Assessment of Rural Vulnerability to Sand and Dust Storms in Iran
Abstract
:1. Introduction
2. Materials and Methods
2.1. Methodology
- (1)
- Defining indicators as GIS layers to formulate vulnerability components;
- (2)
- Normalizing indicators based on their type of relationship (direct or inverse) with corresponding component;
- (3)
- Weighting indicators based on expert knowledge to involve their relative importance in GIS-MCDA modeling;
- (4)
- Creating a vulnerability map by combining components; and
- (5)
- Analyzing the sensitivity of the spatial pattern of the vulnerability levels to changes in the component’s weights.
2.1.1. Vulnerability Indicators
Component | Indicator | Description | Time Scale | Relationship | BWM Weight | Data Source | Reference |
---|---|---|---|---|---|---|---|
Exposure | Precipitation (Pr) | Average annual cumulative precipitation | 2000–2021 | - | 0.331 | TerraClimate | [54,55] |
Air temperature (AT) | Average annual air temperature | 2000–2021 | + | 0.169 | FLDAS | ||
Aerosol optical depth (AOD) | Average AOD as a measure of the columnar atmospheric aerosol concentration | 2000–2021 | + | 0.331 | MODIS-Terra/Aqua | [16,56] | |
Visibility (Vis) | It is the measure of the distance at which an object can be clearly observed by unaided eye | 2000–2021 | - | 0.169 | Meteorological stations | [57] | |
Sensitivity | Occupancy (Occ) | Ratio of people per dwelling | 2016 | + | 0.252 | Population and Housing Censuses | [58,59,60] |
Female-headed households (FHH) | Ratio of Female-headed households to total female population | 2016 | + | 0.224 | Population and Housing Censuses | [43,54,60] | |
Elderly (El) | Ratio of >65 years old to total population | 2016 | + | 0.125 | Population and Housing Censuses | [55] | |
Children (Ch) | Ratio of 0–4 age group to total population | 2016 | + | 0.399 | Population and Housing Censuses | ||
Adaptive Capacity | Literacy (Lit) | Ratio of literate people to rural population >6 years old | 2016 | + | 0.050 | Population and Housing Censuses | [54,60,61] |
Active population (AP) | Ratio of 15–64 age group to total population | 2016 | + | 0.150 | Population and Housing Censuses | [62] | |
Labor force participation rate (LFPR) | Ratio of labor force to active population | 2016 | + | 0.088 | Population and Housing Censuses | [63] | |
Bank (Ba) | Ratio of banks to 10,000 people | 2016 | + | 0.032 | Statistical yearbook of Iran | [58,60] | |
Women’s rural funds (WRF) | Ratio of women’s rural funds to 10,000 people | 2019 | + | 0.040 | Agricultural Research Education and Extension Organization (AREEO) | - | |
Membership in cooperative companies (MCC) | Ratio of rural cooperative companies to 10,000 people | 2016 | + | 0.040 | Statistical yearbook of Iran | [64] | |
Road (Ro) | Ratio of rural asphalt roads to total rural roads | 2016 | + | 0.105 | Statistical yearbook of Iran | [54,61,64] | |
Agricultural machinery (AM) | Ratio of number of combine harvester + tractor to agricultural land to county area | 2016 | + | 0.095 | Statistical yearbook of Iran | - | |
Agricultural yield (AY) | Ratio of agricultural production to cultivated area | 2018 | + | 0.075 | AREEO | - | |
Livestock per capita (LPC) | Ratio of livestock to population | 2016 | + | 0.092 | Statistical yearbook of Iran | [60] | |
Irrigated cropland area (ICA) | Ratio of irrigated lands to croplands to county area | 2018 | + | 0.033 | AREEO | [61] | |
