Dynamics of the Magnetotail Plasma Sheet Current
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Magnetic Flux Transport
3.2. Current Disruption
3.3. Plasma Instabilities
3.3.1. Tearing Instability
3.3.2. Cross-Field Current Instability
3.4. Auroral Beads
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lui, A.T.Y. Electric Current Approach to Magnetospheric Dynamics and the Distinction between Current Disruption And Magnetic Reconnection, Magnetospheric Current Systems; Ohtani, S., Fujii, R., Hesse, M., Lysak, R.L., Eds.; AGU Monograph; AGU: Washington, DC, USA, 2000; Volume 118, pp. 31–40. [Google Scholar]
- Alfvén, H. Electrical currents in cosmic plasmas. Rev. Geophys. 1977, 15, 271. [Google Scholar] [CrossRef]
- Yoon, P.H.; Lui, A.T.Y. Nonlinear analysis of generalized cross-field current instability. Phys. Fluids B 1993, 5, 836–853. [Google Scholar] [CrossRef]
- Yoon, P.H.; Lui, A.T.Y.; Chang, C. Lower-hybrid-drift instability operative in the geomagnetic tail. Phys. Plasmas 1994, 1, 3033–3043. [Google Scholar] [CrossRef]
- Lui, A.T.Y. Current disruption in the Earth’s magnetosphere: Observations and models. J. Geophys. Res. 1996, 101, 13067–13088. [Google Scholar] [CrossRef]
- Akasofu, S.-I. Electric current approach studying both auroral substorms and solar flares together. Front. Astron. Space Sci. 2020, 7, 4. [Google Scholar] [CrossRef]
- Vasyliunas, V.M. Time scale for magnetic field changes after sub-storm onset: Constraints from dimensional analysis. In Physics of Space Plasmas; Chang, T., Jasperse, J.R., Eds.; MIT Center for Geo/Cosmo Plasma Physics: Cambridge, MA, USA, 1996; pp. 553–560. [Google Scholar]
- Vasyliunas, V.M. Time evolution of electric fields and currentsand the generalized Ohm’s law. Ann. Geophys. 2005, 23, 1347–1354. [Google Scholar] [CrossRef]
- Parker, E.N. Tutorial: Newton, Maxwell, and Magnetospheric Physics, Magnetospheric Current Systems; Ohtani, S., Fujii, R., Hesse, M., Lysak, R.L., Eds.; AGU Monograph 2000; AGU: Washington, DC, USA, 2000; Volume 118, pp. 1–10. [Google Scholar]
- Lui, A.T.Y.; Chapman, S.C.; Liou, K.; Newell, P.T.; Meng, C.-I.; Brittnacher, M.; Parks, G.K. Is the dynamic magnetosphere an avalanching system? Geophys. Res. Lett. 2000, 27, 911–914. [Google Scholar] [CrossRef]
- Lui, A.T.Y. Time development of electric fields and currents in space plasmas. Ann. Geophys. 2006, 24, 1137–1143. [Google Scholar] [CrossRef]
- Lui, A.T.Y. Reduction of the cross-tail current during near-Earth dipolarization with multi-satellite observations. J. Geophys. Res. 2011, 116, A12239. [Google Scholar] [CrossRef]
- Sato, T.; Iijima, T. Primary sources of large-scale Birkeland currents. Space Sci. Rev. 1979, 24, 347. [Google Scholar] [CrossRef]
- Hasegawa, A.; Sato, T. Generation of Field Aligned Current during Substorm, Dynamics of the Magnetosphere; Springer: Dordrecht, The Netherlands, 1979. [Google Scholar]
- Haerendel, G. Field-aligned currents in the Earth’s magnetosphere. Geophys. Monogr. Ser. 1990, 58, 539. [Google Scholar]
- Akasofu, S.I. Polar and Magnetosphere Substorms; Astrophysics & Space Science Library: Dordrecht, The Netherlands, 1968; Volume 11, ISBN 90-277-0108-3. [Google Scholar]
- Rostoker, G.; Akasofu, S.-I.; Foster, J.; Greenwald, R.; Kamide, Y.; Kawasaki, K.; Lui, A.; McPherron, R.; Russell, C. Magnetospheric substorms-definition and signatures. J. Geophys. Res. 1980, 85, 1663–1668. [Google Scholar] [CrossRef]
