Extreme Dry and Wet Events in the Pacific Region of Colombia estimated in the 21st Century Based on the Standardized Precipitation Index and CORDEX Climate Projections
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data and Methods
2.2.1. Acquisition of Precipitation Data
2.2.2. SPI Analysis
3. Results
3.1. SPI Historical Evaluation
3.2. Future Projections
3.2.1. Evaluation of Dryness
3.2.2. Evaluation of Wetness
3.3. Occurrence of Extreme Events
3.3.1. Extreme Dryness
3.3.2. Extreme Wetness
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
CAM | Central America |
CO2 | Carbon Dioxide |
CORDEX | Coordinated Regional Climate Downscaling EXperiment |
CMhyd | Climate Model Data for Hydrological Modeling (CMhyd) |
ETCCDI | Expert Team on Climate Change Detection and Indices |
ICHEC | Irish Centre for High Grid Computing |
MRAI | Modified Rainfall Anomaly Index |
RCA | Rossby Centre regional Atmospheric Climate Model |
RCM | Regional Climate Model |
RCP | Representative Concentration Pathway |
SPEI | Standardized Precipitation Evapotranspiration Index |
SPI | Standardized Precipitation Index |
WCRP | World Climate Research Program |
WMO | World Meteorological Organization |
References
- Sippel, S.; Reichstein, M.; Ma, X.; Mahecha, M.D.; Lange, H.; Flach, M.; Frank, D. Drought, Heat, and the Carbon Cycle: A Review. Curr. Clim. Chang. Rep. 2018, 4, 266–286. [Google Scholar] [CrossRef] [Green Version]
- Boo, K.-O.; Kwon, W.-T.; Baek, H.-J. Change of extreme events of temperature and precipitation over Korea using regional projection of future climate change. Geophys. Res. Lett. 2006, 33, L01701. [Google Scholar] [CrossRef]
- Tao, Y.; Wang, W.; Song, S.; Ma, J. Spatial and Temporal Variations of Precipitation Extremes and Seasonality over China from 1961–2013. Water 2018, 10, 719. [Google Scholar] [CrossRef] [Green Version]
- Khan, N.; Shahid, S.; Ismail, T.; Behlil, F. Prediction of heat waves over Pakistan using support vector machine algorithm in the context of climate change. Stoch. Environ. Res. Risk Assess. 2021, 35, 1335–1353. [Google Scholar] [CrossRef]
- Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.; Péan, C.; Berger, S.; Caud, N.; Chen, Y.; Goldfarb, L.; Gomis, M.; et al. (Eds.) Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar] [CrossRef]
- Pereira, S.C.; Carvalho, D.; Rocha, A. Temperature and Precipitation Extremes over the Iberian Peninsula under Climate Change Scenarios: A Review. Climate 2021, 9, 139. [Google Scholar] [CrossRef]
- Qaisrani, Z.N.; Nuthammachot, N.; Techato, K. Asadullah Drought monitoring based on Standardized Precipitation Index and Standardized Precipitation Evapotranspiration Index in the arid zone of Balochistan province, Pakistan. Arab. J. Geosci. 2021, 14, 1–13. [Google Scholar] [CrossRef]
- Tigkas, D.; Vangelis, H.; Tsakiris, G. Drought characterisation based on an agriculture-oriented standardised precipitation index. Theor. Appl. Clim. 2018, 135, 1435–1447. [Google Scholar] [CrossRef]
- Tsesmelis, D.E.; Vasilakou, C.G.; Kalogeropoulos, K.; Stathopoulos, N.; Alexandris, S.G.; Zervas, E.; Oikonomou, P.D.; Karavitis, C.A. Drought assessment using the standardized precipitation index (SPI) in GIS environment in Greece. Comput. Earth Environ. Sci. 2021, 619–633. [Google Scholar] [CrossRef]
- Fung, K.F.; Huang, Y.F.; Koo, C.H.; Soh, Y.W. Drought forecasting: A review of modelling approaches 2007–2017. J. Water Clim. Chang. 2019, 11, 771–799. [Google Scholar] [CrossRef] [Green Version]
- Mishra, A.K.; Singh, V.P. A review of drought concepts. J. Hydrol. 2010, 391, 202–216. [Google Scholar] [CrossRef]
