Seasonal and Diurnal Variability of Monoterpenes in the Eastern Mediterranean Atmosphere
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Site
2.2. Sample Collection
2.3. Analytical Method
2.4. Auxiliary Observations
3. Results and Discussion
3.1. Monoterpene Concentrations and Seasonality
Location | Type | Period | Method | Time | α-Pinene | Limonene | 1,8-Cineol | Reference |
---|---|---|---|---|---|---|---|---|
Anadia, Portugal | Rural | 12 & 24 August 1996 | GC-FID | day | 180 | 40 | 110 | Cerqueira et al. [26] |
night | 460 | 73 | 270 | |||||
Tábua, Portugal | Rural | 12 & 24 August 1996 | GC-FID | day | 190 | 30 | 260 | Cerqueira et al. [26] |
night | 600 | 47 | 420 | |||||
Peyrusse-Vieille, France | Rural | February–March & June–July 2009 | GC-FID-MS | winter | 16 | 30 | - | Detournay et al. [27] |
summer | 102 | 20 | ||||||
Peyrusse-Vieille, France | Rural | June–July 2009 | GC-FID-MS | 9-363 | LOD-66 | - | Detournay et al. [28] | |
Hyytiälä, Finland | Boreal forest | April 2000–April 2002 | GC-MS | winter | 48 ± 46 | bdl | bdl | Hakola et al. [23] |
spring | 62 ± 91 | bdl | bdl | |||||
summer | 104 ± 54 | 13 ± 10 | 16 ± 13 | |||||
autumn | 109 ± 88 | 13 ± 14 | bdl | |||||
Hyytiälä, Finland | Boreal forest | 2000–2003 | GC-MS | winter | 52 | 0 | 2 | Hakola et al. [24] |
spring | 69 | 0 | 1 | |||||
summer | 107 | 0 | 24 | |||||
autumn | 110 | 3 | 1 | |||||
Hyytiälä, Finland | Boreal forest | October 2010–October 2011 | GC-MS | winter day | 6 | 2 | 1 | Hakola et al. [38] |
winter afternoon | 5 | 3 | 1 | |||||
spring day | 32 | 2 | 2 | |||||
spring afternoon | 3 | 1 | 1 | |||||
summer day | 189 | 22 | 9 | |||||
summer afternoon | 71 | 7 | 12 | |||||
autumn day | 38 | 4 | 2 | |||||
autumn afternoon | 23 | 3 | 2 | |||||
Helsinki, Finland | Urban | 2009 | GC-MS | winter | 15 | 8 | 1 | Hellén et al. [52] |
spring | 17 | 3 | 2 | |||||
summer | 58 | 11 | 8 | |||||
autumn | 13 | 8 | 3 | |||||
Borneo, Malaysian | Tropical forest | April–May & June-July 2008 | GC-FID | 24 | 71 | Jones et al. [57] | ||
Amazonas, Brazil | Tropical forest | October 2015 | GC-FID | day | 330 ± 40 | 180 ± 90 | Yáñez-Serrano et al. [59] | |
night | 150 ± 50 | 180 ± 100 | ||||||
Athens, Greece | Urban | February 2016–February 2017 | GC-FID | winter | 120.5 ± 163.7 | 86.3 ± 190.6 | - | Panopoulou et al. [19] |
summer | 125.9 ± 118.7 | 27.0 ± 55.8 | ||||||
Paris, France | Suburban | July 2009 & January–February 2010 | GC-FID-MS | winter | 20 ± 52 | 15 ± 19 | W. Ait-Helal et al. [58] | |
summer | 48 ± 45 | 16 ± 16 | ||||||
Italy, Castelporziano | Rural | May–June 2007 | PRT-MS | 130–300 (monoterpenes) | Davinson et al. [35] | |||
Greece, Pertouli | Temperate forest | July–August 1997 | GC-FID | summer | ≤2000 | ≤1500 | ≤500 | Harrison et al. [56] |
Corsica | Coastal | June 2012–June 2014 | GC-FID | Annual | 68.3 ± 109.7 | 34.2 ± 54.0 | Debevec et al. [53] | |