- Nakamura, R.; Baumjohann, W.; Klecker, B.; Bogdanova, Y.; Balogh, A.; Rème, H.; Bosqued, J.M.; Dandouras, I.; Sauvaud, J.A.; Glassmeier, K.-H.; et al. Motion of the dipolarization front during a flow burst event observed by Cluster. Geophys. Res. Lett. 2002, 29, 1942. [Google Scholar] [CrossRef]
- Runov, A.; Angelopoulos, V.; Sitnov, M.I.; Sergeev, V.A.; Bonnell, J.; McFadden, J.P.; Larson, D.; Glassmeier, K.-H.; Auster, U. THEMIS observations of an earthward-propagating dipolarization front. Geophys. Res. Lett. 2009, 36, L14106. [Google Scholar] [CrossRef]
- Sergeev, V.; Angelopoulos, V.; Apatenkov, S.; Bonnell, J.; Ergun, R.; Nakamura, R.; McFadden, J.; Larson, D.; Runov, A. Kinetic structure of the sharp injection/dipolarization front in the flow-braking region. Geophys. Res. Lett. 2009, 36, L21105. [Google Scholar] [CrossRef]
- Zhou, X.-Z.; Angelopoulos, V.; Sergeev, V.; Runov, A. Accelerated ions ahead of earthward propagating dipolarization fronts. J. Geophys. Res. 2010, 115, A00103. [Google Scholar] [CrossRef]
- Zhang, X.-J.; Angelopoulos, V.; Runov, A.; Zhou, X.-Z.; Bonnell, J.; McFadden, J.P.; Larson, D.; Auster, U. Current carriers near dipolarization fronts in the magnetotail: A THEMIS event study. J. Geophys. Res. 2011, 116, A00I20. [Google Scholar] [CrossRef]
- Fu, H.S.; Khotyaintsev, Y.V.; André, M.; Vaivads, A. Fermi and betatron acceleration of suprathermal electrons behind dipolarization fronts. Geophys. Res. Lett. 2011, 38, L16104. [Google Scholar] [CrossRef]
- Lyons, L.R.; Nishimura, Y.; Xing, X.; Runov, A.; Angelopoulos, V.; Donovan, E.; Kikuchi, T. Coupling of dipolarization front flow bursts to substorm expansion phase phenomena within the magnetosphere and ionosphere. J. Geophys. Res. 2012, 117, A02212. [Google Scholar] [CrossRef]
- Huang, S.Y.; Zhou, M.; Deng, X.H.; Yuan, Z.G.; Pang, Y.; Wei, Q.; Su, W.; Li, H.M.; Wang, Q.Q. Kinetic structure and wave properties associated with sharp dipolarization front observed by Cluster. Ann. Geophys. 2012, 30, 97–107. [Google Scholar] [CrossRef]
- Hwang, K.; Goldstein, M.L.; Moore, T.E.; Walsh, B.M.; Baishev, D.G.; Moiseyev, A.V.; Shevtsov, B.M.; Yumoto, K. Atailward moving current sheet normal magnetic field front followed by an earthward moving dipolarization front. J. Geophys. Res. Space Physics. 2014, 119, 5316–5327. [Google Scholar] [CrossRef]
- Liu, J.; Angelopoulos, V.; Runov, A.; Zhou, X.-Z. On the current sheets surrounding dipolarizing flux bundles in the magnetotail: The case for wedgelets. J. Geophy. Res. Space Physics. 2013, 118, 2000–2020. [Google Scholar] [CrossRef]
- Liu, J.; Angelopoulos, V.; Zhou, X.-Z.; Runov, A. Magnetic flux transport by dipolarizing flux bundles. J. Geophy. Res. Space Physics. 2014, 119, 909–926. [Google Scholar] [CrossRef]
- Runov, A.; Angelopoulos, V.; Zhou, X.-Z.; Zhang, X.-J.; Li, S.; Plaschke, F.; Bonnell, J. A THEMIS multicase study of dipolarization fronts in the magnetotail plasma sheet. J. Geophys. Res. 2011, 116, A05216. [Google Scholar] [CrossRef]
- Lui, A.T.Y. Dipolarization fronts and magnetic flux transport. Geosci. Lett. 2015, 2, 15. [Google Scholar] [CrossRef]
- Angelopoulos, V.; Kennel, C.F.; Coroniti, F.V.; Pellat, R.; Kivelson, M.G.; Walker, R.J.; Russell, C.T.; Baumjohann, W.; Feldman, W.C.; Gosling, J.T. Statistical characteristics of bursty bulk flow events. J. Geophys. Res. 1994, 99, 21257–21280. [Google Scholar] [CrossRef]