- Dokken, D. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation; Cambridge University Press: Cambridge, UK, 2022. [Google Scholar]
- Reyes, L.J.C.; Rangel, H.; Herazo, L.C.S. Adjustment of the Standardized Precipitation Index (SPI) for the Evaluation of Drought in the Arroyo Pechelín Basin, Colombia, under Zero Monthly Precipitation Conditions. Atmosphere 2022, 13, 236. [Google Scholar] [CrossRef]
- Harishnaika, N.; Ahmed, S.A.; Kumar, S.; Arpitha, M. Computation of the spatio-temporal extent of rainfall and long-term meteorological drought assessment using standardized precipitation index over Kolar and Chikkaballapura districts, Karnataka during 1951–2019. Remote. Sens. Appl. Soc. Environ. 2022, 27, 100768. [Google Scholar] [CrossRef]
- Mathbout, S.; Lopez-Bustins, J.A.; Martin-Vide, J.; Bech, J.; Rodrigo, F.S. Spatial and temporal analysis of drought variability at several time scales in Syria during 1961–2012. Atmos. Res. 2018, 200, 153–168. [Google Scholar] [CrossRef]
- Hänsel, S.; Schucknecht, A.; Matschullat, J. The Modified Rainfall Anomaly Index (mRAI)—Is this an alternative to the Standardised Precipitation Index (SPI) in evaluating future extreme precipitation characteristics? Theor. Appl. Clim. 2015, 123, 827–844. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Wu, J.; Lei, T.; He, B.; Wu, Z.; Liu, M.; Mo, X.; Geng, G.; Li, X.; Zhou, H.; et al. Temporal-spatial characteristics of severe drought events and their impact on agriculture on a global scale. Quat. Int. 2014, 349, 10–21. [Google Scholar] [CrossRef]
- Mahmoudi, P.; Ghaemi, A.; Rigi, A.; Jahanshahi, S.M.A. RETRACTED ARTICLE: Recommendations for modifying the Standardized Precipitation Index (SPI) for Drought Monitoring in Arid and Semi-arid Regions. Water Resour. Manag. 2021, 35, 3253–3275. [Google Scholar] [CrossRef]
- Hayes, M.J.; Svoboda, M.D.; Wiihite, D.A.; Vanyarkho, O.V. Monitoring the 1996 Drought Using the Standardized Precipitation Index. Bull. Am. Meteorol. Soc. 1999, 80, 429–438. [Google Scholar] [CrossRef]
- Raziei, T. Revisiting the Rainfall Anomaly Index to serve as a Simplified Standardized Precipitation Index. J. Hydrol. 2021, 602, 126761. [Google Scholar] [CrossRef]
- Bhunia, P.; Das, P.; Maiti, R. Meteorological Drought Study Through SPI in Three Drought Prone Districts of West Bengal, India. Earth Syst. Environ. 2019, 4, 43–55. [Google Scholar] [CrossRef]
- Zarei, A.R. Analysis of changes trend in spatial and temporal pattern of drought over south of Iran using standardized precipitation index (SPI). SN Appl. Sci. 2019, 1, 465. [Google Scholar] [CrossRef] [Green Version]
- Stagge, J.H.; Tallaksen, L.M.; Gudmundsson, L.; Van Loon, A.F.; Stahl, K. Candidate Distributions for Climatological Drought Indices (SPI and SPEI). Int. J. Clim. 2015, 35, 4027–4040. [Google Scholar] [CrossRef]
- Sobral, B.S.; de Oliveira-Júnior, J.F.; Gois, G.; Pereira-Júnior, E.R.; Terassi, P.M.D.B.; Muniz-Júnior, J.G.R.; Lyra, G.B.; Zeri, M. Drought characterization for the state of Rio de Janeiro based on the annual SPI index: Trends, statistical tests and its relation with ENSO. Atmos. Res. 2019, 220, 141–154. [Google Scholar] [CrossRef]
- Weng, W.; Becker, S.L.; Lüdeke, M.K.; Lakes, T. Landscape matters: Insights from the impact of mega-droughts on Colombia’s energy transition. Environ. Innov. Soc. Transit. 2020, 36, 1–16. [Google Scholar] [CrossRef]
- Romero, J. Geografía Económica del Pacífico Colombiano. 2009. Available online: www.banrep.gov.co (accessed on 10 October 2009).
