Unravelling the Role of Vegetation Dynamics in the Execution of ArcSWAT Hydrological Modeling for Cumulative Streamflow of a Tibetan Watershed
Abstract
:1. Introduction
2. Materials and Methods
2.1. Perspective of the Study
- (a)
- Land use and land cover data are imperative input parameters for SWAT to generate its fundamental calculation unit—the hydrologic response unit (HRU)—which are, however, commonly categorized without consideration of the vegetation coverage [51]. The second level classification of land use/land cover type can reveal vegetation status, for example, high compensation, medium coverage, and low grass cover [52]. So far, SWAT plant and land cover database does not incorporate these land cover categories [53].
- (b)
- In SWAT, LAI is the significant parameter that associates vegetation dynamics with the hydrological cycle [53,54]. It can unveil the plant growth condition, plant density, and vegetation. However, in SWAT, the LAI is established by the average plant density in HRUs [55]. Furthermore, LAI accumulation in SWAT is governed by a heat-based integrated model of idealized leaf growth, which ignores other factors such as precipitation and topography [53,56].
2.2. Study Site—Lhasa River Basin
2.3. Scenario-Based SWAT Modeling of LRB Streamflow
- i.
- The basic SWAT model for the hydrological simulation of LR streamflow collected at the basin’s outlet is represented as the SWAT-baseline (SWAT-B) scenario.
- ii.
- The simulation scenario is built where the vegetation parameters are included and tuned for the SWAT model LR simulation. The simulation scenario simulated the LAI for LRB using the default plant growth module including the associated parameters for LAI estimation. As the particular scenario established the simulated LAI values for LRB, the scenario has been represented as SWAT-leaf area index (SWAT-LAI) scenario.
- iii.
- The scenario for the simulation of LR cumulative streamflow, where the LAI time series developed by using remotely sensed data products is dispensed into the SWAT model, replacing the default LAI values estimated by SWAT for LRB. As the LAI time series was prepared from the remotely sensed vegetation data of LRB, this particular scenario is represented as the SWAT-synthetic leaf area index (SWAT-SLAI) scenario.
2.3.1. SWAT-B Scenario
- (a)
- Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM) “www.usgs.gov (accessed on 31 August 2022)”, with a resolution of 30 m (1 arc-second) (represented as Figure 1).
- (b)
- Land use raster with 30 m (1 arc-second) resolution developed from cloud-free Landsat Operational Land Imager (OLI-8) images “www.earthdata.nasa.gov (accessed on 13 September 2022)” by using the ENVI Feature Extraction Module (ENVI Fx) and engaging the K nearest neighbor (KNN) supervised image classification method (represented as Figure 3a).
- (c)
- FAO-UNESCO Harmonized World Soil Database version 1.2 (HWSD v1.2) “https://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/harmonized-world-soil-database-v12/en/ (accessed on 29 September 2022)” derived soil raster, having a 30 arc-second resolution (represented as Figure 3b), respectively.
2.3.2. SWAT-LAI Scenario
2.3.3. SWAT-SLAI Scenario
- i.
- Remote sensing big data acquisition and treatment;
- ii.
- Development of daily LAI time series.
Remote Sensing Big Data Acquisition and Treatment
Development of Daily LAI Time Series
2.4. Model Performance Evaluation Criteria and Statistical Investigations
3. Results
3.1. NDVI as a Primary Variable for LAI Estimation
3.2. SWAT Modeling Scenarios for LR Basin Streamflow Simulation
3.2.1. SWAT-B (SWAT-Baseline) Scenario Outcomes
3.2.2. SWAT-LAI (SWAT-Leaf Area Index) Scenario Outcomes
3.2.3. SWAT-SLAI (SWAT-Synthetic Leaf Area Index) Scenario Outcomes
3.3. Comprehending the Role of LAI in the LR Hydrological Behavior
4. Discussion
4.1. NDVI-LAI Relationship and Their Conduct in LRB
4.2. Benefit of LAI Incorporation in SWAT Model for LR Simulation Enhancement
5. Conclusions
- Replacing the remotely sensed LAI products with a remotely sensed MODIS NDVI source, the synthetic LAI generated after applying the modified Beer−Lambert law particularly developed for southern Chinese grassland, the parent NDVI produced the log transformed daughter synthetic LAI values, where NDVI and synthetic LAI values very strongly correspond to each other.
- The MK trend on daily NDVI values is decreasing, which is attributed to human disturbances in the form of grassland transformation as a result of aggravated urbanization practices in the form of utilizing the land for water conservation and reservoir construction projects. Equally, the daily synthetic LAI is experiencing a decreased MK trend in contrast with the increasing trend in temperature and rainfall. There exists a close relationship between rainfall and LAI, as vegetation is affected more by rainfall received in the LRB as compared to the temperature. Additionally, the LR discharge is controlled by the rainfall received in LRB. Thus, it can be assuredly concluded that LAI is closely associated with the LR discharge, as both the variables reveal a close connection with the same climatic variable. This is further supported by the MK trend analysis on the observed and SWAT-SLAI-simulated LR discharge revealing an almost similar behavior for the study time span.