- Yao, Z.H.; Liu, J.; Owen, C.J.; Forsyth, C.; Rae, I.J.; Pu, Z.Y.; Fu, H.S.; Zhou, X.-Z.; Shi, Q.Q.; Du, A.M.; et al. A physical explanation for the magnetic decrease ahead of dipolarization fronts. Ann. Geophys. 2015, 33, 1301–1309. [Google Scholar] [CrossRef]
- Takahashi, K.; Zanetti, L.J.; Lopez, R.E.; McEntire, R.W.; Potemra, T.A.; Yumoto, K. Disruption of the magnetotail current sheet observed by AMPTE/CCE. Geophys. Res. Lett. 1987, 14, 1019–1022. [Google Scholar] [CrossRef]
- Lui, A.T.Y. Cross-tail current evolution during substorm depolarization. Ann. Geophys. 2013, 31, 1131–1142. [Google Scholar] [CrossRef]
- Lui, A.T.Y. Potential plasma instabilities for substorm expansion onset. Space Sci. Rev. 2004, 113, 127–206. [Google Scholar] [CrossRef]
- Pritchett, P.L.; Coroniti, F.V. Structure and consequences of the kinetic ballooning/interchange instability in the magnetotail. J. Geophys. Res. Space Physics. 2013, 118, 146–159. [Google Scholar] [CrossRef]
- Torbert, R.B.; Burch, J.L.; Phan, T.D.; Hesse, M.; Argall, M.R.; Shuster, J.; Ergun, R.E.; Alm, L.; Nakamura, R.; Genestreti, K.J.; et al. Electron-scale dynamics of the diffusion region during symmetric magnetic reconnection in space. Science 2018, 362, 1391–1395. [Google Scholar] [CrossRef]
- Lui, A.T.Y.; Consolini, G. Substorm Disturbance Propagation from a Two-Dimensional Cellular Automaton Model, Multiscale Coupling of Sun-Earth Processes; Lui, A.T.Y., Kamide, Y., Consolini, G., Eds.; Elsevier: Amsterdam, The Netherlands, 2005; pp. 357–364. [Google Scholar]
- Consolini, G.; Kretzschmar, M.; Lui, A.T.Y.; Zimbardo, G.; Macek, W.M. On the magnetic field fluctuations during magnetospheric tail current disruption: A statistical approach. J. Geophys. Res. 2005, 110, A07202. [Google Scholar] [CrossRef]
- Zelenyi, L.M.; Delcourt, D.C.; Malova, H.V.; Sharma, A.S. “Aging” of the magnetotail thin current sheets. Geophys. Res. Lett. 2002, 29, 49-1–49-4. [Google Scholar] [CrossRef]
- Zelenyi, L.M.; Malova, H.V.; Popov, V.Y.; Delcourt, D.; Sharma, A.S. Nonlinear equilibrium structure of thin currents sheets: Influence of electron pressure anisotropy. Nonlinear Process. Geophys. 2004, 11, 579–587. [Google Scholar] [CrossRef]
- Grigorenko, E.E.; Zelenyi, L.M.; DiBraccio, G.; Ermakov, V.N.; Shuvalov, S.D.; Malova, H.V.; Poppov, V.Y.; Halekas, J.S.; Mitchell, D.J.; Dubinin, E. Thin current sheets of sub-ion scales observed by MAVEN in the Martian magnetotail. Geophys. Res. Lett. 2019, 46, 6214–6222. [Google Scholar] [CrossRef]
- Büchner, J.; Zelenyi, L.M. Regular and chaotic charged particle motion in magnetotail like field reversals: 1. Basic theory of trapped motion. J. Geophys. Res. 1989, 94, 11821–11842. [Google Scholar] [CrossRef]
- Zelenyi, L.M.; Malova, H.V.; Leonenko, M.V.; Grigorenko, E.E.; Popov, V.Y. Equilibrium configurations of super-thin current sheets in space plasma: Characteristic scaling of multilayer structures. J. Geophys. Res. Space Phys. 2022, 127, e2022JA030881. [Google Scholar] [CrossRef]
- Coppi, B.; Laval, G.; Pellat, R. Dynamics of the geomagnetic tail. Phys. Rev. Lett. 1966, 16, 1207–1210. [Google Scholar] [CrossRef]
- Schindler, K. A theory of the substorm mechanism. J. Geophys. Res. 1974, 79, 2803–2810. [Google Scholar] [CrossRef]
- Pellat, R.; Coroniti, F.V.; Pritchett, P.L. Does ion tearing exist? Geophys. Res. Lett. 1991, 18, 143–146. [Google Scholar] [CrossRef]
