Soil-Derived Dust PM10 and PM2.5 Fractions in Southern Xinjiang, China, Using an Artificial Neural Network Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection and Soil Properties Analysis
2.3. Artificial Neural Network Model
2.4. Field Experiment
2.5. Modeling Validation
2.6. Uncertainty Analysis and Sensitivity Analysis
3. Results
3.1. Verifying PM Emissions of WEPS Based on Field Experiments
3.2. PM Emissions from Wind Erosion Sources Based on ANN
3.3. Uncertainty Analysis
3.4. Sensitivity Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Copeland, S.M.; Bradford, J.B.; Duniway, M.C.; Schuster, R.M. Potential impacts of overlapping land-use and climate in a sensitive dryland: A case study of the Colorado Plateau, USA. Ecosphere 2017, 8, e01823. [Google Scholar] [CrossRef]
- Raei, B.; Ahmadi, A.; Neyshaburi, M.R.; Ghorbani, M.A.; Asadzadeh, F. Comparative evaluation of the whale optimization algorithm and backpropagation for training neural networks to model soil wind erodibility. Arab. J. Geosci. 2021, 14, 29. [Google Scholar] [CrossRef]
- Katra, I. Soil erosion by wind and dust emission in semi-arid soils due to agricultural activities. Agronomy 2020, 10, 89. [Google Scholar] [CrossRef]
- Prospero, J.M. Long-range transport of mineral dust in the global atmosphere: Impact of African dust on the environment of southeastern United States. Proc. Natl. Acad. Sci. USA 1999, 96, 3396–3403. [Google Scholar] [CrossRef]
- Díaz-Nigenda, E.; Tatarko, J.; Jazcilevich, A.D.; García, A.R.; Caetano, E.; Ruíz-Suárez, L.G. A modeling study of aeolian erosion enhanced by surface wind confluences over Mexico city. Aeolian Res. 2010, 2, 143–157. [Google Scholar] [CrossRef]
- Sharratt, B.S.; Lauer, D. Particulate matter concentration and air quality affected by windblown dust in the Columbia Plateau. J. Environ. Qual. 2006, 35, 2011–2016. [Google Scholar] [CrossRef]
- Goudie, A.S. Desert dust and human health disorders. Environ. Int. 2014, 63, 101–113. [Google Scholar] [CrossRef]
- Stafoggia, M.; Zauli-Sajani, S.; Pey, J.; Samoli, E.; Alessandrini, E.; Basagana, X.; Cernigliaro, A.; Chiusolo, M.; Demaria, M.; Diaz, J.; et al. Desert dust outbreaks in Southern Europe: Contribution to daily OM10 concentrations and short-term associations with mortality and hospital admissions. Environ. Health Perspect. 2016, 124, 413–419. [Google Scholar] [CrossRef]
- Jiménez, E.; Linares, C.; Martínez, D.; Díaz, J. Role of Saharan dust in the relationship between particulate matter and short-term daily mortality among the elderly in Madrid (Spain). Sci. Total Environ. 2010, 408, 5729–5736. [Google Scholar] [CrossRef]
- Behrooz, R.D.; Mohammadpour, K.; Broomandi, P.; Kosmopoulos, P.G.; Gholami, H.; Kaskaoutis, D.G. Long-term (2012–2020) PM10 concentrations and increasing trends in the Sistan Basin: The role of Levar wind and synoptic meteorology. Atmos. Pollut. Res. 2022, 13, 101460. [Google Scholar] [CrossRef]
- Chepil, W.S. Dynamics of wind erosion: 1. Nature of movement of soil by wind. Soil Sci. 1945, 60, 305–320. [Google Scholar] [CrossRef]
- Shao, Y. (Ed.) Physics and Modelling for Wind Erosion, Atmospheric and Oceanographic Sciences Library; Springer: Dordrecht, The Netherlands, 2008. [Google Scholar]