- The SWAT model, when equipped with the physically real-time vegetation database in the form of synthetic LAI (during SWAT-SLAI scenario), has performed tremendously well in capturing the cumulative streamflow simulation process on a daily time step. The performance of the model during SWAT-SLAI scenario is better than the other two developed scenarios. This brings us to the conclusion that dispensing the vegetation data in the hydrological simulation phenomena is a success for hydrologically and climatically sensitive regions in the world.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huntington, T.G. Evidence for intensification of the global water cycle: Review and synthesis. J. Hydrol. 2006, 319, 83–95. [Google Scholar] [CrossRef]
- Yang, K.; Zhou, D.; Wu, B.; Foken, T.; Qin, J.; Zhou, Z. Response of hydrological cycle to recent climate changes in the Tibetan Plateau. Clim. Chang. 2011, 109, 517–534. [Google Scholar] [CrossRef]
- Xue, B.L.; Wang, L.; Li, X.; Yang, K.; Chen, D.; Sun, L. Evaluation of evapotranspiration estimates for two river basins on the Tibetan Plateau by a water balance method. J. Hydrol. 2013, 492, 290–297. [Google Scholar] [CrossRef]
- Zhang, W.; Yi, Y.; Song, K.; Kimball, J.; Lu, Q. Hydrological response of alpine wetlands to climate warming in the eastern Tibetan Plateau. Remote Sens. 2016, 8, 336. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, C.; Wang, Z.; Chen, Y.; Gang, C.; An, R.; Li, J.L. Vegetation dynamics and its driving forces from climate change and human activities in the Three-River Source Region, China from 1982 to 2012. Sci. Total Environ. 2016, 563–564, 210–220. [Google Scholar] [CrossRef] [PubMed]
- Lewis, S.L.; Brando, P.M.; Phillips, O.L.; van der Heijden, G.M.; Nepstad, D. The 2010 Amazon drought. Science 2011, 331, 554. [Google Scholar] [CrossRef]
- Piao, S.; Tan, K.; Nan, H.; Ciais, P.; Fang, J.; Wang, T. Impacts of climate and CO2 changes on the vegetation growth and carbon balance of Qinghai-Tibetan grasslands over the past five decades. Glob. Planet. Chang. 2012, 98–99, 73–80. [Google Scholar] [CrossRef]
- Gao, Y.; Zhou, X.; Wang, Q.; Wang, C.; Zhan, Z.; Chen, L. Vegetation net primary productivity and its response to climate change during 2001–2008 in the Tibetan Plateau. Sci. Total Environ. 2013, 444, 356–362. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, J.; Zhao, Y.; Li, H.; Zhai, J.; Yu, Z. Reference evapotranspiration trends from 1980 to 2012 and their attribution to meteorological drivers in the Three-River Source Region, China. Int. J. Climatol. 2016, 36, 3759–3769. [Google Scholar] [CrossRef]
- Wang, X.; Yi, S.; Wu, Q.; Yang, K.; Ding, Y. The role of permafrost and soil water in distribution of alpine grassland and its NDVI dynamics on the Qinghai-Tibetan plateau. Glob. Planet. Chang. 2016, 147, 40–53. [Google Scholar] [CrossRef]
- Chen, J.M.; Black, T.A. Defining leaf area index for non-flat leaves. Plant Cell Environ. 1992, 15, 421–429. [Google Scholar] [CrossRef]
- Stenberg, P. Correcting LAI-2000 estimates for the clumping of needles in shoots of conifers. Agric. For. Meteorol. 1996, 79, 1–8. [Google Scholar] [CrossRef]
- Gigante, V.; Iacobellis, V.; Manfreda, S.; Milella, P.; Portoghese, I. Influences of Leaf Area Index estimations on water balance modeling in a Mediterranean semi-arid basin. Nat. Hazards Earth Syst. 2009, 9, 979–991. [Google Scholar] [CrossRef]
- Nielsen, D.C.; Miceli-Garcia, J.J.; Lyon, D.J. Canopy cover and leaf area index relationships for wheat, triticale, and corn. Agron. J. 2012, 104, 1569–1573. [Google Scholar] [CrossRef]
- Trombetta, A.; Iacobellis, V.; Tarantino, U.; Gentile, F. Calibration of the AquaCrop model for winter wheat using MODIS LAI images. Agric. Water Manag. 2016, 164, 304–316. [Google Scholar] [CrossRef]
- Wu, X.X.; Gu, Z.J.; Luo, H.; Shi, X.Z.; Yu, D.S. Analyzing forest effects on runoff and sediment production using Leaf Area Index. Mt. Sci. 2014, 11, 119–130. [Google Scholar] [CrossRef]
- Yu, X.; Duffy, C.; Kaye, J.; Crow, W.; Bhatt, G.; Shi, Y.; Lakshmi, V. Watershed reanalysis of water and carbon cycle models at a critical zone observatory. Remote Sen. Terr. Water Cycle 2014, 206, 493–509. [Google Scholar]
- Zhang, J.; Walsh, J.E. Relative impacts of vegetation coverage and leaf area index on climate change in a greener north. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef]
- Tesemma, Z.K.; Wei, Y.; Peel, M.C.; Western, A.W. The effect of year-to-year variability of leaf area index on Variable Infiltration Capacity model performance and simulation of runoff. Adv. Water Resour. 2015, 83, 310–322. [Google Scholar] [CrossRef]
