surface process model. Acta Phys. Sin. 2015, 64, 069201. (In Chinese) [Google Scholar] [CrossRef]
- Lohmann, D.; Lettenmaier, D.P.; Liang, X.; Wood, E.F.; Boone, A.; Chang, S.; Chen, F.; Dai, Y.; Desborough, C.; Dickinson, R.E.; et al. The project for intercomparison of land-surface parameterization schemes (PILPS) phase 2(c) Red-Arkansas River basin experiment: 3. Spatial and temporal analysis of water fluxes. Glob. Plan. Chang. 1998, 19, 161–179. [Google Scholar] [CrossRef]
- Henderson, S.A. The project for intercomparison of land-surface parameterization schemes. Bull. Am. Meteorol. Soc. 1993, 74, 1335–1348. [Google Scholar] [CrossRef]
- Li, D.; Zhang, S.; Duan, Y.; Cui, J. Calibration of parameters in soil moisture equation with shuffled complex evolution algorithm. Chin. J. Atmos. Sci. 2013, 37, 971–982. (In Chinese) [Google Scholar] [CrossRef]
- Perrin, C.; Michel, C.; Andréassian, V. Does a large number of parameters enhance model performance? Comparative assessment of common catchment model structures on 429 catchments. J. Hydrometeorol. 2001, 242, 275–301. [Google Scholar] [CrossRef]
- Ronda, R.J.; Hurk, J.M.; Holtslag, A.M. Spatial heterogeneity of the soil moisture content and its impact on surface flux densities and near-surface meteorology. J. Hydrometeorol. 2002, 3, 556–570. [Google Scholar] [CrossRef]
- Zhou, W.; Luo, Y.; Guo, P. A modified BATS and its off line experiments. J. Nanjing Meteorol. 2005, 28, 730–738. (In Chinese) [Google Scholar]
- Dai, Y.; Zeng, X.; Dickinson, R.E.; Baker, I.; Bonan, G.B.; Bosilovich, M.G.; Denning, A.S.; Dirmeyer, P.A.; Houser, P.R.; Niu, G.; et al. The Common Land Model. Bull. Am. Meteorol. Soc. 2003, 84, 1013–1023. [Google Scholar] [CrossRef]
- Song, Y. Comparison of Parameterization Schemes, Sensitivity Analysis and Optimization of Parameters in Land Surface Mode. Ph.D. Dissertation, Nanjing University, Nanjing, China, 2008. (In Chinese). [Google Scholar]
- Luo, S.; Lv, S.; Zhang, Y.; Hu, Z.; Ma, Y.; Li, S.; Shang, L. Simulation analysis on land surface process of BJ site of Central Tibetan Plateau using CoLM. Plateau Meteorol. 2008, 27, 259–271. (In Chinese) [Google Scholar]
- Chen, J.; Wen, J.; Wang, X.; Zhang, T.; Jia, D.; Zhou, J.; Wang, Z. Characteristics of water and heat exchanges and their crucial influencing factors on the alpine wetland during the warm season in the source region of the Yellow River. Chin. J. Atmos. Sci. 2017, 41, 302–312. (In Chinese) [Google Scholar] [CrossRef]
- Ma, X.; Zhang, Y.; Wu, T.; Song, M.; Wang, S. Effect of the root-water-uptake process parameterization schemes on the land-surface-process simulation in the Qinghai-tibet plateau. Chin. J. Atmos. Sci. 2020, 44, 211–224. (In Chinese) [Google Scholar] [CrossRef]
- Zhao, X.; Liu, C.; Tong, B.; Li, Y.; Wang, L.; Ma, Y.; Gao, Z. Study on surface process parameters and soil thermal parameters at Shiquanhe in the western Qinghai-Xizang plateau. Plateau Meteorol. 2021, 40, 711–723. (In Chinese) [Google Scholar] [CrossRef]
- Cheng, P.; Lv, S.; Sun, H.; Luo, J.; Xu, Y.; Tao, X.; Zhang, Y. Numerical simulation of the influence of soil gravel parameterization on the formation and development of a plateau vortex. Plateau Meteorol. 2022, 41, 391–403. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, Q.; Li, H.; Zhang, L.; Yue, P.; Shi, J. Responses of the land-surface process and its parameters over the natural vegetation underlying surface of the middle of Gansu in loess plateau to precipitation fluctuation. Acta Phys. Sin. 2013, 62, 019201. (In Chinese) [Google Scholar] [CrossRef]