Rural health centers (RHC) | Number of rural health centers per 10,000 population | 2016 | + | 0.067 | Statistical yearbook of Iran | [54,60] | |
Rural health houses (RHH) | Number of health houses per 1000 population | 2016 | + | 0.133 | Statistical yearbook of Iran |
2.1.2. GIS-MCDA Weighting
2.1.3. Indicator Normalization
2.1.4. GIS-Based SDS Vulnerability Mapping
2.1.5. Sensitivity Analysis
3. Results and Discussion
3.1. Vulnerability Indicator
3.2. Best-Worst Method
3.3. Vulnerability Components
3.4. Iran’s Rural Vulnerability to SDS
3.5. Sensitivity Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Darvishi Boloorani, A.; Papi, R.; Soleimani, M.; Karami, L.; Amiri, F.; Neysani Samany, N. Water bodies changes in Tigris and Euphrates basin has impacted dust storms phenomena. Aeolian Res. 2021, 50, 100698. [Google Scholar] [CrossRef]
- Darvishi Boloorani, A.; Neysani Samany, N.; Papi, R.; Soleimani, M. Dust source susceptibility mapping in Tigris and Euphrates basin using remotely sensed imagery. Catena 2021, 209, 105795. [Google Scholar] [CrossRef]
- Al-Hemoud, A.; Al-Dousari, A.; Al-Shatti, A.; Al-Khayat, A.; Behbehani, W.; Malak, M. Health Impact Assessment Associated with Exposure to PM10 and Dust Storms in Kuwait. Atmosphere 2018, 9, 6. [Google Scholar] [CrossRef] [Green Version]
- Soleimani, Z.; Darvishi Boloorani, A.; Khalifeh, R.; Griffin, W.D.; Mesdaghinia, A. Short-term effects of ambient air pollution and cardiovascular events in Shiraz, Iran, 2009 to 2015. Environ. Sci. Pollut. Res. 2019, 26, 6359–6367. [Google Scholar] [CrossRef]
- Soleimani, Z.; Teymouri, P.; Darvishi Boloorani, A.; Mesdaghinia, A.; Middleton, N.; Griffin, D.W. An overview of bioaerosol load and health impacts associated with dust storms: A focus on the Middle East. Atmos. Environ. 2019, 223, 117187. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, L.; Tong, D.Q.; Wu, G.; Dan, M.; Teng, B. A Systematic Review of Global Desert Dust and Associated Human Health Effects. Atmosphere. 2016, 7, 158. [Google Scholar] [CrossRef] [Green Version]
- Darvishi Boloorani, A.; Ranjbareslamloo, S.; Mirzaie, S.; Bahrami, H.A.; Mirzapour, F.; Tehrani, N.A. Spectral behavior of Persian oak under compound stress of water deficit and dust storm. Int. J. Appl. Earth Obs. Geoinf. 2020, 88, 102082. [Google Scholar] [CrossRef]
- Middleton, N.J. Desert dust hazards: A global review. Aeolian Res. 2017, 24, 53–63. [Google Scholar] [CrossRef]
- Kalderon-Asael, B.; Erel, Y.; Sandler, A.; Dayan, U. Mineralogical and chemical characterization of suspended atmospheric particles over the east Mediterranean based on synoptic-scale circulation patterns. Atmospheric Environ. 2009, 43, 3963–3970. [Google Scholar] [CrossRef]
- Prospero, J.M.; Ginoux, P.; Torres, O.; Nicholson, S.E.; Gill, T.E. Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product. Rev. Geophys. 2002, 40, 2-1–2-31. [Google Scholar] [CrossRef]
- Melville, C. Meteorological hazards and disasters in Iran: A preliminary survey to 1950. Iran 1984, 22, 113–150. Available online: https://www.tandfonline.com/doi/citedby/10.1080/05786967.1984.11834302?scroll=top&needAccess=true (accessed on 15 April 2022). [CrossRef]