winter | 18.0 ± 18.0 | 18.0 ± 18.0 | ||||||
spring | 54.0 ± 161.9 | 18.0 ± 71.9 | ||||||
summer | 125.9 ± 89.9 | 71.9 ± 36.0 | ||||||
autumn | 89.9 ± 89.9 | 54.0 ± 54.0 | ||||||
Cyprus | Background rural | March 2015 | GC-FID | winter | 59.3 | Debevec et al. [54] | ||
Cyprus | Forests and Macchia | March 2015 | GC-FID | 24 h | 58 ± 131 | 27 | Debevec et al. [55] | |
Finokalia, Crete, Greece | Coastal | March 2014–April 2025 | GC-FID | winter | 7.5 ± 3.4 | 31.4 ± 37.9 | 11.5 ± 9 | This study |
spring | 7.0 ± 9.8 | 33.3 ± 60.6 | 20.8 ± 21.6 | |||||
March 2014–April 2025 | summer | 2.4 ± 3.0 | 24.1 ± 31.2 | bdl | ||||
autumn | 5.1 ± 7.2 | 54.4 ± 41.2 | bdl |
3.2. Monoterpene Diurnal Cycles
3.3. Factor Analysis-Source Identification
3.4. Air Mass Back Trajectories Analysis
3.5. Monoterpenes and NPF
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sillman, S. The Relation between Ozone, NOx and Hydrocarbons in Urban and Polluted Rural Environments. Atmos. Environ. 1999, 33, 1821–1845. [Google Scholar] [CrossRef]
- Kleinman, L. The Dependence of Tropospheric Ozone Production Rate on Ozone Precursors. Atmos. Environ. 2005, 39, 575–586. [Google Scholar] [CrossRef]
- Kulmala, M.; Kerminen, V.-M.; Anttila, T.; Laaksonen, A.; O’Dowd, C.D. Organic Aerosol Formation via Sulphate Cluster Activation. J. Geophys. Res. Atmos. 2004, 109, D04205. [Google Scholar] [CrossRef] [Green Version]
- Tunved, P.; Hansson, H.-C.; Kerminen, V.-M.; Ström, J.; Maso, M.D.; Lihavainen, H.; Viisanen, Y.; Aalto, P.P.; Komppula, M.; Kulmala, M. High Natural Aerosol Loading over Boreal Forests. Science 2006, 312, 261–263. [Google Scholar] [CrossRef]
- Bonn, B.; Kulmala, M.; Riipinen, I.; Sihto, S.-L.; Ruuskanen, T.M. How Biogenic Terpenes Govern the Correlation between Sulfuric Acid Concentrations and New Particle Formation. J. Geophys. Res. Atmos. 2008, 113, D1220. [Google Scholar] [CrossRef]
- Climate Forcing Due to Tropospheric and Stratospheric Ozone. J. Geophys. Res. Atmos. 1999, 104, 31239–31254. [CrossRef]
- Fowler, D.; Pilegaard, K.; Sutton, M.A.; Ambus, P.; Raivonen, M.; Duyzer, J.; Simpson, D.; Fagerli, H.; Fuzzi, S.; Schjoerring, J.K.; et al. Atmospheric Composition Change: Ecosystems–Atmosphere Interactions. Atmos. Environ. 2009, 43, 5193–5267. [Google Scholar] [CrossRef]
- Lippmann, M. Health Effects of Ozone. A Critical Review. JAPCA 1989, 39, 672–695. [Google Scholar] [CrossRef] [Green Version]
- Kalkavouras, P.; Bougiatioti, A.; Kalivitis, N.; Stavroulas, I.; Tombrou, M.; Nenes, A.; Mihalopoulos, N. Regional New Particle Formation as Modulators of Cloud Condensation Nuclei and Cloud Droplet Number in the Eastern Mediterranean. Atmos. Chem. Phys. 2019, 19, 6185–6203. [Google Scholar] [CrossRef] [Green Version]
- EEA Air Quality in Europe 2022—Report, No. 05/2022; 2022.