- Zhang, G.; Azorin-Molina, C.; Shi, P.; Lin, D.; Guijarro, J.; Kong, F.; Chen, D. Impact of near-surface wind speed variability on wind erosion in the eastern agro-pastoral transitional ozone of Northern China, 1982–2016. Agric. For. Meteorol. 2019, 271, 102–115. [Google Scholar] [CrossRef]
- Tai, A.; Ma, P.; Chan, Y.; Chow, M.; Ridley, D.; Kok, J. Impacts of climate and land cover variability and trends on springtime East Asian dust emission over 1982–2010: A modeling study. Atmos. Environ. 2021, 254, 118348. [Google Scholar] [CrossRef]
- Kok, J.; Parteli, E.; Michaels, T.; Karam, D. The physics of wind-blown sand and dust. Rep. Prog. Phys. 2012, 75, 106901. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Huang, J.; Qian, Y.; Zhao, C.; Kang, L.; Yang, B.; Wang, Y.; Liu, Y.; Yuan, T.; Wang, T.; et al. An overview of mineral dust modeling over East Asia. J. Meteorol. Res. 2017, 31, 633–653. [Google Scholar] [CrossRef]
- Bergametti, G.; Rajot, J.L.; Pierre, C.; Bouet, C.; Marticorena, B. How long does precipitation inhibit wind erosion in the Sahel? Geophys. Res. Lett. 2016, 43, 6643–6649. [Google Scholar] [CrossRef]
- Boroughani, M.; Pourhashemi, S.; Gholami, H.; Kaskaoutis, D.G. Predicting of dust storm source by combining remote sensing, statistic-based predictive models and game theory in the Sistan watershed, southwestern Asia. J. Arid. Land 2021, 13, 1103–1121. [Google Scholar] [CrossRef]
- He, Q.; Yang, X.; Mamtimin, A.; Tang, S. Impact factors of soil wind erosion in the center of Taklimakan Desert. J. Arid. Land 2011, 3, 9–14. [Google Scholar]
- Hevia, G.E.; Mendez, M.J.; Buschiazzo, D.E. Tillage affects soil aggregation parameters linked with wind erosion. Geoderma 2007, 140, 90–96. [Google Scholar] [CrossRef]
- Ben-Hur, M.; Yolcu, G.; Uysal, H.; Lado, M.; Paz, A. Soil structure changes: Aggregate size and soil texture effects on hydraulic conductivity under different saline and sodic conditions. Aust. J. Soil Res. 2009, 47, 688–696. [Google Scholar] [CrossRef]
- Virto, I.; Gartzia-Bengoetxea, N.; Fernández-Ugalde, O. Role of organic matter and carbonates in soil aggregation estimated using laser diffractometry. Pedosphere 2011, 21, 566–572. [Google Scholar] [CrossRef]
- Tatarko, J.; Donk, S.J.; Ascough, J.C., II; Walker, D.G. Application of the WEPS and SWEEP models to non-agricultural disturbed lands. Heliyon 2016, 2, e00215. [Google Scholar] [CrossRef] [PubMed]
- Van Donk, S.J.; Skidmore, E.L. Measurement and simulation of wind erosion, roughness degradation and residue decomposition on an agricultural field. Earth Surf. Process. Landf. 2003, 28, 1243–1258. [Google Scholar] [CrossRef]
- Hagen, L.J. Evaluation of the wind erosion prediction system (WEPS) erosion sub-model on cropland fields. Environ. Model. Softw. 2004, 19, 171–176. [Google Scholar] [CrossRef]
- Feng, G.; Sharratt, B.S. Validation of WEPS for soil and PM10 loss from agricultural fields on the Columbia Plateau of the United States. Earth Surf. Process. Landf. 2007, 32, 743–753. [Google Scholar] [CrossRef]
- Chung, S.H.; Herron-Thorpe, F.L.; Lamb, B.K.; VanReken, T.M.; Vaughan, J.K.; Gao, J.; Wagner, L.E.; Fox, F. Application of the wind erosion prediction system in the AIRPACT regional air quality modeling framework. Trans. ASABE 2013, 56, 625–641. [Google Scholar] [CrossRef]