- Mesgaran, M.B.; Madani, K.; Hashemi, H.; Azadi, P. Iran’s land suitability for agriculture. Sci. Rep. 2017, 7, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Dameneh, H.E.; Gholami, H.; Telfer, M.W.; Comino, J.R.; Collins, A.L.; Jansen, J.D. Desertification of Iran in the early twenty-first century: Assessment using climate and vegetation indices. Sci. Rep. 2021, 11, 1–18. [Google Scholar]
- Darvishi Boloorani, A.; Najafi, M.S.; Soleimani, M.; Papi, R.; Torabi, O. Influence of Hamoun Lakes’ dry conditions on dust emission and radiative forcing over Sistan plain, Iran. Atmos. Res. 2022, 272, 106152. [Google Scholar] [CrossRef]
- Rashki, A.; Middleton, N.J.; Goudie, A.S. Dust storms in Iran–Distribution, causes, frequencies and impacts. Aeolian Res. 2021, 48, 100655. [Google Scholar] [CrossRef]
- Papi, R.; Kakroodi, A.; Soleimani, M.; Karami, L.; Amiri, F.; Alavipanah, S.K. Identifying sand and dust storm sources using spatial-temporal analysis of remote sensing data in Central Iran. Ecol. Inform. 2022, 70, 101724. [Google Scholar] [CrossRef]
- Hamzeh, N.H.; Kaskaoutis, D.G.; Rashki, A.; Mohammadpour, K. Long-Term Variability of Dust Events in Southwestern Iran and Its Relationship with the Drought. Atmosphere 2021, 12, 1350. [Google Scholar] [CrossRef]
- Al-Dousari, A.; Omar, A.; Al-Hemoud, A.; Aba, A.; Alrashedi, M.; Alrawi, M.; Rashki, A.; Petrov, P.; Ahmed, M.; Al-Dousari, N.; et al. A Success Story in Controlling Sand and Dust Storms Hotspots in the Middle East. Atmosphere 2022, 13, 1335. [Google Scholar] [CrossRef]
- Cao, H.; Liu, J.; Wang, G.; Yang, G.; Luo, L. Identification of sand and dust storm source areas in Iran. J. Arid. Land. 2015, 7, 567–578. [Google Scholar] [CrossRef]
- Alijani, B. Iran’s Weather; Payame Noor University Publishers: Tehran, Persian, 1997. [Google Scholar]
- Vaghefi, S.A.; Keykhai, M.; Jahanbakhshi, F.; Sheikholeslami, J.; Ahmadi, A.; Yang, H.; Abbaspour, K.C. The future of extreme climate in Iran. Sci. Rep. 2019, 9, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Madani, K.; AghaKouchak, A.; Mirchi, A. Iran’s Socio-economic Drought: Challenges of a Water-Bankrupt Nation. Iran. Stud. 2016, 49, 997–1016. [Google Scholar] [CrossRef]
- Nazari, B.; Liaghat, A.; Akbari, M.R.; Keshavarz, M. Irrigation water management in Iran: Implications for water use efficiency improvement. Agric. Water Manag. 2018, 208, 7–18. [Google Scholar] [CrossRef]
- Mostafavi-Dehzooei, M.H.; Asadi, G. The effects of precipitation shocks on rural labor markets and migration. Agric. Appl. Econ. 2019. [Google Scholar] [CrossRef]
- Statistical Centre of Iran. 2016. Available online: www.amar.org.ir/english (accessed on 8 March 2022).
- Bigdeli Rad, V.; Maleki, S. Identification of Effective Criteria on Social and Economic Sustainability in Rural Areas of Iran. Hum. Geogr. Res. 2020, 52, 147–163. [Google Scholar]
- Kc, B.; Shepherd, J.M.; Gaither, C.J. Climate change vulnerability assessment in Georgia. Appl. Geogr. 2015, 62, 62–74. [Google Scholar] [CrossRef]
- Shi, Z.; Shao, L.; Jones, T.P.; Lu, S. Microscopy and mineralogy of airborne particles collected during severe dust storm episodes in Beijing, China. J. Geophys. Res. Atmos. 2005, 110. [Google Scholar] [CrossRef] [Green Version]
- Khaledi, K. Estimating the Economic Losses of Dust Storms on Agriculture Sector in the Western Provinces of the Iran. Agric. Econ. Dev. 2017, 24, 151–183. Available online: http://aead.agri-peri.ac.ir/article_59057.html (accessed on 20 March 2022).