- Brittnacher, M.; Quest, K.B.; Karimabadi, H. A study of the effect of pitch angle and spatial diffusion on tearing instability using a new finite element based linear code. J. Geophys. Res. 1998, 103, 4587–4596. [Google Scholar] [CrossRef]
- Sitnov, M.I.; Schindler, K. Tearing stability of a multiscale magnetotail current sheet. Geophys. Res. Lett. 2010, 37, 8. [Google Scholar] [CrossRef]
- Lui, A.T.Y.; Chang, C.-L.; Mankofsky, A.; Wong, H.-K.; Winske, D. A cross-field current instability for substorm expansions. J. Geophys. Res. 1991, 96, 11389–11401. [Google Scholar] [CrossRef]
- Henderson, M.G. Implications of Viking Imager Results for Substorm Models; University of Calgary: Calgary, AB, Canada, 1994. [Google Scholar]
- Donovan, E.; Liu, W.; Liang, J.; Spanswick, E.; Voronkov, I.; Connors, M.; Syrjäsuo, M.; Baker, G.; Jackel, B.; Trondsen, T.; et al. Simultaneous THEMIS in situ and auroral observations of a small substorm. Geophys. Res. Lett. 2008, 35, L17S18. [Google Scholar] [CrossRef]
- Haerendel, G. Substorm onset: Current sheet avalanche and stop layer. J. Geophys. Res. Space Phys. 2015, 120, 1697–1714. [Google Scholar] [CrossRef]
- Lui, A.T.Y. Evaluation of the cross-field current instability as a substorm onset process with auroral bead properties. J. Geophys. Res. Space Phys. 2020, 123, e2020JA027867. [Google Scholar] [CrossRef]
- Pritchett, P.L.; Coroniti, F.V.; Nishimura, Y. The kinetic ballooning/interchange instability as a source of dipolarization fronts and auroral streamers. J. Geophys. Res. Space Phys. 2014, 119, 4723–4739. [Google Scholar] [CrossRef]
- Haerendel, G.; Frey, H. The onset of a substorm and the mating instability. J. Geophys. Res. Space Phys. 2021, 126, e2021JA029492. [Google Scholar] [CrossRef]
- Samson, J.C.; Wallis, D.D.; Hughes, T.J.; Creutzberg, F.; Ruohoniemi, J.M.; Greewalkd, R.A. Substorm intensifications and field line resonances in the nightside magnetosphere. J. Geophys. Res. 1992, 97, 8495–8518. [Google Scholar] [CrossRef]
- Yoon, P.H.; Lui, A.T.Y.; Sitnov, M. Generalized lower-hybrid drift instabilities in current-sheet equilibrium. Phys. Plasmas 2002, 9, 1526–1538. [Google Scholar] [CrossRef]
- Pu, Z.Y.; Korth, A.; Chen, Z.X.; Friedel RH, W.; Zong, Q.G.; Wang, X.M.; Wong, M.H.; Fu, S.Y.; Pulkkinen, T.I. MHD drift ballooning instability near the inner edge of the near-Earth plasma sheet. J. Geophys. Res. 1997, 102, 14397–14406. [Google Scholar] [CrossRef]
- Voronkov, I.; Rankin, R.; Frycz, P.; Tikhonchuk, V.T.; Samson, J.C. Coupling of shear flow and pressure gradient instabilities. J. Geophys. Res. 1997, 102, 9639–9650. [Google Scholar] [CrossRef]
- Cheng, C.Z.; Lui, A.T.Y. Kinetic ballooning instability for substorm onset and current disruption observed by AMPTE/CCE. Geophys. Res. Lett. 1998, 25, 4091–4094. [Google Scholar] [CrossRef]
- Friedrich, E.; Samson, J.C.; Voronkov, I.; Rostoker, G. Dynamics of the substorm expansive phase. J. Geophys. Res. 2001, 106, 13145–13163. [Google Scholar] [CrossRef]
- Cheng, C.Z. Physics of substorm growth phase, onset, and depolarization. Space Sci. Rev. 2004, 113, 207–270. [Google Scholar] [CrossRef]
- Samson., J.C.; Dobias, P. Explosive instabilities and substorm intensifications in the Earth’s magnetotail. In Multiscale Coupling of Sun-Earth Processes; Lui, A.T.Y., Kamide, Y., Consolini, G., Eds.; Elsevier B. V.: Amsterdam, The Netherlands, 2005; pp. 235–251. [Google Scholar]