- Guenther, A.; Karl, T.; Harley, P.; Wiedinmyer, C.; Palmer, P.I.; Geron, C. Estimates of Global Terrestrial Isoprene Emissions Using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmos. Chem. Phys. 2006, 6, 3181–3210. [Google Scholar] [CrossRef] [Green Version]
- Bourtsoukidis, E.; Pozzer, A.; Williams, J.; Makowski, D.; Penuelas, J.; Matthaios, V.; Lazoglou, G.; Yañez-Serrano, A.; Ciais, P.; Lelieveld, J.; et al. High Temperature Sensitivity of Monoterpene Emissions from Global Vegetation. Res. Sq. 2022. in preprint. [Google Scholar] [CrossRef]
- Peñuelas, J.; Llusià, J.; Asensio, D.; Munné-Bosch, S. Linking Isoprene with Plant Thermotolerance, Antioxidants and Monoterpene Emissions. Plant. Cell Environ. 2005, 28, 278–286. [Google Scholar] [CrossRef]
- Peñuelas, J.; Munné-Bosch, S. Isoprenoids: An Evolutionary Pool for Photoprotection. Trends Plant Sci. 2005, 10, 166–169. [Google Scholar] [CrossRef] [PubMed]
- Peñuelas, J.; Llusià, J. Linking Photorespiration, Monoterpenes and Thermotolerance in Quercus. New Phytol. 2002, 155, 227–237. [Google Scholar] [CrossRef] [Green Version]
- Kegge, W.; Pierik, R. Biogenic Volatile Organic Compounds and Plant Competition. Trends Plant Sci. 2010, 15, 126–132. [Google Scholar] [CrossRef] [PubMed]
- Wright, G.A.; Schiestl, F.P. The Evolution of Floral Scent: The Influence of Olfactory Learning by Insect Pollinators on the Honest Signalling of Floral Rewards. Funct. Ecol. 2009, 23, 841–851. [Google Scholar] [CrossRef] [Green Version]
- Dai, T.; Wang, W.; Ren, L.; Chen, J.; Liu, H. Emissions of Non-Methane Hydrocarbons from Cars in China. Sci. China Chem. 2010, 53, 263–272. [Google Scholar] [CrossRef]
- Panopoulou, A.; Liakakou, E.; Sauvage, S.; Gros, V.; Locoge, N.; Stavroulas, I.; Bonsang, B.; Gerasopoulos, E.; Mihalopoulos, N. Yearlong Measurements of Monoterpenes and Isoprene in a Mediterranean City (Athens): Natural vs. Anthropogenic Origin. Atmos. Environ. 2020, 243, 117803. [Google Scholar] [CrossRef]
- McDonald, B.C.; de Gouw, J.A.; Gilman, J.B.; Jathar, S.H.; Akherati, A.; Cappa, C.D.; Jimenez, J.L.; Lee-Taylor, J.; Hayes, P.L.; McKeen, S.A.; et al. Volatile Chemical Products Emerging as Largest Petrochemical Source of Urban Organic Emissions. Science 2018, 359, 760–764. [Google Scholar] [CrossRef] [Green Version]
- Pallozzi, E.; Lusini, I.; Cherubini, L.; Hajiaghayeva, R.A.; Ciccioli, P.; Calfapietra, C. Differences between a Deciduous and a Conifer Tree Species in Gaseous and Particulate Emissions from Biomass Burning. Environ. Pollut. 2018, 234, 457–467. [Google Scholar] [CrossRef]
- Simpson, I.J.; Blake, N.J.; Barletta, B.; Diskin, G.S.; Fuelberg, H.E.; Gorham, K.; Huey, L.G.; Meinardi, S.; Rowland, F.S.; Vay, S.A.; et al. Characterization of Trace Gases Measured over Alberta Oil Sands Mining Operations: 76 Speciated C2–C10 Volatile Organic Compounds (VOCs), CO2, CH4, CO, NO, NO2, NOy, O3 and SO2. Atmos. Chem. Phys. 2010, 10, 11931–11954. [Google Scholar] [CrossRef] [Green Version]