- Maleki, T.; Sahraie, M.; Sasani, F.; Shahmoradi, M. Impact of Dust Storm on Agricultural Production in Iran. Int. J. Agric. Sci. Res. Technol. Ext. Educ. Syst. 2017, 7, 19–26. [Google Scholar]
- Birkmann, J.; Welle, T. The WorldRiskIndex 2016: Reveals the Necessity for Regional Cooperation in Vulnerability Reduction. J. Extreme Events 2016, 3, 1650005. [Google Scholar] [CrossRef] [Green Version]
- Jamshed, A.; Rana, I.A.; Birkmann, J.; Nadeem, O. Changes in Vulnerability and Response Capacities of Rural Communities After Extreme Events: Case of Major Floods of 2010 and 2014 in Pakistan. J. Extreme Events 2017, 4, 1750013. [Google Scholar] [CrossRef]
- Xu, X.; Wang, L.; Sun, M.; Fu, C.; Bai, Y.; Li, C.; Zhang, L. Climate change vulnerability assessment for smallholder farmers in China: An extended framework. J. Environ. Manag. 2020, 276, 111315. [Google Scholar] [CrossRef]
- Jamshidi, O.; Asadi, A.; Kalantari, K.; Azadi, H.; Scheffran, J. Vulnerability to climate change of smallholder farmers in the Hamadan province, Iran. Clim. Risk Manag. 2018, 23, 146–159. [Google Scholar] [CrossRef]
- Murthy, C.S.; Laxman, B.; Sai, M.V.R.S. Geospatial analysis of agricultural drought vulnerability using a composite index based on exposure, sensitivity and adaptive capacity. Int. J. Disaster Risk Reduct. 2015, 12, 163–171. [Google Scholar] [CrossRef]
- Cutter, S.L.; Finch, C. Temporal and spatial changes in social vulnerability to natural hazards. Proc. Natl. Acad. Sci. USA 2008, 105, 2301–2306. [Google Scholar] [CrossRef]
- Crane, T.A.; Delaney, A.; Tamás, P.A.; Chesterman, S.; Ericksen, P. A systematic review of local vulnerability to climate change in developing country agriculture. WIREs Clim. Chang. 2017, 8. [Google Scholar] [CrossRef]
- Gupta, A.K.; Negi, M.; Nandy, S.; Alatalo, J.M.; Singh, V.; Pandey, R. Assessing the vulnerability of socio-environmental systems to climate change along an altitude gradient in the Indian Himalayas. Ecol. Indic. 2019, 106. [Google Scholar] [CrossRef]
- Soares, M.B.; Gagnon, A.S.; Doherty, R.M. Conceptual elements of climate change vulnerability assessments: A review. Int. J. Clim. Chang. Strat. Manag. 2012, 4, 6–35. [Google Scholar] [CrossRef]
- Hinkel, J. Indicators of vulnerability and adaptive capacity’: Towards a clarification of the science–policy interface. Glob. Environ. Chang. 2011, 21, 198–208. [Google Scholar] [CrossRef]
- Rød, J.K.; Berthling, I.; Lein, H.; Lujala, P.; Vatne, G.; Bye, L.M. Integrated vulnerability mapping for wards in Mid-Norway. Local Environ. 2012, 17, 695–716. [Google Scholar] [CrossRef]
- Reed, M.S.; Podestá, G.; Fazey, I.; Geeson, N.; Hessel, R.; Hubacek, K.; Letson, D.; Nainggolan, D.; Prell, C.; Rickenbach, M.G.; et al. Combining analytical frameworks to assess livelihood vulnerability to climate change and analyse adaptation options. Ecol. Econ. 2013, 94, 66–77. [Google Scholar] [CrossRef] [Green Version]
- Wiréhn, L.; Danielsson, Å.; Neset, T.-S.S. Assessment of composite index methods for agricultural vulnerability to climate change. J. Environ. Manag. 2015, 156, 70–80. [Google Scholar] [CrossRef]