- Nguy-Robertson, A.L.; Peng, Y.; Gitelson, A.A.; Arkebauer, T.J.; Pimstein, A.; Herrmann, I.; Karnieli, A.; Rundquist, D.C.; Bonfil, D.J. Estimating green LAI in four crops: Potential of determining optimal spectral bands for a universal algorithm. Agric. For. Meteorol. 2014, 192–193, 140–148. [Google Scholar] [CrossRef]
- Bajocco, S.; Raparelli, E.; Teofili, T.; Bascietto, M.; Ricotta, C. Text Mining in Remotely Sensed Phenology Studies: A Review on Research Development, Main Topics, and Emerging Issues. Remote Sens. 2019, 11, 2751. [Google Scholar] [CrossRef]
- Hasegawa, K.; Matsuyama, H.; Tsuzuki, H.; Sweda, T. Improving the estimation of leaf area index by using remotely sensed NDVI with BRDF signatures. Remote Sens. Environ. 2010, 114, 514–519. [Google Scholar] [CrossRef]
- Wang, F.M.; Huang, J.F.; Tang, Y.L.; Wang, X.Z. New Vegetation Index and Its Application in Estimating Leaf Area Index of Rice. Rice Sci. 2007, 14, 195–203. [Google Scholar] [CrossRef]
- Wu, J.; Wang, D.; Bauer, M.E. Assessing broadband vegetation indices and QuickBird data in estimating leaf area index of corn and potato canopies. Field Crop. Res. 2007, 102, 33–42. [Google Scholar] [CrossRef]
- Yang, P.; Wu, W.B.; Tang, H.J.; Zhou, Q.B.; Zou, J.Q.; Zhang, L. Mapping Spatial and Temporal Variations of Leaf Area Index for Winter Wheat in North China. Agric. Sci. China 2007, 6, 1437–1443. [Google Scholar] [CrossRef]
- Houborg, R.; Anderson, M.; Daughtry, C. Utility of an image-based canopy reflectance modeling tool for remote estimation of LAI and leaf chlorophyll content at the field scale. Remote Sens. Environ. 2009, 113, 259–274. [Google Scholar] [CrossRef]
- Le Maire, G.; Marsden, C.; Verhoef, W.; Ponzoni, F.J.; Lo Seen, D.; Bégué, A.; Stape, J.L.; Nouvellon, Y. Leaf area index estimation with MODIS reflectance time series and model inversion during full rotations of Eucalyptus plantations. Remote Sens. Environ. 2011, 115, 586–599. [Google Scholar] [CrossRef]
- Duveiller, G.; Weiss, M.; Baret, F.; Defourny, P. Retrieving wheat Green Area Index during the growing season from optical time series measurements based on neural network radiative transfer inversion. Remote Sens. Environ. 2011, 115, 887–896. [Google Scholar] [CrossRef]
- Fang, H.; Liang, S. A hybrid inversion method for mapping leaf area index from MODIS data: Experiments and application to broadleaf and needle leaf canopies. Remote Sens. Environ. 2005, 94, 405–424. [Google Scholar] [CrossRef]
- Kalacska, M.; Sanchez-Azofeifa, G.A.; Caelli, T.; Rivard, B.; Boerlage, B. Estimating leaf area index from satellite imagery using Bayesian networks. IEEE Trans. Geosci. Remote Sens. 2005, 43, 1866–1873. [Google Scholar] [CrossRef]
- Qu, Y.; Wang, J.; Wan, H.; Li, X.; Zhou, G. A Bayesian network algorithm for retrieving the characterization of land surface vegetation. Remote Sens. Environ. 2008, 112, 613–622. [Google Scholar] [CrossRef]
- Garrigues, S.; Lacaze, R.; Baret, F.; Morisette, J.T.; Weiss, M.; Nickeson, J.E.; Fernandes, S.; Plummer, N.V.; Shabanov, R.B.; Myneni, R.B.; et al. Validation and intercomparison of global Leaf Area Index products derived from remote sensing data. J. Geophys. Res. 2008, 113, G02028. [Google Scholar] [CrossRef]
- De Kauwe, M.G.; Disney, M.I.; Quaife, T.; Lewis, P.; Williams, M. An assessment of the MODIS collection 5 leaf area index product for a region of mixed coniferous forest. Remote Sens. Environ. 2011, 115, 767–780. [Google Scholar] [CrossRef]
- Hill, M.J.; Senarath, U.; Lee, A.; Zeppel, M.; Nightingale, J.M.; Williams, R.J.; McVicar, T.R. Assessment of the MODIS LAI product for Australian ecosystems. Remote Sens. Environ. 2006, 101, 495–518. [Google Scholar] [CrossRef]
- Tesfaye, A.A.; Awoke, B.G. Evaluation of the saturation property of vegetation indices derived from sentinel-2 in mixed crop-forest ecosystem. Spat. Inf. Res. 2021, 29, 109–121. [Google Scholar] [CrossRef]
- Delegido, J.; Verrelst, J.; Meza, C.; Rivera, J.; Alonso, L.; Moreno, J. A red-edge spectral index for remote sensing estimation of green LAI over agroecosystems. Eur. J. Agron. 2013, 46, 42–52. [Google Scholar] [CrossRef]
- Jordan, C.F. Derivation of Leaf-Area Index from Quality of Light on the Forest Floor. Ecology 1969, 50, 663–666. [Google Scholar] [CrossRef]
- Rouse, J.W., Jr.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with Erts; NASA Special: Washington, DC, USA, 1974; Volume 351, p. 309. [Google Scholar]
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Gowda, P.; Oommen, T.; Misra, D.; Schwartz, R.; Howell, T.; Wagle, P. Retrieving Leaf Area Index from Remotely Sensed Datam Using Advanced Statistical Approaches. J. Remote Sens. GIS 2015, 5, 156. [Google Scholar]
