Recognition of Damage Types of Chinese Gray-Brick Ancient Buildings Based on Machine Learning—Taking the Macau World Heritage Buffer Zone as an Example
Abstract
:1. Introduction
1.1. Research Background
1.2. Literature Review
1.3. Problem Statement and Objectives
- (1)
- In the process of collecting data from on-site investigations and photographs, how many types of damage can the gray bricks be divided into?
- (2)
- How does machine learning help build the core technology that helps find different kinds of damage to bricks?
- (3)
- How effective is the model for training machines? How accurate is automatic detection compared to manual identification?
- (4)
- What is the result of the image recognition and analysis of the damage type of the gray brick?
2. Gray-Brick Walls and Climate Influence Factors
2.1. Material Characterization in the Gray-Brick Ancient Buildings
2.2. Analysis of Damage Types and Climatic Factors of Gray bricks
2.3. Sample Processing
3. Methods
3.1. Operational Process of Image Recognition Technology
3.2. Model Training
4. Discussion: Image Recognition and Analysis of Damaged Gray Bricks
4.1. Model Test
4.2. Model Application
4.3. Manual Validation of Models
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix B
The Consequence of Error Detection(Pictures No.) | |||||||||
a100.JPG | a262.JPG | a356.JPG | a480.JPG | a528.JPG | a631.JPG | a675.JPG | a777.JPG | a855.JPG | a919.JPG |
a1000.JPG | a265.JPG | a365.JPG | a486.JPG | a529.JPG | a632.JPG | a680.JPG | a778.JPG | a862.JPG | a925.JPG |
a103.JPG | a277.JPG | a370.JPG | a488.JPG | a535.JPG | a633.JPG | a681.JPG | a786.JPG | a865.JPG | a927.JPG |
a106.JPG | a279.JPG | a371.JPG | a489.JPG | a542.JPG | a64.JPG | a718.JPG | a790.JPG | a866.JPG | a928.JPG |
a112.JPG | a291.JPG | a385.JPG | a493.JPG | a551.JPG | a646.JPG | a719.JPG | a8.JPG | a888.JPG | a929.JPG |
a121.JPG | a3.JPG | a386.JPG | a499.JPG | a581.JPG | a653.JPG | a720.JPG | a812.JPG | a889.JPG | a931.JPG |
a14.JPG | a304.JPG | a391.JPG | a500.JPG | a586.JPG | a654.JPG | a724.JPG | a814.JPG | a890.JPG | a934.JPG |
a144.JPG | a315.JPG | a395.JPG | a503.JPG | a590.JPG | a657.JPG | a741.JPG | a824.JPG | a90.JPG | a941.JPG |
a210.JPG | a327.JPG | a396.JPG | a505.JPG | a591.JPG | a662.JPG | a745.JPG | a825.JPG | a901.JPG | a946.JPG |
a23.JPG | a340.JPG | a409.JPG | a510.JPG | a592.JPG | a666.JPG | a761.JPG | a826.JPG | a908.JPG | a949.JPG |
a247.JPG | a343.JPG | a427.JPG | a523.JPG | a617.JPG | a670.JPG | a771.JPG | a839.JPG | a909.JPG | a951.JPG |
a256.JPG | a345.JPG | a442.JPG | a526.JPG | a622.JPG | a673.JPG | a772.JPG | a842.JPG | a917.JPG | a952.JPG |
a259.JPG | a347.JPG | a465.JPG | a527.JPG | a630.JPG | a674.JPG | a775.JPG | a854.JPG | a918.JPG | a980.JPG |
a982.JPG | a983.JPG | a994.JPG | a995.JPG | a998.JPG | a999.JPG | ||||
The consequence of failed detection(pictures no.) | |||||||||
a923.JPG | a945.JPG | a979.JPG | a981.JPG | a984.JPG | a985.JPG | a990.JPG |
References
- Xia, W. An Investigation of Chinese Historical Grey Bricks of Soochow, Jiangsu and the Effect of Tung Oil Treatment. 2015. Available online: https://core.ac.uk/download/pdf/76388462.pdf (accessed on 6 February 2023).