- Hakola, H.; Tarvainen, V.; Laurila, T.; Hiltunen, V.; Hellén, H.; Keronen, P. Seasonal Variation of VOC Concentrations above a Boreal Coniferous Forest. Atmos. Environ. 2003, 37, 1623–1634. [Google Scholar] [CrossRef]
- Hakola, H.; Hellén, H.; Tarvainen, V.; Bäck, J.; Patokoski, J.; Rinne, J.; Hakola, H.; Tarvainen, H.; Bäck, V. Annual Variations of Atmospheric VOC Concentrations in a Boreal Forest. Boreal Environ. Res. 2009, 14, 722–730. [Google Scholar]
- Kesselmeier, J.; Kuhn, U.; Wolf, A.; Andreae, M.O.; Ciccioli, P.; Brancaleoni, E.; Frattoni, M.; Guenther, A.; Greenberg, J.; De Castro Vasconcellos, P.; et al. Atmospheric Volatile Organic Compounds (VOC) at a Remote Tropical Forest Site in Central Amazonia. Atmos. Environ. 2000, 34, 4063–4072. [Google Scholar] [CrossRef] [Green Version]
- Cerqueira, M.A.; Pio, C.A.; Gomes, P.A.; Matos, J.S.; Nunes, T. V Volatile Organic Compounds in Rural Atmospheres of Central Portugal. Sci. Total Environ. 2003, 313, 49–60. [Google Scholar] [CrossRef] [PubMed]
- Detournay, A.; Sauvage, S.; Locoge, N.; Gaudion, V.; Leonardis, T.; Fronval, I.; Kaluzny, P.; Galloo, J.-C. Development of a Sampling Method for the Simultaneous Monitoring of Straight-Chain Alkanes, Straight-Chain Saturated Carbonyl Compounds and Monoterpenes in Remote Areas. J. Environ. Monit. 2011, 13, 983–990. [Google Scholar] [CrossRef]
- Detournay, A.; Sauvage, S.; Riffault, V.; Wroblewski, A.; Locoge, N. Source and Behavior of Isoprenoid Compounds at a Southern France Remote Site. Atmos. Environ. 2013, 77, 272–282. [Google Scholar] [CrossRef]
- Rinne, J.; Ruuskanen, T.; Reissell, A.; Taipale, R.; Hakola, H.; Kulmala, M. On-Line PTR-MS Measurements of Atmospheric Concentrations of Volatile Organic Compounds in a European Boreal Forest Ecosystem. Boreal Environ. Res. 2005, 10, 425. [Google Scholar]
- Lappalainen, H.K.; Sevanto, S.; Bäck, J.; Ruuskanen, T.M.; Kolari, P.; Taipale, R.; Rinne, J.; Kulmala, M.; Hari, P. Day-Time Concentrations of Biogenic Volatile Organic Compounds in a Boreal Forest Canopy and Their Relation to Environmental and Biological Factors. Atmos. Chem. Phys. 2009, 9, 5447–5459. [Google Scholar] [CrossRef] [Green Version]
- Spirig, C.; Neftel, A.; Ammann, C.; Dommen, J.; Grabmer, W.; Thielmann, A.; Schaub, A.; Beauchamp, J.; Wisthaler, A.; Hansel, A. Eddy Covariance Flux Measurements of Biogenic VOCs during ECHO 2003 Using Proton Transfer Reaction Mass Spectrometry. Atmos. Chem. Phys. 2005, 5, 465–481. [Google Scholar] [CrossRef] [Green Version]
- Jordan, C.; Fitz, E.; Hagan, T.; Sive, B.; Frinak, E.; Haase, K.; Cottrell, L.; Buckley, S.; Talbot, R. Long-Term Study of VOCs Measured with PTR-MS at a Rural Site in New Hampshire with Urban Influences. Atmos. Chem. Phys. 2009, 9, 4677–4697. [Google Scholar] [CrossRef] [Green Version]