- Zheng, H.; Liu, S. Land surface parameterization and modeling over desert. Chin. J. Geophys. 2013, 56, 2207–2217. (In Chinese) [Google Scholar] [CrossRef]
- Zheng, Z.; Wei, Z.; Li, Z.; Wei, H.; Liu, H. Study of parameterization of surface albedo of bare soil over the Gobi desert in the Dunhuang region. Chin. J. Atmos. Sci. 2014, 38, 297–308. (In Chinese) [Google Scholar] [CrossRef]
- Chen, J.; Zuo, H.; Wang, Y.; Reng, P.; Wan, W.; Dong, L.; Wang, X. Parameterization scheme about albedo changing with solar altitude angle over different underlying surface in arid areas of northwest China. Plateau Meteorol. 2014, 33, 80–88. (In Chinese) [Google Scholar] [CrossRef]
- Sun, S.; Jin, J. Several problems in the study of land surface processes. J. Appl. Meteorol. 1997, 8, 50–57. (In Chinese) [Google Scholar]
- Ek, M.B.; Mitchell, K.E.; Lin, Y.; Rogers, E.; Grunmann, P.; Koren, V.; Gayno, G.; Tarpley, J.D. Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res. Earth Surf. 2003, 108, 8851. [Google Scholar] [CrossRef]
- Yang, Z.-L.; Niu, G.-Y.; Mitchell, K.E.; Chen, F.; Ek, M.B.; Barlage, M.; Longuevergne, L.; Manning, K.; Niyogi, D.; Tewari, M.; et al. The community Noah land surface model with multiparameterization options (Noah-MP): 2. Evaluation over global river basins. J. Geophys. Res. Atmos. 2011, 116, D12110. [Google Scholar] [CrossRef]
- Ma, N.; Niu, G.-Y.; Xia, Y.; Cai, X.; Zhang, Y.; Ma, Y.; Fang, Y. A systematic evaluation of Noah-MP in simulating land-atmosphere energy, water, and carbon exchanges over the continental United States. J. Geophys. Res. Atmos. 2017, 122, 12245–12268. [Google Scholar] [CrossRef]
- Cukier, R.I.; Fortuin, C.M.; Shuler, K.E.; Petschek, A.G.; Schaibly, J.H. Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients. I Theory. J. Chem. Phys. 1973, 59, 3873–3878. [Google Scholar] [CrossRef]
- Saltelli, A.; Tarantola, S.; Chan, K.A. Quantitative model-independent method for global sensitivity analysis of model output. Technometrics 1999, 41, 39–56. [Google Scholar] [CrossRef]
- Simlab. Version 2.2. Simulation Environment for Uncertainty and Sensitivity Analysis. 2009. Available online: http://simlab.jrc.ec.europa.eu (accessed on 1 November 2019).
- Ye, D.; Zhang, S.; Wang, F.; Mao, F.; Yang, X. The applicability of different parameterization schemes in semi-arid region based on Noah-MP land surface model. Chin. J. Atmos. Sci. 2017, 41, 189–201. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, G.; Zhou, G. Analysis on effect of the diurnal variation of sparse vegetation land surface albedo on flux simulation: Taking the sensible and latent heat fluxes in desert steppe o Inner Mongolia as a case. Plateau Meteorol. 2012, 31, 942–951. (In Chinese) [Google Scholar]
- Chen, B.; Xu, X.; Ding, Y.; Shi, X. The impact of heterogeneity of land surface roughness length on estimation of turbulent flux in model. Plateau Meteorol. 2010, 29, 340–348. (In Chinese) [Google Scholar]
- Song, Y.; Guo, W.; Zhang, Y. Simulation of latent heat flux exchange between land surface and atmosphere intemperate mixed forest and subtropical artificial coniferous forest sites in China by CoLM. Plateau Meteorol. 2008, 27, 967–977. (In Chinese) [Google Scholar]
- Chen, X.; Yu, Y.; Chen, J.; Li, Z.; Ma, C.; Xie, J. Seasonal variation of radiation and energy fluxes over the rain-fed cropland in the semi-arid area of Loess Plateau. Plateau Meteorol. 2016, 35, 351–362. (In Chinese) [Google Scholar] [CrossRef]
- Wang, X.; Yang, M.; Wan, G. Temporal-spatial distribution and evolution of surface sensible heat flux over Qinghai-Xizang Plateau during last 60 years. Plateau Meteorol. 2013, 32, 1557–1567. (In Chinese) [Google Scholar] [CrossRef]