- Smith, E.F.; Keys, N.; Lieske, S.N.; Smith, T.F. Assessing Socio-Economic Vulnerability to Climate Change Impacts and Environmental Hazards in New South Wales and Queensland, Australia. Geogr. Res. 2015, 53, 451–465. [Google Scholar] [CrossRef] [Green Version]
- Edmonds, H.; Lovell, J.; Lovell, C. A new composite climate change vulnerability index. Ecol. Indic. 2020, 117, 106529. [Google Scholar] [CrossRef]
- Atampugre, G.; Nursey-Bray, M.; Adade, R. Using geospatial techniques to assess climate risks in savannah agroecological systems. Remote. Sens. Appl. Soc. Environ. 2019, 14, 100–107. [Google Scholar] [CrossRef]
- Sivakumar, V.L.; Krishnappa, R.R.; Nallanathel, M. Drought vulnerability assessment and mapping using Multi-Criteria decision making (MCDM) and application of Analytic Hierarchy process (AHP) for Namakkal District, Tamilnadu, India. Mater. Today Proc. 2020, 43, 1592–1599. [Google Scholar] [CrossRef]
- Rincón, D.; Khan, U.T.; Armenakis, C. Flood Risk Mapping Using GIS and Multi-Criteria Analysis: A Greater Toronto Area Case Study. Geosciences 2018, 8, 275. [Google Scholar] [CrossRef] [Green Version]
- Michael, E.A.; Samanta, S. Landslide vulnerability mapping (LVM) using weighted linear combination (WLC) model through remote sensing and GIS techniques. Model. Earth Syst. Environ. 2016, 2, 88. [Google Scholar] [CrossRef] [Green Version]
- Darvishi Boloorani, A.; Nadizadeh Shorabeh, S.; Neysani Samany, N.; Mousivand, A.; Kazemi, Y.; Jaafarzadeh, N.; Zahedi, A.; Rabiei, J. Vulnerability mapping and risk analysis of sand and dust storms in Ahvaz, IRAN. Environ. Pollut. 2021, 279, 116859. [Google Scholar] [CrossRef]
- Pachauri, R.K.; Reisinger, A. IPCC Fourth Assessment Report; IPCC: Geneva, Switzerland, 2007. [Google Scholar]
- Antwi-Agyei, P.; Fraser, E.D.G.; Dougill, A.J.; Stringer, L.C.; Simelton, E. Mapping the vulnerability of crop production to drought in Ghana using rainfall, yield and socioeconomic data. Appl. Geogr. 2012, 32, 324–334. [Google Scholar] [CrossRef]
- Adger, W.N.; Agnew, M. New Indicators of Vulnerability and Adaptive Capacity; Technical Report; Tyndall Centre for Climate Change Research: Norwich, UK, 2004; Volume 122. [Google Scholar]
- Ahumada-Cervantes, R.; Velázquez-Angulo, G.; Rodríguez-Gallegos, H.B.; Flores-Tavizón, E.; Félix-Gastélum, R.; Romero-González, J.; Granados-Olivas, A. An indicator tool for assessing local vulnerability to climate change in the Mexican agricultural sector. Mitig. Adapt. Strat. Glob. Chang. 2015, 22, 137–152. [Google Scholar] [CrossRef]
- El-Zein, A.; Tonmoy, F.N. Assessment of vulnerability to climate change using a multi-criteria outranking approach with application to heat stress in Sydney. Ecol. Indic. 2015, 48, 207–217. [Google Scholar] [CrossRef] [Green Version]
- Soleimani, M.; Argany, M.; Papi, R.; Amiri, F. Satellite aerosol optical depth prediction using data mining of climate parameters. Phys Geog Res. 2021, 53, 319–333. [Google Scholar] [CrossRef]
- Eshghizadeh, M. Determining the critical geographical directions of sand and dust storms in urban areas by remote sensing. Remote. Sens. Appl. Soc. Environ. 2021, 23, 100561. [Google Scholar] [CrossRef]
- Ghosh, M.; Ghosal, S. Climate change vulnerability of rural households in flood-prone areas of Himalayan foothills, West Bengal, India. Environ. Dev. Sustain. 2021, 23, 2570–2595. [Google Scholar] [CrossRef]