- Tan, C.W.; Wang, J.H.; Huang, Y.D.; Huang, W.J.; Liu, L.Y. Quantitative improvement of Beer-Lambert Law with spectral remote sensing technology and its application. Sci. Agric. Sin. 2005, 38, 498–503. [Google Scholar]
- He, Y.; Guo, X.L.; Wilmshurst, J. Studying mixed grassland ecosystems I: Suitable hyperspectral vegetation indices. Can. J. Remote Sens. 2006, 32, 98–107. [Google Scholar] [CrossRef]
- Reeves, M.C.; Zhao, M.S.; Running, S.W. Applying improved estimates of MODIS productivity to characterize grassland vegetation dynamics. Rangel. Ecol. Manag. 2006, 59, 1–10. [Google Scholar] [CrossRef]
- Glenn, E.P.; Huete, A.R.; Nagler, P.L.; Nelson, S.G. Relationship between remotely-sensed vegetation indices, canopy attributes and plant physiological processes: What vegetation indices can and cannot tell us about the landscape. Sensors 2008, 8, 2136–2160. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Q.; Li, D.L.; Wang, W. MODIS retrieval of different vegetation LAI and its application to the east of Qinghai-Xizang Plateau. Plateau Meteorol. 2008, 27, 904–910. [Google Scholar]
- Schaffrath, D.; Barthold, F.K.; Bernhofer, C. Spatiotemporal variability of grassland vegetation cover in a catchment in Inner Mongolia, China, derived from MODIS data products. Plant Soil 2011, 340, 181–198. [Google Scholar] [CrossRef]
- Sun, C.; Sun, Z.; Liu, T.; Guo, D.; Mu, S.; Yang, H.; Weimin Ju, W.; Li, J. The validation of a model estimating the Leaf Area Index of grasslands in southern China. Rangel. J. 2013. [CrossRef]
- Parajuli, P.B.; Nelson, N.O.; Frees, L.D.; Mankin, K.R. Comparison of AnnAGNPS and SWAT Model Simulation Results in USDA-CEAP Agricultural Watersheds in South-Central Kansas. Hydrol. Process. 2010, 23, 748–763. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, R.; Men, C.; Guo, L.; Miao, Y. Temporal-Spatial Analysis of Water Environmental Capacity Based on the Couple of SWAT Model and Differential Evolution Algorithm. J. Hydrol. 2019, 569, 155–166. [Google Scholar] [CrossRef]
- Pang, S.; Wang, X.; Melching, C.S.; Feger, K.H. Development and Testing of a Modified SWAT Model Based on Slope Condition and Precipitation Intensity. J. Hydrol. 2020, 588, 125098. [Google Scholar] [CrossRef]
- Jin, X.; Jin, Y.; Yuan, D.; Mao, X. Effects of Land-Use Data Resolution on Hydrologic Modelling, a Case Study in the Upper Reach of the Heihe River, Northwest China. Ecol. Model. 2019, 404, 61–68. [Google Scholar] [CrossRef]
- Jia, N.; Liu, J.; Kuang, W.; Xu, X.; Zhang, S.; Yan, C.; Li, R.; Wu, S.; Hu, Y.; Du, G.; et al. Spatiotemporal Patterns and Characteristics of Land-Use Change in China during 2010–2015. J. Geogr. Sci. 2018, 28, 547–562. [Google Scholar] [CrossRef]
- Arnold, J.G.; Moriasi, D.N.; Gassman, P.W.; Abbaspour, K.C.; White, M.J.; Srinivasan, R.; Santhi, C.; Harmel, R.D.; van Griensven, A.; Van Liew, M.W.; et al. SWAT: Model Use, Calibration, and Validation. Trans. ASABE 2012, 55, 1491–1508. [Google Scholar] [CrossRef]
- Alemayehu, T.; van Griensven, A.; Woldegiorgis, B.T.; Bauwens, W. An Improved SWAT Vegetation Growth Module and its Evaluation for Four Tropical Ecosystems. Hydrol. Earth Syst. Sci. 2017, 21, 4449–4467. [Google Scholar] [CrossRef]
- Lai, G.; Luo, J.; Li, Q.; Qiu, L.; Pan, R.; Zeng, X.; Zhang, L.; Yi, F. Modification and Validation of the SWAT Model Based on Multi-Plant Growth Mode, a Case Study of the Meijiang River Basin, China. J. Hydrol. 2020, 585, 124778. [Google Scholar] [CrossRef]
- Ma, T.; Duan, Z.; Li, R.; Song, X. Enhancing SWAT with Remotely Sensed LAI for Improved Modelling of Ecohydrological Process in Subtropics. J. Hydrol. 2019, 570, 802–815. [Google Scholar] [CrossRef]
- Strauch, M.; Volk, M. SWAT plant growth modification for improved modeling of perennial vegetation in the tropics. Ecol. Modell. 2013, 269, 98–112. [Google Scholar] [CrossRef]
- Paul, M.; Rajib, A.; Negahban-Azar, M.; Shirmohammadi, A.; Srivastava, P. Improved agricultural Water management in data-scarce semi-arid watersheds: Value of integrating remotely sensed leaf area index in hydrological modeling. Sci. Total Environ. 2021, 791, 148177. [Google Scholar] [CrossRef] [PubMed]
- Parr, D.; Wang, G.; Bjerklie, D. Integrating Remote Sensing Data on Evapotranspiration and Leaf Area Index with Hydrological Modeling: Impacts on Model Performance and Future Predictions. J. Hydrometeorol. 2015, 16, 2086–2100. [Google Scholar] [CrossRef]
- Wu, X.; Li, Z.; Gao, P.; Huang, C.; Hu, T. Response of the Downstream Braided Channel to Zhikong Reservoir on Lhasa River. Water 2018, 10, 1144. [Google Scholar] [CrossRef]
- Peng, D.; Chen, J.; Fang, J. Simulation of Summer Hourly Stream Flow by Applying TOPMODEL and Two Routing Algorithms to the Sparsely Gauged Lhasa River Basin in China. Water 2015, 7, 4041–4053. [Google Scholar] [CrossRef]