- Yang, K.; Guo, X.; Wu, B. Recent trends in surface sensible heat flux on the Tibetan Plateau. Sci. China Earth Sci. 2011, 54, 19–28. (In Chinese) [Google Scholar] [CrossRef]
- Xie, J.; Yu, Y.; Liu, C.; Ge, J. Characteristics of surface sensible heat flux over the Qinghai-Tibetan Plateau and its response to climate change. Plateau Meteorol. 2018, 37, 28–42. (In Chinese) [Google Scholar] [CrossRef]
- Li, S.; Ai, L. Comparative analysis of surface energy fluxes over Sino-US semi-arid land. Plateau Meteorol. 2014, 33, 1262–1271. (In Chinese) [Google Scholar] [CrossRef]
Name | Height (m) | Unit | Time Interval (min) |
---|---|---|---|
Pressure | 2 | Kpa | 5 |
Wind speed | 10 | m/s | 5 |
Temperature | 2 | °C | 5 |
Relative humidity | 2 | % | 5 |
Precipitation | 2 | mm | 5 |
Downward shortwave radiation | 2 | W/m2 | 30 |
Downward longwave radiation | 2 | W/m2 | 30 |
Soil temperature | −0.1, −0.2, −0.5, −1.0 | °C | 30 |
Soil moisture | −0.1, −0.2, −0.5, −1.0 | m3/m3 | 30 |
Sensible heat flux | 2 | W/m2 | 30 |
Latent heat flux | 2 | W/m2 | 30 |
Parameter | Default | Min | Max | Unit | Description |
---|---|---|---|---|---|
MAXSMC | 0.406 | 0.35 | 0.55 | m3 m−3 | Maximum volumetric soil moisture |
PSISAT | 0.098 | 0.01 | 0.65 | m m−1 | Saturated soil matric potential |
SATDK | 7.22 × 10−6 | 0.1 × 10−6 | 0.1 × 10−5 | m s−1 | Saturated soil hydraulic conductivity |
BEXP | 10.73 | 4.0 | 12.0 | - | The “b” parameter |
QUARTZ | 0.52 | 0.1 | 0.82 | - | Quartz content |
CZIL | 0.1 | 0.05 | 8 | - | Zilintikevich parameter |
FXEXP | 2.0 | 0.2 | 4 | - | Bare soil evaporation exponent |
CSOIL | 2.0 × 106 | 1.26 × 106 | 3.5 × 106 | J m−3 K−1 | Soil heat capacity |
REFDK | 2.0 × 10−6 | 0.5 × 10−7 | 3.0 × 10−6 | Used with REFKDT to compute runoff parameter KDT | |
REFKDT | 3.0 | 0.1 | 10 | Surface runoff parameter | |
SMLOW | 0.5 | 0.01 | 1.0 | Used to compute soil moisture wilting value | |
SMHIGH | 3.0 | 2 | 8 | Used to compute soil moisture reference value | |
NROOT | 3 | 2 | 4 | - | Root layers |
RSMIN | 40 | 40 | 400 | s m−1 | Minimal stomatal resistance |
RGL | 100 | 30 | 150 | Radiation stress parameter used in Fx terms of canopy resistance | |
HS | 36.25 | 36.25 | 55 | Coefficient of vapor pressure deficit term Fx in canopy resistance | |
Z0 | 0.14 | 0.01 | 1.0 | m | Roughness length |
SBETA | −2.0 | −4 | −1 | - | Used to compute canopy effect on ground heat flux |
RSMAX | 5000 | 2000 | 10,000 | s m−1 | Maximum stomatal resistance |
TOPT | 298.0 | 293 | 303 | K | Optimum air temperature for transpiration |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Wang, S.; Gong, C.; Zeng, D.; Ren, Y.; Li, X. Sensitivity Analysis of the Land Surface Characteristic Parameters in Different Climatic Regions of the Loess Plateau. Atmosphere 2023, 14, 1528. https://doi.org/10.3390/atmos14101528
Liu Y, Wang S, Gong C, Zeng D, Ren Y, Li X. Sensitivity Analysis of the Land Surface Characteristic Parameters in Different Climatic Regions of the Loess Plateau. Atmosphere. 2023; 14(10):1528. https://doi.org/10.3390/atmos14101528
Chicago/Turabian StyleLiu, Yuanpu, Sheng Wang, Chongshui Gong, Dingwen Zeng, Yulong Ren, and Xia Li. 2023. "Sensitivity Analysis of the Land Surface Characteristic Parameters in Different Climatic Regions of the Loess Plateau" Atmosphere 14, no. 10: 1528. https://doi.org/10.3390/atmos14101528
APA StyleLiu, Y., Wang, S., Gong, C., Zeng, D., Ren, Y., & Li, X. (2023). Sensitivity Analysis of the Land Surface Characteristic Parameters in Different Climatic Regions of the Loess Plateau. Atmosphere, 14(10), 1528. https://doi.org/10.3390/atmos14101528