- Gao, J.; Wagner, L.E.; Fox, F.; Chung, S.J.; Vaughan, J.K.; Lamb, B.K. Spatial application of WEPS for estimating wind erosion in the Pacific Northwest. Trans. ASABE 2013, 6, 613–624. [Google Scholar]
- Coen, G.M.; Tatarko, J.; Martin, T.C.; Cannon, K.R.; Goddard, T.W.; Sweetland, N.J. A method for using WEPS to map wind erosion risk of Alberta soils. Environ. Model. Softw. 2004, 19, 185–189. [Google Scholar] [CrossRef]
- Buschiazzo, D.E.; Zobeck, T.M. Validation of WEQ, RWEQ and WEPS wind erosion for different arable land management systems in the Argentinean Pampas. Earth Surf. Process. Landf. 2008, 33, 1839–1850. [Google Scholar] [CrossRef]
- Chen, L.; Zhao, H.; Han, B.; Bai, Z. Combined use of WEPS and Models-3/CMAQ for simulating wind erosion source emission and its environmental impact. Sci. Total Environ. 2014, 466–467, 762–769. [Google Scholar] [CrossRef]
- Chen, L.; Zhao, H.; Wang, W.; Bai, Z.; Wang, Z.; Sun, F.; Hou, L.; Liu, G.; Shi, M.; Miao, Y. Effect of windblown dust from local and regional sources on the air quality of the central district in Jinan, China. Atmos. Res. 2017, 185, 44–52. [Google Scholar] [CrossRef]
- Liu, Y.; Teng, Y.; Liang, S.; Li, X.; Zhao, J.; Shan, M.; Chen, L.; Yu, H.; Mao, J.; Zhang, H.; et al. Establishment of PM10 and PM2.5 emission inventories from wind erosion source and simulation of its environmental impact based on WEPS-Models3 in southern Xinjiang, China. Atmos. Environ. 2021, 248, 118222. [Google Scholar] [CrossRef]
- Funk, R.; Skidmore, E.L.; Hagen, L.J. Comparison of wind erosion measurements in Germany with simulated soil losses by WEPS. Environ. Model. Softw. 2004, 19, 177–183. [Google Scholar] [CrossRef]
- Liu, B.; Qu, J.; Niu, Q.; Han, Q. Comparison of measured wind tunnel and SWEEP simulated soil losses. Geomorphology 2014, 207, 23–29. [Google Scholar] [CrossRef]
- Bhattacharya, B.; Solomatine, D.P. Application of artificial neural network in stage-discharge relationship. In Proceedings of the 4th International Conference on Hydro-Informatics, Iowa City, IA, USA, 23–27 July 2000; pp. 1–7. [Google Scholar]
- Tao, H.; Jawad, A.H.; Shather, A.H.; Al-Khafaji, Z.; Rashid, T.A.; Ali, M.; Al-Ansari, N.; Marhoon, H.A.; Shahid, S.; Yaseen, A.M. Machine learing algorithms for high-resolution prediction of spatiotemporal distribution of air pollution from meteorological and soil parameters. Environ. Int. 2023, 175, 107931. [Google Scholar] [CrossRef]
- Goyal, P.; Kumar, S.; Sharda, R. A review of the artificial intelligence (AI) based techniques for estimating reference evapotranspiration: Current trends and future perspectives. Comput. Electron. Agric. 2023, 209, 107836. [Google Scholar] [CrossRef]
- Lu, Y.; Li, T.; Hu, H.; Zeng, X. Short-term prediction of reference crop evapotranspiration based on machine learning with different decomposition methods in arid areas of China. Agric. Water Manag. 2023, 279, 108175. [Google Scholar] [CrossRef]
- Samarasinghe, S. Neural Networks for Applied Sciences and Engineering: From Fundamentals to Complex Pattern Recognition; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Shirani, H. Artificial Neural Network with an Application in Agricultural and Natural Resource Sciences, 1st ed.; Vali-E-Asr University of Rafsanjan: Rafsanjan, Iran, 2018. [Google Scholar]