- Fortner, E.C.; Zheng, J.; Zhang, R.; Berk Knighton, W.; Volkamer, R.M.; Sheehy, P.; Molina, L.; André, M. Measurements of Volatile Organic Compounds Using Proton Transfer Reaction—Mass Spectrometry during the MILAGRO 2006 Campaign. Atmos. Chem. Phys. 2009, 9, 467–481. [Google Scholar] [CrossRef] [Green Version]
- Filella, I.; Penuelas, J. Daily, Weekly, and Seasonal Time Courses of VOC Concentrations in a Semi-Urban Area Near Barcelona. Atmos. Environ. 2006, 40, 7752–7769. [Google Scholar] [CrossRef]
- Davison, B.; Taipale, R.; Langford, B.; Misztal, P.; Fares, S.; Matteucci, G.; Loreto, F.; Cape, J.N.; Rinne, J.; Hewitt, C.N. Concentrations and Fluxes of Biogenic Volatile Organic Compounds above a Mediterranean Macchia Ecosystem in Western Italy. Biogeosciences 2009, 6, 1655–1670. [Google Scholar] [CrossRef] [Green Version]
- Seco, R.; Peñuelas, J.; Filella, I.; Llusià, J.; Molowny-Horas, R.; Schallhart, S.; Metzger, A.; Müller, M.; Hansel, A. Contrasting Winter and Summer VOC Mixing Ratios at a Forest Site in the Western Mediterranean Basin: The Effect of Local Biogenic Emissions. Atmos. Chem. Phys. 2011, 11, 13161–13179. [Google Scholar] [CrossRef] [Green Version]
- Cheng, X.; Li, H.; Zhang, Y.; Li, Y.; Zhang, W.; Wang, X.; Bi, F.; Zhang, H.; Gao, J.; Chai, F.; et al. Atmospheric Isoprene and Monoterpenes in a Typical Urban Area of Beijing: Pollution Characterization, Chemical Reactivity and Source Identification. J. Environ. Sci. 2018, 71, 150–167. [Google Scholar] [CrossRef]
- Hakola, H.; Hellén, H.; Hemmilä, M.; Rinne, J.; Kulmala, M. In Situ Measurements of Volatile Organic Compounds in a Boreal Forest. Atmos. Chem. Phys. 2012, 12, 11665–11678. [Google Scholar] [CrossRef] [Green Version]
- Schade, G.W.; Goldstein, A.H. Increase of Monoterpene Emissions from a Pine Plantation as a Result of Mechanical Disturbances. Geophys. Res. Lett. 2003, 30, 1380. [Google Scholar] [CrossRef] [Green Version]
- Noe, S.M.; Peñuelas, J.; Niinemets, U. Monoterpene Emissions from Ornamental Trees in Urban Areas: A Case Study of Barcelona, Spain. Plant Biol. 2008, 10, 163–169. [Google Scholar] [CrossRef]
- Atkinson, R.; Arey, J. Gas-Phase Tropospheric Chemistry of Biogenic Volatile Organic Compounds: A Review. Atmos. Environ. 2003, 37, 197–219. [Google Scholar] [CrossRef]
- The Physical Science Basis. Summary for Policymakers. In IPCC 2022: Climate Change 2022; Masson-Delmotte, B.Z.; Zhai, V.P.; Pirani, A.; Connors, S.L.; Péan, C.; Berger, S.; Caud, N.; Chen, Y.; Goldfarb, L.; Gomis, M.I.; et al. (Eds.) Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022; Available online: https://www.klimamanifest-von-heiligenroth.de/wp/wp-content/uploads/2014/02/IPCC2013_WG1AR5_ALL_FINAL_S768_14Grad_mitTitelCover.pdf (accessed on 16 February 2023).