- Carvalho, D.; Pereira, S.C.; Rocha, A. Future surface temperature changes for the Iberian Peninsula according to EURO-CORDEX climate projections. Clim. Dyn. 2020, 56, 123–138. [Google Scholar] [CrossRef]
- Tramblay, Y.; Somot, S. Future evolution of extreme precipitation in the Mediterranean. Clim. Chang. 2018, 151, 289–302. [Google Scholar] [CrossRef]
- Dosio, A.; Jury, M.W.; Almazroui, M.; Ashfaq, M.; Diallo, I.; Engelbrecht, F.A.; Klutse, N.A.B.; Lennard, C.; Pinto, I.; Sylla, M.B.; et al. Projected future daily characteristics of African precipitation based on global (CMIP5, CMIP6) and regional (CORDEX, CORDEX-CORE) climate models. Clim. Dyn. 2021, 57, 3135–3158. [Google Scholar] [CrossRef]
- Van Vuuren, D.P.; Edmonds, J.; Kainuma, M.; Riahi, K.; Thomson, A.; Hibbard, K.; Hurtt, G.C.; Kram, T.; Krey, V.; Lamarque, J.-F.; et al. The representative concentration pathways: An overview. Clim. Chang. 2011, 109, 5–31. [Google Scholar] [CrossRef]
- Clarke, L.; Edmonds, J.; Jacoby, H.; Pitcher, H.; Reilly, J. Scenarios of Greenhouse Gas Emissions and Atmospheric Scenarios of Greenhouse Gas Emissions and Atmospheric Concentrations Concentrations Part of the Bioresource and Agricultural Engineering Commons. 2007. Available online: https://digitalcommons.unl.edu/usdoepubhttps://digitalcommons.unl.edu/usdoepub/6 (accessed on 2 June 2009).
- Riahi, K.; Grübler, A.; Nakicenovic, N. Scenarios of long-term socio-economic and environmental development under climate stabilization. Technol. Forecast. Soc. Chang. 2007, 74, 887–935. [Google Scholar] [CrossRef]
- Shiferaw, A.; Tadesse, T.; Rowe, C.; Oglesby, R. Precipitation Extremes in Dynamically Downscaled Climate Scenarios over the Greater Horn of Africa. Atmosphere 2018, 9, 112. [Google Scholar] [CrossRef] [Green Version]
- Gamal, G. Future Analysis of Extreme Temperature Indices for Sinai Peninsula-Egypt. Imp. J. Interdiscip. Res. (IJIR) 2017, 3, 1960–1966. [Google Scholar]
- Saini, D.; Singh, O.; Bhardwaj, P. Standardized precipitation index based dry and wet conditions over a dryland ecosystem of northwestern India. Geol. Ecol. Landsc. 2020, 6, 1–13. [Google Scholar] [CrossRef]
- Saada, N.; Abu-Romman, A. Multi-site Modeling and Simulation of the Standardized Precipitation Index (SPI) in Jordan. J. Hydrol. Reg. Stud. 2017, 14, 83–91. [Google Scholar] [CrossRef]
- Kumar, S.; Gautam, S. Assessment of Drought by Using Standardized Precipitation Index (SPI). 2021. Available online: http://www.thepharmajournal.com (accessed on 9 September 2021).
- Butu, H.M.; Seo, Y.; Huh, J.S. Determining Extremes for Future Precipitation in Republic of Korea Based on RCP Scenarios Using Non-Parametric SPI. Sustainability 2020, 12, 963. [Google Scholar] [CrossRef] [Green Version]
- Jenkins, K.; Warren, R. Quantifying the impact of climate change on drought regimes using the Standardised Precipitation Index. Theor. Appl. Clim. 2014, 120, 41–54. [Google Scholar] [CrossRef] [Green Version]
- Zeybekoğlu, U.; Aktürk, G. A comparison of the China-Z Index (CZI) and the Standardized Precipitation Index (SPI) for drought assessment in the Hirfanli Dam basin in central Turkey. Arab. J. Geosci. 2021, 14, 2731. [Google Scholar] [CrossRef]
- Javanmard, S.; Emamhadi, M.; BodaghJamali, J.; Didehvarasl, A. Spatial—Temporal Analysis of Drought in Iran Using SPI During a Long—Term Period. Earth Sci. 2017, 6, 15. [Google Scholar] [CrossRef]
- Chávez, L.D.; Patricia, A.; Romero, E.; Vega, J.R. Drought Assessment in the Northern Region of Colombia Using the Standardized Precipitation Index (SPI): A Case Study in the Department of La Guajira. 2021. Available online: https://assets.researchsquare.com/files/rs-1029721/v1_covered.pdf?c=1635778188 (accessed on 1 November 2021).