- Merdun, H.; Cinar, O.; Meral, R.; Apan, M. Comparision of artificial neural network and regression pedotransfer functions for prediction of soil water retention and saturated hydraulic conductivity. Soil Tillage Res. 2006, 90, 108–116. [Google Scholar] [CrossRef]
- Beucher, A.; Moller, A.B.; Greve, M.H. Artificial neural networks and decision tree classification for predicting soil drainage classes in Denmark. Geoderma 2017, 352, 351–359. [Google Scholar] [CrossRef]
- De la Rosa, D.; Moreno, J.A.; Mayol, F.; Bonsón, T. Assessment of soil erosion vulnerability in Western Europe and potential impact on crop productivity due to loss of soil depth using the ImpelERO model. Africult. Ecosyst. Environ. 2000, 81, 179–190. [Google Scholar] [CrossRef]
- Licznar, P.; Nearing, M. Artificial neural networks of soil erosion and runoff prediction at the plot scale. CATENA 2003, 51, 89–114. [Google Scholar] [CrossRef]
- Albaradeyia, I.; Hani, A.; Shahrour, I. WEPP and ANN models for simulating soil loss and runoff in a semi-arid Mediterranean region. Environ. Monit. Assess. 2011, 180, 537–556. [Google Scholar] [CrossRef] [PubMed]
- Zou, X.; Zhang, C.; Cheng, H.; Kang, L.; Wu, X.; Chang, C.; Wang, Z.; Zhang, F.; Li, J.; Liu, C.; et al. Classification and representation of factors affecting soil wind erosion in a model. Adv. Earth Sci. 2014, 29, 875–889. (In Chinese) [Google Scholar]
- Li, Y.; Song, Y.; Kaskaoutis, D.G.; Zan, J.; Orozbaev, R.; Tan, L.; Chen, X. Aeolian dust dynamics in the Fergana Valley, Central Asia, since ~30 ka inferred from loess deposits. Geosci. Front. 2021, 12, 101180. [Google Scholar] [CrossRef]
- Kong, S.; Ji, Y.; Lu, B.; Bai, Z.; Chen, L.; Han, B.; Li, Z. Chemical compositions and sources of atmospheric PM10 in heating, non-heating and sand periods at a coal-based city in northeastern China. J. Environ. Monit. 2012, 14, 852. [Google Scholar] [CrossRef]
- Yang, J.; Zhao, T.; Cheng, X.; Ren, Z.; Meng, L.; He, Q.; Tan, C.; Zhu, Y.; Zhu, C.; Wu, S. Temporal and spatial variations of sandstorm and the related meteorological influences over northern China from 2000 to 2019. Acta Sci. Circumstantiae 2021, 41, 2966–2975. (In Chinese) [Google Scholar]
- Schalkoff, R.J. Artificial Neural Networks; McGraw-Hill: New York, NY, USA, 1997; pp. 146–188. [Google Scholar]
- Kim, M.; Gilley, J. Artificial neural network estimation of soil erosion and nutrient concentrations in runoff from land application areas. Comput. Electron. Agric. 2008, 64, 268–275. [Google Scholar] [CrossRef]
- Cortina-Januchs, M.G.; Dominguez, J.Q.; Corona, A.V.; Andina, D. Development of a model for forecasting of PM10 concentrations in Salamanca, Mexico. Atmos. Pollut. Res. 2015, 6, 626–634. [Google Scholar] [CrossRef]
- Wang, M.; Ming, H.; Huo, W.; Xu, H.; Li, J.; Li, X. Detecting sand-dust storms using a wind-profiling radar. J. Arid. Land 2017, 9, 753–762. [Google Scholar] [CrossRef]
- Guan, Y.; Chen, G.; Cheng, Z.; Yan, B.; Hou, L. Air pollutant emissions from straw open burning: A case study in Tianjin. Atmos. Environ. 2017, 171, 155–164. [Google Scholar] [CrossRef]
- Hu, L.; Chen, L.; Mao, J.; Sun, Y.; Gao, S.; Yang, W.; Xiao, J.; Zhang, H. Uncertainty analysis of emission inventory of PM10 from open source blowing dust from wind erosion of bare soil in Tianjin. China Environ. Sci. 2020, 40, 41–51. (In Chinese) [Google Scholar]