- Baum, S.; Horton, S.; Choy, D.L. Local urban communities and extreme weather events: Mapping social vulnerability to flood,” Australas. J. Reg. Stud. 2008, 14, 251–273. [Google Scholar]
- Maiti, S.; Jha, S.K.; Garai, S.; Nag, A.; Chakravarty, R.; Kadian, K.S.; Chandel, B.; Datta, K.K.; Upadhyay, R.C. Assessment of social vulnerability to climate change in the eastern coast of India. Clim. Chang. 2015, 131, 287–306. [Google Scholar] [CrossRef]
- Shukla, R.; Sachdeva, K.; Joshi, P. Inherent vulnerability of agricultural communities in Himalaya: A village-level hotspot analysis in the Uttarakhand state of India. Appl. Geogr. 2016, 74, 182–198. [Google Scholar] [CrossRef]
- Reardon, T.; Stamoulis, K.; Pingali, P. Rural nonfarm employment in developing countries in an era of globalization. Agric. Econ. 2007, 37, 173–183. [Google Scholar] [CrossRef]
- Arthurson, K.; Baum, S. Making space for social inclusion in conceptualising climate change vulnerability. Local Environ. 2013, 20, 1–17. [Google Scholar] [CrossRef]
- Choden, K.; Keenan, R.J.; Nitschke, C.R. An approach for assessing adaptive capacity to climate change in resource dependent communities in the Nikachu watershed, Bhutan. Ecol. Indic. 2020, 114, 106293. [Google Scholar] [CrossRef]
- Stafford, S.; Abramowitz, J. An analysis of methods for identifying social vulnerability to climate change and sea level rise: A case study of Hampton Roads, Virginia. Nat. Hazards 2016, 85, 1089–1117. [Google Scholar] [CrossRef]
- Peng, J.; Zhang, J. Urban flooding risk assessment based on GIS- game theory combination weight: A case study of Zhengzhou City. Int. J. Disaster Risk Reduct. 2022, 77. [Google Scholar] [CrossRef]
- Rezaei, J. Best-worst multi-criteria decision-making method. Omega 2015, 53, 49–57. [Google Scholar] [CrossRef]
- Saaty, T.L. The Analytical Hierarchy Process, Planning, Priority; RWS Publications: Pittsburgh, PA, USA, 1980. [Google Scholar]
- Jelokhani-Niaraki, M.; Hajiloo, F.; Samany, N.N. A Web-based Public Participation GIS for assessing the age-friendliness of cities: A case study in Tehran, Iran. Cities 2019, 95, 102471. [Google Scholar] [CrossRef]
- Boroushaki, S.; Malczewski, J. Using the fuzzy majority approach for GIS-based multicriteria group decision-making. Comput. Geosci. 2010, 36, 302–312. [Google Scholar] [CrossRef]
- Saisana, M.; Tarantola, S. State-of-the-Art Report on Current Methodologies and Practices for Composite Indicator Development; European Commission, Joint Research Centre, Institute for the Protection and the Security of the Citizen, Technological and Economic Risk Management Unit: Ispra, Italy, 2002; Volume 214, pp. 4–15. [Google Scholar]
- Wickramasinghe, M.R.C.P.; De Silva, R.P.; Dayawansa, N.D.K. Climate Change Vulnerability in Agriculture Sector: An Assessment and Mapping at Divisional Secretariat Level in Sri Lanka. Earth Syst. Environ. 2021, 5, 725–738. [Google Scholar] [CrossRef]