- Gong, T.; Liu, C.; Liu, J. Hydrological response of Lhasa River to climate change and permafrost degradation in Xizang. Acta Geogr. Sin. 2006, 61, 519–526. (In Chinese) [Google Scholar]
- Zhang, Y.; Wang, C.; Bai, W.; Wang, Z.; Tu, Y.; Yangjaen, D.G. Alpine wetlands in the Lhasa River Basin, China. J. Geogr. Sci. 2010, 20, 375–388. [Google Scholar] [CrossRef]
- Gassman, P.W.; Reyes, M.R.; Green, C.H.; Arnold, J.G. The Soil and Water Assessment Tool: Historical Development, Applications, and Future Research Directions. Trans. ASABE 2007, 50, 1211–1250. [Google Scholar] [CrossRef]
- Douglas-Mankin, K.R.; Srinivasan, R.; Arnold, J.G. Soil and Water Assessment Tool (SWAT) Model: Current Developments and Applications. Trans. ASABE 2010, 53, 1423–1431. [Google Scholar] [CrossRef]
- Tuppad, P.; Douglas-Mankin, K.R.; Lee, T.; Srinivasan, R.; Arnold, J.G. Soil and Water Assessment Tool (SWAT) Hydrologic/Water Quality Model: Extended Capability andWider Adoption. Trans. ASABE 2011, 54, 1677–1684. [Google Scholar] [CrossRef]
- Van Griensven, A.; Ndomba, P.; Yalew, S.; Kilonzo, F. Critical review of SWAT applications in the upper Nile basin countries. Hydrol. Earth Syst. Sci. 2012, 16, 3371–3381. [Google Scholar] [CrossRef]
- Gassman, P.W.; Sadeghi, A.M.; Srinivasan, R. Applications of the SWAT Model Special Section: Overview and Insights. J. Environ. Qual. 2014, 43, 1–8. [Google Scholar] [CrossRef]
- Krysanova, V.; White, M. Advances in water resources assessment with SWAT—An overview. Hydrol. Sci. J. 2015, 60, 771–783. [Google Scholar] [CrossRef]
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. Soil and Water Assessment Tool Theoretical Documentation Version 2009. Temple; Texas Water Resources Institute: College Station, TX, USA, 2011. [Google Scholar]
- Rajib, A.; Kim, I.L.; Golden, H.E.; Lane, C.R.; Kumar, S.V.; Yu, Z.; Jeyalakshmi, S. Watershed Modeling with Remotely Sensed Big Data: MODIS Leaf Area Index Improves Hydrology and Water Quality Predictions. Remote Sens. 2020, 12, 2148. [Google Scholar] [CrossRef]
- Ford, T.W.; Quiring, S.M. Influence of MODIS-Derived Dynamic Vegetation on VIC-Simulated Soil Moisture in Oklahoma. J. Hydrometeorol. 2013, 14, 1910–1921. [Google Scholar] [CrossRef]
- Meng, C.; Zhang, C.; Tang, R. Variational Estimation of Land–Atmosphere Heat Fluxes and Land Surface Parameters Using MODIS Remote Sensing Data. J. Hydrometeorol. 2013, 14, 608–621. [Google Scholar] [CrossRef]
- Sutcliffe, J.V. River flow forecasting through conceptual models: Part 1. A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar]
- Santhi, C.; Arnold, J.G.; Williams, J.R. Validation of the SWAT model on a large river basin with point and nonpoint sources. J. Am. Water Resour. Assoc. 2001, 37, 1169–1188. [Google Scholar] [CrossRef]
- Legates, D.R.; McCabe, G.J. Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation. Water Resour. Res. 1999, 35, 233–241. [Google Scholar] [CrossRef]
- De Winter, J.C.F.; Gosling, S.D.; Potter, J. Comparing the Pearson and Spearman correlation coefficients across distributions and sample sizes: A tutorial using simulations and empirical data. Psychol. Methods 2016, 21, 273–290. [Google Scholar] [CrossRef]
- Kendall, M.; Gibbons, J.D. Rank Correlation Methods. Charles Griffin Book Series, 5th ed.; Oxford University Press: Oxford, UK, 1990; ISBN 978-0195208375. [Google Scholar]
- Helsel, D.R.; Frans, L.M. Regional Kendall test for trend. Environ. Sci. Technol. 2006, 40, 13. [Google Scholar] [CrossRef]
- Libiseller, C. MULTMK/PARTMK. In A Program for Computation of Multivariate and Partial MANN-Kendall Test; LIU: Linköping, Sweden, 2004. [Google Scholar]
- Kliment, Z.; Matouskova, M. Runoff changes in the Šumava Mountains (Bohemian Forest) and the foothill regions: Extent of influence by human impact and climate changes. Water Resour. Manag. 2009, 23, 1813–1834. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric test against trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods; Charles Griffin: London, UK, 1975. [Google Scholar]
- Fu, G. Hydro-climatic trends of the Yellow River Basin for the last 50 years. Clim. Chang. 2004, 65, 149–178. [Google Scholar] [CrossRef]
- Pettorelli, N.; Vik, J.O.; Mysterud, A.; Gaillard, J.M.; Tucker, C.J.; Stenseth, N.C. Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends Ecol. Evol. 2005, 20, 503–510. [Google Scholar] [CrossRef] [PubMed]
- Phinn, S.R.; Stow, D.A.; Zedler, J.B. Monitoring wetland habitat restoration in southern California using airborne multispectral video data. Restor. Ecol. 1996, 4, 412–422. [Google Scholar] [CrossRef]