- Zhao, P.; Zhang, X.; Qin, L.; Zhang, Y.; Zhou, L. Conservation of disappearing traditional manufacturing process for Chinese grey brick: Field survey and laboratory study. Constr. Build. Mater. 2019, 212, 531–540. [Google Scholar]
- O’Byrne, M.; Schoefs, F.; Ghosh, B.; Pakrashi, V. Texture analysis based damage detection of ageing infrastructural elements. Comput. -Aided Civ. Infrastruct. Eng. 2013, 28, 162–177. [Google Scholar] [CrossRef]
- Santos, L.A.; Flores-Colen, I.; Gomes, M.G. In-situ techniques for mechanical performance and degradation analysis of rendering walls. Restor. Build. Monum. 2013, 19, 255–266. [Google Scholar] [CrossRef]
- Gentile, C.; Gallino, N. Condition assessment and dynamic system identification of a historic suspension footbridge. Struct. Control. Health Monit. Off. J. Int. Assoc. Struct. Control. Monit. Eur. Assoc. Control. Struct. 2008, 15, 369–388. [Google Scholar] [CrossRef]
- Aras FU, A.T.; Krstevska, L.; Altay, G.; Tashkov, L. Experimental and numerical modal analyses of a historical masonry palace. Constr. Build. Mater. 2011, 25, 81–91. [Google Scholar] [CrossRef]
- Boscato, G.; Russo, S.; Ceravolo, R.; Fragonara, L.Z. Global sensitivity-based model updating for heritage structures. Comput. -Aided Civ. Infrastruct. Eng. 2015, 30, 620–635. [Google Scholar] [CrossRef]
- Boscato, G.; Dal Cin, A.; Ientile, S.; Russo, S. Optimized procedures and strategies for the dynamic monitoring of historical structures. J. Civ. Struct. Health Monit. 2016, 6, 265–289. [Google Scholar] [CrossRef]
- Isidori, D.; Concettoni, E.; Cristalli, C.; Soria, L.; Lenci, S. Proof of concept of the structural health monitoring of framed structures by a novel combined experimental and theoretical approach. Struct. Control. Health Monit. 2016, 23, 802–824. [Google Scholar] [CrossRef]
- Nishikawa, T.; Yoshida, J.; Sugiyama, T.; Fujino, Y. Concrete crack detection by multiple sequential image filtering. Comput. -Aided Civ. Infrastruct. Eng. 2012, 27, 29–47. [Google Scholar] [CrossRef]
- Yeum, C.M.; Dyke, S.J. Vision-based automated crack detection for bridge inspection. Comput. -Aided Civ. Infrastruct. Eng. 2015, 30, 759–770. [Google Scholar] [CrossRef]
- Protopapadakis, E.; Makantasis, K.; Kopsiaftis, G.; Doulamis, N.; Amditis, A. Crack Identification Via User Feedback, Convolutional Neural Networks and Laser Scanners for Tunnel Infrastructures. In Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications—Volume 4: RGB-SpectralImaging, Rome, Italy, 27–29 February 2016; pp. 725–734. [Google Scholar]
- Gopalakrishnan, K.; Khaitan, S.; Choudhary, A.; Agrawal, A. Deep convolutional neural networks with transfer learning for computer vision-based data-driven pavement distress detection. Constr. Build. Mater. 2017, 157, 322–330. [Google Scholar] [CrossRef]
- Cha, Y.J.; Choi, W.; Suh, G.; Mahmoudkhani, S.; Büyüköztürk, O. Autonomous structural visual inspection using region-based deep learning for detecting multiple damage types. Comput. -Aided Civ. Infrastruct. Eng. 2018, 33, 731–747. [Google Scholar] [CrossRef]
- Wang, N.; Zhao, X.; Zhao, P.; Zhang, Y.; Zou, Z.; Ou, J. Automatic damage detection of historic masonry buildings based on mobile deep learning. Autom. Constr. 2019, 103, 53–66. [Google Scholar] [CrossRef]
- Marín-García, D.; Bienvenido-Huertas, D.; Carretero-Ayuso, M.J.; Della Torre, S. Deep learning model for automated detection of efflorescence and its possible treatment in images of brick facades. Autom. Constr. 2023, 145, 104658. [Google Scholar] [CrossRef]
- Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. Yolov4: Optimal speed and accuracy of object detection. arXiv 2020, arXiv:2004.10934. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 37, 1904–1916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, T.Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2117–2125. [Google Scholar]
- Liu, S.; Qi, L.; Qin, H.; Shi, J.; Jia, J. Path aggregation network for instance segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 8759–8768. [Google Scholar]
No. | Type of Damage | Damage Degree (From Big to Small) | Climatic Factors |
---|---|---|---|
1 | Brick missing |
|
|
2 | Brick cracking |
|
|
3 | Bricks are attached by plants and microbes |
|
|
4 | Bricks turn yellow |
|
|
5 | Brick with stains |
|
|
No. | Type of Damage | Common Repair Methods |
---|---|---|
1 | Brick missing |
|
2 | Brick cracking |
|
3 | Bricks are attached by plants and microbes |
|
4 | Bricks turn yellow |
|
5 | Brick with stains |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, X.; Zheng, L.; Chen, Y.; Feng, J.; Zheng, J. Recognition of Damage Types of Chinese Gray-Brick Ancient Buildings Based on Machine Learning—Taking the Macau World Heritage Buffer Zone as an Example. Atmosphere 2023, 14, 346. https://doi.org/10.3390/atmos14020346
Yang X, Zheng L, Chen Y, Feng J, Zheng J. Recognition of Damage Types of Chinese Gray-Brick Ancient Buildings Based on Machine Learning—Taking the Macau World Heritage Buffer Zone as an Example. Atmosphere. 2023; 14(2):346. https://doi.org/10.3390/atmos14020346
Chicago/Turabian StyleYang, Xiaohong, Liang Zheng, Yile Chen, Jingzhao Feng, and Jianyi Zheng. 2023. "Recognition of Damage Types of Chinese Gray-Brick Ancient Buildings Based on Machine Learning—Taking the Macau World Heritage Buffer Zone as an Example" Atmosphere 14, no. 2: 346. https://doi.org/10.3390/atmos14020346
APA StyleYang, X., Zheng, L., Chen, Y., Feng, J., & Zheng, J. (2023). Recognition of Damage Types of Chinese Gray-Brick Ancient Buildings Based on Machine Learning—Taking the Macau World Heritage Buffer Zone as an Example. Atmosphere, 14(2), 346. https://doi.org/10.3390/atmos14020346