- Gao, M.; Yin, L.; Ning, J. Artificial neural network model for ozone concentration estimation and Monte Carlo analysis. Atmos. Environ. 2018, 184, 129–139. [Google Scholar] [CrossRef]
- Gholami, H.; Mohamadifar, A.; Sorooshian, A.; Jansen, J.D. Machine-learning algorithms for predicting land susceptibility to dust emissions: The case of the Jazmurian Basin, Iran. Atmos. Pollut. Res. 2020, 11, 1303–1315. [Google Scholar] [CrossRef]
- Gholami, H.; Mohammadifar, A.; Golzari, S.; Kaskaoutis, D.G.; Collins, A.L. Using the Boruta algorithm and deep learning models for mapping land susceptibility to atmospheric dust emissions in Iran. Aeolian Res. 2021, 50, 100682. [Google Scholar] [CrossRef]
- Gholami, H.; Mohammadifar, A.; Malakooti, H.; Esmaeilpour, Y.; Golzari, S.; Mohammadi, F.; Li, Y.; Song, Y.; Kaskaoutis, D.G.; Fitzsimmons, K.E.; et al. Integrated modelling for mapping spatial sources of dust in central Asia—An important dust source in the global atmospheric system. Atmos. Pollut. Res. 2021, 12, 101173. [Google Scholar] [CrossRef]
- Egbueri, J.C.; Igwe, O.; Omeka, M.E.; Agbasi, J.C. Development of MLR and variedly optimized ANN models for forecasting the detachability and liquefaction potential index of erodible soils. Geosyst. Geoenviron. 2023, 2, 100104. [Google Scholar] [CrossRef]
- Gholami, V.; Khaleghi, M.R.; Sebghati, M.R. A method of groundwater quality assessment based on fuzzy network-CANFIS and geographic information system (GIS). Appl. Water Sci. 2016, 7, 3633–3647. [Google Scholar] [CrossRef]
- Aimar, S.B.; Mendez, M.J.; Funk, R.; Buschiazzo, D.E. Soil properties related to potential particulate matter emissions (PM10) of sandy soils. Aeolian Res. 2012, 3, 437–443. [Google Scholar] [CrossRef]
- Ge, J.M.; Huang, J.P.; Xu, C.P.; Qi, Y.L.; Liu, H.Y. Characteristics of Taklimankan dust emission and distribution: A satellite and reanalysis field perspective. J. Geophys. Res. Atmos. 2014, 119, 11772–11783. [Google Scholar] [CrossRef]
- He, W.; Gao, W.; Tuo, D.; Zhao, P. Study on some factors influencing soil erosion by wind tunnel experiment in north ecotone between agriculture and pasture. J. Soil Water Conserv. 2004, 18, 1–8. (In Chinese) [Google Scholar]
- Liu, M.; Wang, J.; Yan, P.; Liu, L.; Li, X. Influence of ridge tillage on soil wind erosion on rainfed cropland: A wind tunnel simulation. J. Soil Water Conserv. 2005, 19, 54–57. (In Chinese) [Google Scholar]
- Gao, S.; Wang, Y.; Shan, M.; Teng, Y.; Hong, N.; Sun, Y.; Mao, J.; Ma, Z.; Xiao, J.; Azzi, M.; et al. Wind-tunnel and modelled PM10 emissions and dust concentrations from agriculture soils in Tianjin, northern China. Aeolian Res. 2020, 42, 100562. [Google Scholar] [CrossRef]
- Mendez, M.J.; de Oro, L.D.; Panebianco, J.E.; Colazzo, J.C.; Buschiazzo, D.E. Organic carbon and nitrogen in soils of semiarid Argentina. J. Soil Water Conserv. 2006, 61, 230–235. [Google Scholar]
- Funk, R.; Reuter, H.E.; Hoffmann, C.; Engel, W.; Ottl, D. Effect of moisture on fine dust emission from tillage operations on agricultural soils. Earth Surf. Process. Landf. 2008, 33, 1851–1863. [Google Scholar] [CrossRef]
- Chepil, W.S. Influence of moisture on erodibility of soil by wind. Soil Sci. Soc. Am. Proc. 1956, 20, 288–292. [Google Scholar] [CrossRef]