- Yang, H.; Mu, S.; Li, J. E_ects of ecological restoration projects on land use and land cover change and its influences on territorial NPP in Xinjiang, China. Catena 2014, 115, 85–95. [Google Scholar] [CrossRef]
- Kulkarni, R.; Honda, K. Estimating LAI of Rice Using NDVI Derived from MODIS Surface Reflectance. Adv. Sci. Technol. Eng. Syst. J. 2020, 5, 1047–1053. [Google Scholar] [CrossRef]
- Guindin-Garcia, N.; Gitelson, A.A.; Arkebauer, T.J.; Shanahan, J.; Weiss, A. An evaluation of MODIS 8- and 16-day composite products for monitoring maize green leaf area index. Agric. For. Meteorol. 2012, 161, 15–25. [Google Scholar] [CrossRef]
- Qiao, K.; Zhu, W.; Xie, Z.; Li, P. Estimating the Seasonal Dynamics of the Leaf Area Index Using Piecewise LAI-VI Relationships Based on Phenophases. Remote Sens. 2019, 11, 689. [Google Scholar] [CrossRef]
- Tan, C.W.; Zhang, P.P.; Zhou, X.X.; Wang, Z.X.; Xu, Z.Q.; Mao, W.; Li, W.X.; Huo, Z.Y.; Guo, W.S.; Yun, F. Quantitative monitoring of leaf area index in wheat of different plant types by integrating NDVI and Beer-Lambert law. Sci. Rep. 2020, 10, 929. [Google Scholar] [CrossRef]
- Nguy-Robertson, A.; Gitelson, A.; Peng, Y.; Viña, A.; Arkebauer, T.; Rundquist, D. Green Leaf Area Index Estimation in Maize and Soybean: Combining Vegetation Indices to Achieve Maximal Sensitivity. Agron. J. 2012, 104, 1336–1347. [Google Scholar] [CrossRef]
- Crema, A.; Boschetti, M.; Nutini, F.; Cillis, D.; Casa, R. Influence of Soil Properties on Maize and Wheat Nitrogen Status Assessment from Sentinel-2 Data. Remote Sens. 2020, 12, 2175. [Google Scholar] [CrossRef]
- Zhao, Y.; Potgieter, A.B.; Zhang, M.; Wu, B.; Hammer, G.L. Predicting Wheat Yield at the Field Scale by Combining High- Resolution Sentinel-2 Satellite Imagery and Crop Modelling. Remote Sens. 2020, 12, 1024. [Google Scholar] [CrossRef]
- Bajocco, S.; Ginaldi, F.; Savian, F.; Morelli, D.; Scaglione, M.; Fanchini, D.; Raparelli, E.; Bregaglio, S.U.M. On the Use of NDVI to Estimate LAI in Field Crops: Implementing a Conversion Equation Library. Remote Sens. 2022, 14, 3554. [Google Scholar] [CrossRef]
- Huang, K.; Zhang, Y.; Zhu, J.; Liu, Y.; Zu, J.; Zhang, J. The Influences of Climate Change and Human Activities on Vegetation Dynamics in the Qinghai-Tibet Plateau. Remote Sens. 2016, 8, 876. [Google Scholar] [CrossRef]
- Fensholt, R.; Proud, S.R. Evaluation of Earth Observation based global long term vegetation trends—Comparing GIMMS and MODIS global NDVI time series. Remote Sens. Environ. 2012, 119, 131–147. [Google Scholar] [CrossRef]
- Li, Z.; Chen, Y.; Wang, Y.; Fang, G. Dynamic changes in terrestrial net primary production and their effects on evapotranspiration. Hydrol. Earth Syst. Sci. 2016, 20, 2169–2178. [Google Scholar] [CrossRef]
- Phillips, L.B.; Hansen, A.J.; Flather, C.H. Evaluating the species energy relationship with the newest measures of ecosystem energy: NDVI versus MODIS primary production. Remote Sens. Environ. 2008, 112, 3538–3549. [Google Scholar] [CrossRef]
- Lu, H.; Huang, Q.; Zhu, J.; Zheng, T.; Yan, Y.; Wu, G. Ecosystem type and quality changes in Lhasa River Basin and their effects on ecosystem services. Acta Ecol. Sin. 2018, 38, 8911–8918, (In Chinese with English Abstract). [Google Scholar]
- Yan, Y.; Zhao, C.; Quan, Y.; Lu, H.; Rong, Y.; Wu, G. Interrelations of ecosystem services and rural population wellbeing in an ecologically-fragile area in North China. Sustainability 2017, 9, 709. [Google Scholar] [CrossRef]
- Dan, L.; Hongying, L.; Tiesong, H.; Dongguo, S.; Yuanlai, C.; Shahbaz, K.; Yufeng, L. Identification of the Roles of Climate Factors, Engineering Construction, and Agricultural Practices in Vegetation Dynamics in the Lhasa River Basin, Tibetan Plateau. Remote Sens. 2020, 12, 1883. [Google Scholar]
- Jin, X.; Zhang, L.; Gu, J.; Zhao, C.; Tian, J.; He, C. Modelling the Impacts of Spatial Heterogeneity in Soil Hydraulic Properties on Hydrological Process in the Upper Reach of the Heihe River in the Qilian Mountains, Northwest China. Hydrol. Process. 2015, 29, 3318–3327. [Google Scholar] [CrossRef]
- Yang, L.; Feng, Q.; Yin, Z.; Deo, R.C.; Wen, X.; Si, J.; Liu, W. Regional Hydrology Heterogeneity and the Response to Climate and Land Surface Changes in Arid Alpine Basin, Northwest China. Catena 2020, 187, 104345. [Google Scholar] [CrossRef]
- Yasir, M.; Hu, T.; Abdul Hakeem, S. Simulating Reservoir Induced Lhasa Streamflow Variability Using ArcSWAT. Water 2020, 12, 1370. [Google Scholar] [CrossRef]
- Yasir, M.; Hu, T.; Abdul Hakeem, S. Impending Hydrological Regime of Lhasa River as Subjected to Hydraulic Interventions—A SWAT Model Manifestation. Remote Sens. 2021, 13, 1382. [Google Scholar] [CrossRef]