- Saito, M.H.; Miyashita, Y.; Fujimoto, M.; Shinohara, I.; Saito, Y.; Liou, K.; Mukai, T. Ballooning mode waves prior to substorm-associated dipolarizations: Geotail observations. Geophys. Res. Lett. 2008, 35, L07103. [Google Scholar] [CrossRef]
- Liang, J.; Donovan, E.F.; Liu, W.W.; Jackel, B.; Syrjasuo, M.; Mende, S.B.; Frey, H.U.; Angelopoulos, V.; Connors, M. Intensification of pre-existing auroral arc at substorm expansion phase onset: Wave-like disruption during the first tens of seconds. Geophys. Res. Lett. 2008, 35, L17S19. [Google Scholar] [CrossRef]
- Rae, I.J.; Mann, I.R.; Angelopoulos, V.; Murphy, K.R.; Milling, D.K.; Kale, A.; Frey, H.; Rostoker, G.; Russell, C.T.; Watt, C.; et al. Near-Earth initiation of a terrestrial substorm. J. Geophys. Res. 2009, 114, A07220. [Google Scholar] [CrossRef]
- Rae, I.J.; Watt CE, J.; Mann, I.R.; Murphy, K.R.; Samson, J.C.; Kabin, K.; Angelopoulos, V. Optical characterization of the growth and spatial structure of a substorm onset arc. J. Geophys. Res. 2010, 115, A10222. [Google Scholar] [CrossRef]
- Keiling, A. Pi2 pulsations driven by ballooning instability. J. Geophys. Res. 2012, 117. [Google Scholar] [CrossRef]
- Liu, W.W.; Liang, J.; Donovan, E.F.; Spanswick, E. If substorm onset triggers tail reconnection, what triggers substorm onset? J. Geophys. Res. 2012, 117, A11220. [Google Scholar] [CrossRef]
- Kozelova, T.V.; Kozelov, B.V. Substorm-associated explosive magnetic field stretching near the earthward edge of the plasma sheet. J. Geophys. Res. Space Phys. 2013, 118, 3323–3335. [Google Scholar] [CrossRef]
- Xing, X.; Liang, J.; Spanswick, E.; Lyons, L.; Angelopoulos, V. Auroral wave structures and ballooning instabilities in the plasma sheet. J. Geophys. Res. Space Phys. 2013, 118, 6319–6326. [Google Scholar] [CrossRef]
- Kalmoni, N.M.E.; Rae, I.J.; Watt, C.E.J.; Murphy, K.R.; Forsyth, C.; Owen, C.J. Statistical characterization of the growth and spatial scales of the sub storm onset arc. J. Geophys. Res. Space Phys. 2015, 120, 8503–8516. [Google Scholar] [CrossRef]
- Nishimura, Y.; Yang, J.; Pritchett, P.L.; Coroniti, F.V.; Donovan, E.F.; Lyons, L.R.; Wolf, R.A.; Angelopoulos, V.; Mende, S.B. Statisitcal properties of substorm auroral onset beads/rays. J. Geophys. Res. Space Phys. 2016, 121, 8661–8676. [Google Scholar] [CrossRef]
- Lui, A.T.Y. Dipolarization front and current disruption. Geophys. Res. Lett. 2016, 43, 10050. [Google Scholar] [CrossRef]
- Motoba, T.; Hosokawa, K.; Kodokura, A.; Sato, N. Magnetic conjugacy of northern and southern auroral beads. Geophys. Res. Lett. 2012, 39, L08108. [Google Scholar] [CrossRef]
- Lui, A.T.Y. Cross-field current instability for auroral bead formation in breakup arcs. Geophys. Res. Lett. 2016, 43, 6087–6095. [Google Scholar] [CrossRef]
- Lui, A.T.Y.; Burrows, J.R. On the location of auroral arcs near substorm onset. J. Geophys. Res. 1978, 83, 3342–3348. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lui, A.T.Y. Dynamics of the Magnetotail Plasma Sheet Current. Atmosphere 2023, 14, 222. https://doi.org/10.3390/atmos14020222
Lui ATY. Dynamics of the Magnetotail Plasma Sheet Current. Atmosphere. 2023; 14(2):222. https://doi.org/10.3390/atmos14020222
Chicago/Turabian StyleLui, Anthony Tat Yin. 2023. "Dynamics of the Magnetotail Plasma Sheet Current" Atmosphere 14, no. 2: 222. https://doi.org/10.3390/atmos14020222
APA StyleLui, A. T. Y. (2023). Dynamics of the Magnetotail Plasma Sheet Current. Atmosphere, 14(2), 222. https://doi.org/10.3390/atmos14020222