- Avecilla, F.; Panebianco, J.E.; Mendez, M.J.; Buschiazzo, D.E. PM10 emission efficiency for agricultural soils: Comparing a wind tunnel, a dust generator, and the open-air plot. Aeolian Res. 2018, 32, 116–123. [Google Scholar] [CrossRef]
- De Oro, L.A.; Avecilla, F.; Panebianco, J.E.; Buschiazzo, D.E. PM10 emission from feedlots in soils with different texture: Cattle trampling effect. Aeolian Res. 2021, 53, 100742. [Google Scholar] [CrossRef]
- Funk, R.; Papke, N.; Hor, B. Wind tunnel tests to estimate PM10 and PM2.5-emissions from complex substrates of open-cast strip mines in Germany. Aeolian Res. 2019, 39, 23–32. [Google Scholar] [CrossRef]
- Gao, S.; Zhao, H.; Bai, Z.; Han, B.; Xu, J.; Zhao, R.; Zhang, N.; Chen, L.; Lei, X.; Shi, W.; et al. Combined use of principal component analysis and artificial neural network approach to improve estimates of PM2.5 personal exposure: A case study on older adults. Sci. Total Environ. 2020, 726, 138533. [Google Scholar] [CrossRef]
- Gholami, V.; Sahour, H.; Amri, M. Soil erosion modeling using erosion pins and artificial neural networks. Catena 2021, 196, 104902. [Google Scholar] [CrossRef]
- Gholami, V.; Booij, M.J.; Tehrani, E.N.; Hadian, M.A. Spatial soil erosion estimation using an artificial neural network (ANN) and field plot data. Catena 2018, 163, 210–218. [Google Scholar] [CrossRef]
- Kouchami-Sardoo, I.; Shirani, H.; Esfandiarpoiur-Boroujeni, I.; Besalatpour, A.A. Prediction of soil wind erodibiltiy using a hybrid Genetic algorithm-artificial neural network method. Catena 2020, 187, 104315. [Google Scholar] [CrossRef]
- Lin, X.; Niu, J.; Yu, X.; Berndtsson, R.; Wu, S.; Xie, S. Maize residue effects on PM2.5, PM10, and dust emission from agricultural land. Soil Tillage Res. 2020, 205, 104738. [Google Scholar] [CrossRef]
- Lturri, L.A.; Funk, R.; Leue, M.; Sommer, M.; Buschiazzo, D.E. Wind sorting affects differently the organo-mineral composition of saltating and particulate materials in contrasting texture agricultural soils. Aeolian Res. 2017, 28, 39–49. [Google Scholar]
- Padoan, E.; Maffia, J.; Balsari, P.; Ajmone-Marsan, F.; Dinuccio, E. Soil PM10 emission potential under specific mechanical stress and particles characteristics. Sci. Total Environ. 2021, 779, 146468. [Google Scholar] [CrossRef] [PubMed]
- Pi, H.; Sharratt, B. Evaluation of the RWEQ and SWEEP in simulating soil and PM10 loss from a portable wind tunnel. Soil Tillage Res. 2017, 170, 94–103. [Google Scholar] [CrossRef]
- Tatarko, J.; Kucharski, M.; Li, H.; Li, H. PM2.5 and PM10 emissions by breakage during saltation of agricultural soils. Soil Tillage Res. 2020, 208, 104902. [Google Scholar] [CrossRef]
- Tian, M.; Gao, J.; Zhang, L.; Zhang, H.; Feng, C.; Jia, X. Effects of dust emissions from wind erosion of soil on ambient air quality. Atmos. Pollut. Res. 2021, 12, 101108. [Google Scholar] [CrossRef]
- Van Pelt, R.S.; Baddock, M.C.; Zobeck, T.M.; D’Odorico, P.; Ravi, S.; Bhattachan, A. Total vertical sediment flux and PM10 emissions from disturbed Chihuahuan Deseart surfaces. Geoderma 2017, 293, 19–25. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, C.; Chang, C.; Wang, R.; Liu, G. Comparison of wind erosion based on measurements and SWEEP simulation: A case study in Kangbao County, Hebei province, China. Soil Tillage Res. 2017, 165, 169–180. [Google Scholar] [CrossRef]