- Tian, P.; Lu, H.; Feng, W.; Guan, Y.; Xue, Y. Large decrease in streamflow and sediment load of Qinghai–Tibetan Plateau driven by future climate change: A case study in Lhasa River Basin. Catena 2020, 187, 104340. [Google Scholar] [CrossRef]
- Tram, V.Q.; Liem, N.D.; Loi, N.K. Assessing Water Availability in PoKo Catchment using SWAT model. Khon Kaen Agric. J. 2014, 42, 74–84. [Google Scholar]
- Anh, N.V.; Fukuda, S.; Hiramatsu, K.; Harada, M. Sensitivity-Based Calibration of the Soil and Water Assessment Tool for Hydrologic Cycle Simulation in the Cong Watershed, Vietnam. Water Env. Res. 2015, 87, 735–750. [Google Scholar] [CrossRef]
- Nguyen, H.Q.; Kappas, M. Modeling Surface Runoff and Evapotranspiration using SWAT and BEACH for a Tropical Watershed in North Vietnam, Compared to MODIS Products. Int. J. Adv. Remote Sens. GIS 2015, 4, 1367–1384. [Google Scholar] [CrossRef]
- Jin, X.; Jin, Y.; Fu, D.; Mao, X. Modifying the SWAT Model to Simulate Eco-Hydrological Processes in an Arid Grassland Dominated Watershed. Front. Environ. Sci. 2022, 10, 939321. [Google Scholar] [CrossRef]
- Ishidaira, H.; Ishikawa, Y.; Funada, S.; Takeuchi, K. Estimating the evolution of vegetation cover and its hydrological impact in the Mekong River basin in the 21st century. Hydrol. Process. 2008, 22, 1395–1405. [Google Scholar] [CrossRef]
- Montaldo, N.; Rondena, R.; Albertson, J.D.; Mancini, M. Parsimonious modeling of vegetation dynamics for ecohydrologic studies of water-limited ecosystems. Water Resour. Res. 2005, 41, W10416. [Google Scholar] [CrossRef]
- Andersen, J.; Dybkjaer, G.; Jensen, K.H.; Refsgaard, J.C.; Rasmussen, K. Use of remotely sensed precipitation and leaf area index in a distributed hydrological model. J. Hydrol. 2002, 264, 34–50. [Google Scholar] [CrossRef]
- Colombo, R.; Bellingeri, D.; Fasolini, D.; Marino, C.M. Retrieval of leaf area index in different vegetation types using high resolution satellite data. Remote Sens. Environ. 2003, 86, 120–131. [Google Scholar] [CrossRef]
- Lu, L.; Li, X.; Ma, M.G.; Che, T.; Huang, C.L.; Veroustraete, F.; Dong, Q.H.; Ceulemans, R.; Bogaert, J. Investigating relationship between Landsat ETMþ data and LAI in a semiarid grassland of Northwest China. Int. Geosci. Remote Sens. Symp. (IGARSS) 2004, 6, 3622–3625. [Google Scholar]
- Van Wijk, M.T.; Williams, M. Optical instruments for measuring leaf area index in low vegetation: Application in arctic ecosystems. Ecol. Appl. 2005, 15, 1462–1470. [Google Scholar] [CrossRef]
- Steltzer, H.; Welker, J.M. Modeling the effect of photosynthetic vegetation properties on the NDVI-LAI relationship. Ecology 2006, 87, 2765–2772. [Google Scholar] [CrossRef]
- Fan, L.; Gao, Y.; Br€uck, H.; Bernhofer, C. Investigating the relationship between NDVI and LAI in semiarid grassland in Inner Mongolia using in-situ measurements. Theor. Appl. Climatol. 2009, 95, 151–156. [Google Scholar] [CrossRef]
- Huang, J.; Ma, H.; Su, W.; Zhang, X.; Huang, Y.; Fan, J.; Wu, W. Jointly Assimilating MODIS LAI and ET Products into the SWAP Model forWinter Wheat Yield Estimation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 4060–4071. [Google Scholar] [CrossRef]
- Medina, H.; Tian, D.; Abebe, A. On Optimizing a MODIS-Based Framework for in-Season Corn Yield Forecast. Int. J. Appl. Earth Obs. Geoinf. 2021, 95, 102258. [Google Scholar] [CrossRef]
- Wang, J.; Xue, B.; Deng, X.; Wang, M. Research on Spatial and Temporal Changes of Riparian Vegetation Cover in the Three Gorges Dam Area Based on NDVI. Geo-Inf. Sci. 2008, 10, 808–815. [Google Scholar]
- Zhao, X.; Zhou, W.Z.; Tian, L.; He, W.H.; Zhang, J.C.; Liu, D.H.; Yang, F. Effects of land-use changes on vegetation net primary productivity in the Three Gorges Reservoir Area of Chongqing. Acta Ecol. Sin. 2018, 38, 141–151, (In Chinese with English Abstract). [Google Scholar]
- Park, M.J.; Ha, R.; Kim, N.W.; Lim, K.J.; Kim, S.J. Assessment of Future Climate and Vegetation Canopy Change Impacts on Hydrological Behavior of Chungju Dam Watershed using SWAT Model. KSCE J. Civil. Eng. 2014, 18, 1185–1196. [Google Scholar] [CrossRef]
- Kilonzo, F. Assessing the Impacts of Environmental Changes on the Water Resources of the Upper Mara, Lake Victoria Basin. Ph.D. Thesis, Vrije Universiteit Brussel (VUB), Brussels, Belgium, 2014. [Google Scholar]
- Mwangi, H.M.; Julich, S.; Patil, S.D.; McDonald, M.A.; Feger, K.H. Modelling the impact of agroforestry on hydrology of Mara River Basin in East Africa. Hydrol. Process. 2016, 30, 3139–3155. [Google Scholar] [CrossRef]
- Li, H.; Zhang, Y.; Chiew, S.H.F.; Xu, S. Predicting runoff in ungauged catchments by using Xinanjiang model with MODIS leaf area index. J. Hydrol. 2009, 370, 155–162. [Google Scholar] [CrossRef]