- Darvishi Boloorani, A.; Kazemi, Y.; Sadeghi, A.; Shorabeh, S.N.; Argany, M. Identification of dust sources using long term satellite and climatic data: A case study of Tigris and Euphrates basin. Atmospheric Environ. 2020, 224, 117299. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Z.; Tang, Z.; Zeng, G. A GIS-based spatial multi-criteria approach for flood risk assessment in the Dongting Lake Region, Hunan, Central China. Water Resour. Manag. 2011, 25, 3465–3484. [Google Scholar] [CrossRef]
- Malczewski, J. On the Use of Weighted Linear Combination Method in GIS: Common and Best Practice Approaches. Trans. GIS 2000, 4, 5–22. [Google Scholar] [CrossRef]
- Neisi, A. A survey on the human development index in the Provinces of Iran. Jundishapur J. Health Sci. 2010, 2, 55–62. [Google Scholar]
- Das, S.; Ghosh, A.; Hazra, S.; Ghosh, T.; de Campos, R.S.; Samanta, S. Linking IPCC AR4 & AR5 frameworks for assessing vulnerability and risk to climate change in the Indian Bengal Delta. Prog. Disaster Sci. 2020, 7, 100110. [Google Scholar] [CrossRef]
- Fariza, A.; Rusydi, I.; Hasim, J.A.N.; Basofi, A. Spatial flood risk mapping in east Java, Indonesia, using analytic hierarchy process—Natural breaks classification. In Proceedings of the 2017 2nd International Conferences on Information Technology, Information Systems and Electrical Engineering (ICITISEE), Yogyakarta, Indonesia, 1–2 November 2017; pp. 406–411. [Google Scholar] [CrossRef]
- Samadi, M.; Darvishi Boloorani, A.; Alavipanah, S.K.; Mohamadi, H.; Najafi, M.S. Global dust Detection Index (GDDI); a new remotely sensed methodology for dust storms detection. J. Environ. Health Sci. Eng. 2014, 12, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papi, R.; Attarchi, S.; Darvishi Boloorani, A.; Neysani Samany, N. Characterization of Hydrologic Sand and Dust Storm Sources in the Middle East. Sustainability 2022, 14, 15352. [Google Scholar] [CrossRef]
- Middleton, N.; Kang, U. Sand and Dust Storms: Impact Mitigation. Sustainability 2017, 9, 1053. [Google Scholar] [CrossRef] [Green Version]
- Darvishi Boloorani, A.; Marghmaleki, S.N.; Soleimani, M.; Papi, R.; Kardan Moghaddam, H.; Neysani Samany, N. Development of a scenario-based approach using game theory for the restoration of Hawizeh Marsh and dust mitigation. Hydrol. Sci. J. 2022, 131–147. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Darvishi Boloorani, A.; Soleimani, M.; Neysani Samany, N.; Bakhtiari, M.; Qareqani, M.; Papi, R.; Mirzaei, S. Assessment of Rural Vulnerability to Sand and Dust Storms in Iran. Atmosphere 2023, 14, 281. https://doi.org/10.3390/atmos14020281
Darvishi Boloorani A, Soleimani M, Neysani Samany N, Bakhtiari M, Qareqani M, Papi R, Mirzaei S. Assessment of Rural Vulnerability to Sand and Dust Storms in Iran. Atmosphere. 2023; 14(2):281. https://doi.org/10.3390/atmos14020281
Chicago/Turabian StyleDarvishi Boloorani, Ali, Masoud Soleimani, Najmeh Neysani Samany, Mohsen Bakhtiari, Masomeh Qareqani, Ramin Papi, and Saham Mirzaei. 2023. "Assessment of Rural Vulnerability to Sand and Dust Storms in Iran" Atmosphere 14, no. 2: 281. https://doi.org/10.3390/atmos14020281
APA StyleDarvishi Boloorani, A., Soleimani, M., Neysani Samany, N., Bakhtiari, M., Qareqani, M., Papi, R., & Mirzaei, S. (2023). Assessment of Rural Vulnerability to Sand and Dust Storms in Iran. Atmosphere, 14(2), 281. https://doi.org/10.3390/atmos14020281