Input Factors | Distribution | Values of Parameters | Correlation with PM10 Emissions per Unit Area (R2) | ΔPM10 (t/km2) |
---|---|---|---|---|
pH | Normal | Mean = 7.82; Sd = 0.27 | −0.04 ** | 8.08 |
CaCO3 | Normal | Mean = 0.048; Sd = 0.038 | −0.23 ** | 11.13 |
CEC | Log normal | Geometric Mean = 16.67; Geometric Sd = 1.15 | −0.09 ** | 6.15 |
OC | Log normal | Geometric Mean = 0.0099; Geometric Sd = 1.16 | −0.04 ** | 5.25 |
WS | Weibull | Shape = 6.29; Scale = 2.21 | 0.36 ** | 14.86 |
Pre | Exponential | Rate = 0.0016 | −0.20 ** | 42.03 |
Ele | Generalized extreme value | Location = 9.14; Scale = 3.04; Shape = −0.04 | 0.04 ** | 1.06 |
District | Active Function | Structure | PM10 | PM2.5 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
R2 | r | RMSE | MAE | R2 | r | RMSE | MAE | |||
Kashi | Logarithmic sigmoid | 7-5-1 | 0.75 | 0.87 | 0.17 | 0.09 | 0.71 | 0.84 | 0.11 | 0.05 |
Tangent sigmoid | 7-5-1 | 0.65 | 0.80 | 0.24 | 0.12 | 0.63 | 0.79 | 0.11 | 0.06 | |
Kezhou | Logarithmic sigmoid | 7-5-1 | 0.92 | 0.96 | 2.88 | 1.73 | 0.93 | 0.97 | 0.51 | 0.32 |
Tangent sigmoid | 7-5-1 | 0.87 | 0.93 | 3.92 | 2.74 | 0.94 | 0.97 | 0.43 | 0.24 | |
Hetian | Logarithmic sigmoid | 7-5-1 | 0.80 | 0. 90 | 2.89 | 1.98 | 0.80 | 0.89 | 1.21 | 0.83 |
Tangent sigmoid | 7-5-1 | 0.83 | 0.91 | 2.78 | 1.89 | 0.76 | 0.87 | 1.35 | 0.91 | |
Bazhou | Logarithmic sigmoid | 7-5-1 | 0.74 | 0.86 | 1.58 | 1.09 | 0.64 | 0. 80 | 0.49 | 0.25 |
Tangent sigmoid | 7-5-1 | 0.72 | 0.85 | 1.62 | 1.11 | 0.56 | 0.70 | 0.62 | 0.29 | |
Akesu | Logarithmic sigmoid | 7-5-1 | 0.71 | 0.84 | 3.00 | 2.06 | 0.72 | 0.85 | 1.31 | 0.91 |
Tangent sigmoid | 7-5-1 | 0.66 | 0.81 | 3.28 | 2.04 | 0.76 | 0.87 | 1.18 | 0.79 |
District | Period | PM10 | PM2.5 | ||||||
---|---|---|---|---|---|---|---|---|---|
R2 | r | RMSE | MAE | R2 | r | RMSE | MAE | ||
Kashi | Sand | 0.68 | 0.83 | 0.17 | 0.10 | 0.74 | 0.86 | 0.07 | 0.05 |
Heating | 0.69 | 0.83 | 0.09 | 0.06 | 0.68 | 0.82 | 0.07 | 0.04 | |
Nonheating | 0.74 | 0.86 | 0.15 | 0.11 | 0.74 | 0.86 | 0.10 | 0.06 | |
Whole year | 0.75 | 0.87 | 0.17 | 0.09 | 0.71 | 0.84 | 0.11 | 0.05 | |
Kezhou | Sand | 0.79 | 0.89 | 2.33 | 1.18 | 0. 90 | 0.95 | 0.26 | 0.16 |
Heating | 0.77 | 0.88 | 0.90 | 0.53 | 0.82 | 0.91 | 0.12 | 0.07 | |
Nonheating | 0.82 | 0.91 | 1.95 | 0.99 | 0.88 | 0.94 | 0.25 | 0.14 | |
Whole year | 0.92 | 0.96 | 2.88 | 1.73 | 0.93 | 0.97 | 0.51 | 0.32 | |
Hetian | Sand | 0.81 | 0.90 | 1.49 | 1.03 | 0.79 | 0.89 | 0.63 | 0.43 |
Heating | 0.55 | 0.74 | 0.74 | 0.52 | 0.57 | 0.76 | 0.26 | 0.20 | |
Nonheating | 0.78 | 0.88 | 1.45 | 1.00 | 0.76 | 0.87 | 0.62 | 0.40 | |
Whole year | 0.80 | 0.90 | 2.89 | 1.98 | 0.80 | 0.89 | 1.21 | 0.83 | |
Bazhou | Sand | 0.62 | 0.79 | 0.99 | 0.53 | 0.65 | 0.81 | 0.21 | 0.12 |
Heating | 0.74 | 0.86 | 0.61 | 0.43 | 0.73 | 0.86 | 0.14 | 0.11 | |
Nonheating | 0.70 | 0.84 | 0.59 | 0.41 | 0.67 | 0.82 | 0.15 | 0.09 | |
Whole year | 0.74 | 0.86 | 1.58 | 1.09 | 0.64 | 0.80 | 0.49 | 0.25 | |
Akesu | Sand | 0.64 | 0.80 | 1.87 | 1.18 | 0.66 | 0.81 | 0.82 | 0.57 |
Heating | 0.71 | 0.84 | 0.69 | 0.47 | 0.67 | 0.82 | 0.33 | 0.23 | |
Nonheating | 0.67 | 0.82 | 0.90 | 0.61 | 0.72 | 0.85 | 0.38 | 0.25 | |