- Zhang, J.; Shen, X.; Wang, Y.; Jiang, M.; Lu, X. Effects of Forest changes on summer surface temperature in Changbai Mountain, China. Forests 2021, 12, 1551. [Google Scholar] [CrossRef]
Parameter | a1 | b1 | a2 | b2 |
---|---|---|---|---|
Value | 4.79 | 1.91 | −1.46 | 1.73 |
No. | Correlation Coefficient | Value |
---|---|---|
1. | Pearson’s | 0.99 |
2. | Spearman’s | 1 |
3. | Kendall’s rank | 1 |
MODIS NDVI | NDVI Derived Synthetic LAI | Avg. T (3 Met. Stations) | Avg. P (3 Met. Stations) | |
---|---|---|---|---|
MK-τ S | −0.009 | −0.009 | 0.013 | 0.010 |
0 day−1 | 0 day−1 | 0.0001 °C day−1 | 0 mm day−1 |
No. | Parameter | Parameter Description | Method Chosen |
---|---|---|---|
1. | CN2 | Initial SCS curve number for soil condition II | Relative |
2. | GW_DELAY | Ground water delay (days) | Replace |
3. | GW_REVAP | Ground water “revap” coefficient | Replace |
4. | ESCO | Soil evaporation compensation factor | Replace |
5. | EPCO | Plant uptake compensation factor | Replace |
6. | SOL_BD | Soil bulk density (mg/m3) | Relative |
7. | SOL_K | Saturated hydraulic conductivity (mm/h) | Relative |
8. | SOL_AWC | Available water capacity of soil layer (mm H2O/mm soil) | Relative |
9. | OV_N | Manning’s “n” value for overland flow | Relative |
10. | BLAI | Maximum potential leaf area index | - |
11. | PHU | Potential heat unit | - |
12. | LAI_INIT | Initial leaf area index | - |
SWAT-B Scenario | SWAT-LAI Scenario | SWAT-SLAI Scenario | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
No. | Parameter | Range ·(Min–Max) | Fitted Value | Rank | Range ·(Min–Max) | Fitted Value | Rank | Range ·(Min–Max) | Fitted Value | Rank |
1. | r__SOL_BD | −1–1 | 0.22 | 1 | −1–1 | 0.22 | 1 | −1–1 | 0.38 | 1 |
2. | r__CN2 | −0.25–0.01 | −0.1 | 2 | −0.02–0.01 | −0.1 | 3 | −0.02–0.01 | −0.1 | 5 |
3. | r__SOL_K | −1–1 | −0.5 | 3 | −1–1 | −0.5 | 4 | −1–1 | −0.5 | 6 |
4. | r__SOL_AWC | −1–1 | 0.49 | 4 | −1–1 | 0.5 | 6 | −1–1 | 0.5 | 7 |
5. | v__GW_DELAY | 150–500 | 235 | 5 | 150–500 | 235 | 8 | 150–500 | 235 | 8 |
6. | v__GW_REVAP | 0.02–0.1 | 0.02 | 6 | 0.02–0.1 | 0.02 | 9 | 0.02–0.1 | 0.02 | 9 |
7. | r__OV_N | −1–1 | −0.66 | 7 | −1–1 | −0.54 | 10 | −1–1 | −0.78 | 10 |
8. | v__EPCO | 0–1 | 0.78 | 8 | 0–1 | 0.65 | 11 | 0–1 | 0.44 | 11 |
9. | v__ESCO | 0.01–1 | 0.64 | 9 | 0.01–1 | 0.69 | 12 | 0.01–1 | 0.64 | 12 |
10. | BLAI | - | - | - | 0–2 | 0.08 | 5 | 0–5 | 0.9 | 4 |
11. | PHU | - | - | - | 0–1802 | 1543 | 7 | 0–1854 | 1607 | 2 |
12. | LAI_INIT | - | - | - | 0–3 | 0.62 | 2 | 0–2 | 0.37 | 3 |
No. | Parameter | SWAT-B Scenario | SWAT-LAI Scenario | SWAT-SLAI Scenario | |||
---|---|---|---|---|---|---|---|
Calibration | Validation | Calibration | Validation | Calibration | Validation | ||
1. | R2 | 0.86 | 0.40 | 0.88 | 0.58 | 0.93 | 0.90 |
2. | NSE | 0.82 | 0.38 | 0.81 | 0.49 | 0.89 | 0.83 |
3. | PBIAS | 18% | 24% | 16.8% | 19% | 8% | 11% |
No. | Correlation Coefficient | SWAT-B Scenario | SWAT-LAI Scenario | SWAT-SLAI Scenario |
---|---|---|---|---|
1. | Pearson’s | 0.82 | 0.83 | 0.95 |
2. | Spearman’s | 0.84 | 0.77 | 0.93 |
3. | Kendall’s rank | 0.65 | 0.59 | 0.79 |
No. | Correlation Coefficient | Observed Q | SWAT-B Scenario Based Q | SWAT-LAI Scenario Based Q | SWAT-SLAI Scenario Based Q |
---|---|---|---|---|---|
1. | Pearson’s | 0.74 | 0.61 | 0.65 | 0.73 |
2. | Spearman’s | 0.78 | 0.65 | 0.64 | 0.75 |
3. | Kendall’s rank | 0.60 | 0.58 | 0.51 | 0.57 |
Observed Q | SWAT-B Scenario Based Q | SWAT-LAI Scenario Based Q | SWAT-SLAI Scenario Based Q | |
---|---|---|---|---|
MK-τ | 0.05 | 0.12 | 0.17 | 0.06 |
S | 0.006 m3 s−1 day−1 | 0.012 m3 s−1 day−1 | 0.045 m3 s−1 day−1 | 0.008 m3 s−1 day−1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hakeem, S.A.; Hu, T.; Yasir, M. Unravelling the Role of Vegetation Dynamics in the Execution of ArcSWAT Hydrological Modeling for Cumulative Streamflow of a Tibetan Watershed. Atmosphere 2023, 14, 1530. https://doi.org/10.3390/atmos14101530
Hakeem SA, Hu T, Yasir M. Unravelling the Role of Vegetation Dynamics in the Execution of ArcSWAT Hydrological Modeling for Cumulative Streamflow of a Tibetan Watershed. Atmosphere. 2023; 14(10):1530. https://doi.org/10.3390/atmos14101530
Chicago/Turabian StyleHakeem, Samreen Abdul, Tiesong Hu, and Muhammad Yasir. 2023. "Unravelling the Role of Vegetation Dynamics in the Execution of ArcSWAT Hydrological Modeling for Cumulative Streamflow of a Tibetan Watershed" Atmosphere 14, no. 10: 1530. https://doi.org/10.3390/atmos14101530
APA StyleHakeem, S. A., Hu, T., & Yasir, M. (2023). Unravelling the Role of Vegetation Dynamics in the Execution of ArcSWAT Hydrological Modeling for Cumulative Streamflow of a Tibetan Watershed. Atmosphere, 14(10), 1530. https://doi.org/10.3390/atmos14101530