- Edwards, D.C. Characteristics of 20th Century Drought in the United States at Multd7le Time Scales; Defence Technical Information Center: Fort Belvoir, VA, USA, 1997.
- Zhiña, D.; Montenegro, M.; Montalván, L.; Mendoza, D.; Contreras, J.; Campozano, L.; Avilés, A. Climate Change Influences of Temporal and Spatial Drought Variation in the Andean High Mountain Basin. Atmosphere 2019, 10, 558. [Google Scholar] [CrossRef] [Green Version]
- Tirivarombo, S.; Osupile, D.; Eliasson, P. Drought monitoring and analysis: Standardised Precipitation Evapotranspiration Index (SPEI) and Standardised Precipitation Index (SPI). Phys. Chem. Earth Parts A/B/C 2018, 106, 1–10. [Google Scholar] [CrossRef]
- Hoyos, N.; Escobar, J.; Restrepo, J.; Arango, A.; Ortiz, J. Impact of the 2010–2011 La Niña phenomenon in Colombia, South America: The human toll of an extreme weather event. Appl. Geogr. 2013, 39, 16–25. [Google Scholar] [CrossRef]
- Benitez, J.B.; Domecq, R.M. Analysis of meteorological drought episodes in Paraguay. Clim. Chang. 2014, 127, 15–25. [Google Scholar] [CrossRef]
- Chang, J.; Li, Y.; Ren, Y.; Wang, Y. Assessment of precipitation and drought variability in the Weihe River Basin, China. Arab. J. Geosci. 2016, 9, 1–16. [Google Scholar] [CrossRef]
- Ghasemi, M.M.; Mokarram, M.; Zarei, A.R. Assessing the performance of SN-SPI and SPI and the trend assessment of drought using the XI correlation technique over Iran. J. Water Clim. Chang. 2022, 13, 3152–3169. [Google Scholar] [CrossRef]
- Campozano, L.; Ballari, D.; Montenegro, M.; Aviles, A. Future Meteorological Droughts in Ecuador: Decreasing Trends and Associated Spatio-Temporal Features Derived From CMIP5 Models. Front. Earth Sci. 2020, 8, 17. [Google Scholar] [CrossRef]
SPI Value | Interpretation |
---|---|
>2.00 | Extremely Wet |
1.50 | Very Wet |
1.00 | Moderately Wet |
0.50 | Normal |
0.00 | Normal |
−0.50 | Normal |
−1.00 | Moderately Dry |
−1.50 | Severely Dry |
<−2.00 | Extremely Dry |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chaulagain, D.; Aroca, O.F.M.; Same, N.N.; Yakub, A.O.; Nsafon, B.E.K.; Suh, D.; Triolo, J.M.; Huh, J.-S. Extreme Dry and Wet Events in the Pacific Region of Colombia estimated in the 21st Century Based on the Standardized Precipitation Index and CORDEX Climate Projections. Atmosphere 2023, 14, 260. https://doi.org/10.3390/atmos14020260
Chaulagain D, Aroca OFM, Same NN, Yakub AO, Nsafon BEK, Suh D, Triolo JM, Huh J-S. Extreme Dry and Wet Events in the Pacific Region of Colombia estimated in the 21st Century Based on the Standardized Precipitation Index and CORDEX Climate Projections. Atmosphere. 2023; 14(2):260. https://doi.org/10.3390/atmos14020260
Chicago/Turabian StyleChaulagain, Deepak, Oscar Fernando Meneses Aroca, Noel Ngando Same, Abdulfatai Olatunji Yakub, Benyoh Emmanuel Kigha Nsafon, Dongjun Suh, Jin Mi Triolo, and Jeung-Soo Huh. 2023. "Extreme Dry and Wet Events in the Pacific Region of Colombia estimated in the 21st Century Based on the Standardized Precipitation Index and CORDEX Climate Projections" Atmosphere 14, no. 2: 260. https://doi.org/10.3390/atmos14020260
APA StyleChaulagain, D., Aroca, O. F. M., Same, N. N., Yakub, A. O., Nsafon, B. E. K., Suh, D., Triolo, J. M., & Huh, J.-S. (2023). Extreme Dry and Wet Events in the Pacific Region of Colombia estimated in the 21st Century Based on the Standardized Precipitation Index and CORDEX Climate Projections. Atmosphere, 14(2), 260. https://doi.org/10.3390/atmos14020260