Whole year | 0.71 | 0.84 | 3.00 | 2.06 | 0.72 | 0.85 | 1.31 | 0.91 | |
Southern Xinjiang | Sand | 0.53 | 0.73 | 1.86 | 1.32 | 0.62 | 0.79 | 0.76 | 0.49 |
Heating | 0.59 | 0.77 | 0.77 | 0.53 | 0.57 | 0.75 | 0.27 | 0.18 | |
Nonheating | 0.66 | 0.81 | 1.29 | 0.82 | 0.66 | 0.81 | 0.52 | 0.30 | |
Whole year | 0.61 | 0.78 | 3.37 | 2.31 | 0.62 | 0.79 | 1.40 | 0.91 |
District | Period | PM10 | PM2.5 | ||||||
---|---|---|---|---|---|---|---|---|---|
R2 | r | RMSE | MAE | R2 | r | RMSE | MAE | ||
Kashi | Sand | 0.57 | 0.76 | 1.67 | 1.66 | 0.64 | 0.80 | 0.80 | 0.79 |
Heating | 0.53 | 0.73 | 0.06 | 0.04 | 0.55 | 0.74 | 0.03 | 0.02 | |
Nonheating | 0.55 | 0.74 | 0.08 | 0.03 | 0.58 | −0.76 | 0.11 | 0.09 | |
Kezhou | Sand | 0.95 | 0.97 | 0.92 | 0.81 | 0.91 | 0.95 | 0.16 | 0.14 |
Heating | 0.68 | 0.82 | 0.06 | 0.04 | 0.64 | 0.80 | 0.05 | 0.03 | |
Nonheating | 0.90 | 0.95 | 1.18 | 0.73 | 0.88 | 0.94 | 0.20 | 0.13 | |
Hetian | Sand | 0.76 | 0.87 | 0.72 | 0.59 | 0.74 | 0.86 | 0.30 | 0.25 |
Heating | 0.61 | 0.78 | 0.17 | 0.10 | 0.52 | 0.72 | 0.08 | 0.06 | |
Nonheating | 0.68 | 0.83 | 0.65 | 0.25 | 0.59 | 0.76 | 0.38 | 0.25 | |
Bazhou | Sand | 0.79 | 0.89 | 0.75 | 0.70 | 0.69 | 0.72 | 0.07 | 0.05 |
Heating | 0.68 | 0.82 | 0.28 | 0.20 | 0.52 | 0.83 | 0.19 | 0.17 | |
Nonheating | 0.72 | 0.84 | 0.52 | 0.30 | 0.47 | 0.68 | 0.13 | 0.08 | |
Akesu | Sand | 0.71 | 0.84 | 0.90 | 0.79 | 0.74 | 0.86 | 0.41 | 0.36 |
Heating | 0.56 | 0.75 | 0.43 | 0.31 | 0.57 | 0.75 | 0.20 | 0.14 | |
Nonheating | 0.63 | 0.79 | 0.59 | 0.43 | 0.69 | 0.83 | 0.27 | 0.19 |
Particles | Period | Mean | 2.5% | 97.5% | Uncertainty |
---|---|---|---|---|---|
PM10 | Sand | 12.14 | 3.66 | 20.46 | (−70%, 68%) |
Heating | 3.34 | 0.98 | 7.88 | (−71%, 136%) | |
Nonheating | 3.72 | 1.03 | 7.99 | (−72%, 115%) | |
Whole year | 15.15 | 5.20 | 31.27 | (−66%, 106%) | |
PM2.5 | Sand | 1.67 | 0.41 | 3.82 | (−76%, 127%) |
Heating | 0.62 | 0.16 | 1.34 | (−74%, 115%) | |
Nonheating | 0.99 | 0.28 | 2.29 | (−72%, 132%) | |
Whole year | 1.83 | 0.45 | 3.82 | (−75%, 108%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, S.; Liu, Y.; Zhang, J.; Yu, J.; Chen, L.; Sun, Y.; Mao, J.; Zhang, H.; Ma, Z.; Yang, W.; et al. Soil-Derived Dust PM10 and PM2.5 Fractions in Southern Xinjiang, China, Using an Artificial Neural Network Model. Atmosphere 2023, 14, 1644. https://doi.org/10.3390/atmos14111644
Gao S, Liu Y, Zhang J, Yu J, Chen L, Sun Y, Mao J, Zhang H, Ma Z, Yang W, et al. Soil-Derived Dust PM10 and PM2.5 Fractions in Southern Xinjiang, China, Using an Artificial Neural Network Model. Atmosphere. 2023; 14(11):1644. https://doi.org/10.3390/atmos14111644
Chicago/Turabian StyleGao, Shuang, Yaxin Liu, Jieqiong Zhang, Jie Yu, Li Chen, Yanling Sun, Jian Mao, Hui Zhang, Zhenxing Ma, Wen Yang, and et al. 2023. "Soil-Derived Dust PM10 and PM2.5 Fractions in Southern Xinjiang, China, Using an Artificial Neural Network Model" Atmosphere 14, no. 11: 1644. https://doi.org/10.3390/atmos14111644
APA StyleGao, S., Liu, Y., Zhang, J., Yu, J., Chen, L., Sun, Y., Mao, J., Zhang, H., Ma, Z., Yang, W., Hong, N., Azzi, M., Zhao, H., Wang, H., & Bai, Z. (2023). Soil-Derived Dust PM10 and PM2.5 Fractions in Southern Xinjiang, China, Using an Artificial Neural Network Model. Atmosphere, 14(11), 1644. https://doi.org/10.3390/atmos14111644