- Seco, R.; Peñuelas, J.; Filella, I.; Llusia, J.; Schallhart, S.; Metzger, A.; Müller, M.; Hansel, A. Volatile Organic Compounds in the Western Mediterranean Basin: Urban and Rural Winter Measurements during the DAURE Campaign. Atmos. Chem. Phys. 2013, 13, 4291–4306. [Google Scholar] [CrossRef] [Green Version]
- Mihalopoulos, N.; Stephanou, E.; Kanakidou, M.; Pilitsidis, S.; Bousquet, P. Tropospheric Aerosol Ionic Composition in the Eastern Mediterranean Region. Tellus B 1997, 49, 314–326. [Google Scholar] [CrossRef]
- Lelieveld, J.; Berresheim, H.; Borrmann, S.; Crutzen, P.J.; Dentener, F.J.; Fischer, H.; Feichter, J.; Flatau, P.J.; Heland, J.; Holzinger, R.; et al. Global Air Pollution Crossroads over the Mediterranean. Science 2002, 298, 794–799. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalivitis, N.; Kerminen, V.-M.; Kouvarakis, G.; Stavroulas, I.; Tzitzikalaki, E.; Kalkavouras, P.; Daskalakis, N.; Myriokefalitakis, S.; Bougiatioti, A.; Manninen, H.E.; et al. Formation and Growth of Atmospheric Nanoparticles in the Eastern Mediterranean: Results from Long-Term Measurements and Process Simulations. Atmos. Chem. Phys. 2019, 19, 2671–2686. [Google Scholar] [CrossRef] [Green Version]
- EPA Method TO-1. In U.S. EPA Technical Assistance Document; 1984; Volume 34.
- Woolfenden, E.A.; McClenny, W.A. Method TO-17 Determination of Volatile Organic Compounds in Ambient Air Using Active Sampling Onto Sorbent Tubes. In Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air Second Edition Compendium; Manning, J.A., Burckle, J.O., Hedges, S., McElroy, F.F., Eds.; Center for Environmental Research Information Office of Research and Development U.S. Environmental Protection Agency: Cincinnati, OH, USA, 1999; EPA/625/R-; pp. 17–49. [Google Scholar]
- Tzitzikalaki, E.; Kalivitis, N.; Panagiotopoulou, G.; Kanakidou, M. Observations of Alkylamines in the East Mediterranean Atmosphere. In Proceedings of the 15th International Conference on Meteorology, Climatology and Atmospheric Physics COMECAP, Ioannina, Greece, 26–29 September 2021; Bartzokas, A., Nastos, P., Eds.; Hellenic Meteorological Society: Ioannina, Greece, 2021; pp. 185–189. [Google Scholar]
- Paraskevopoulou, D.; Liakakou, E.; Gerasopoulos, E.; Mihalopoulos, N. Sources of Atmospheric Aerosol from Long-Term Measurements (5 years) of Chemical Composition in Athens, Greece. Sci. Total Environ. 2015, 527–528, 165–178. [Google Scholar] [CrossRef]
- Dal Maso, M.; Kulmala, M.; Riipinen, I.; Wagner, R. Formation and Growth of Fresh Atmospheric Aerosols: Eight Years of Aerosol Size Distribution Data from SMEAR II, Hyytiälä, Finland. Boreal Environ. Res. 2005, 10, 323–336. [Google Scholar]
- Hellén, H.; Tykkä, T.; Hakola, H. Importance of Monoterpenes and Isoprene in Urban Air in Northern Europe. Atmos. Environ. 2012, 59, 59–66. [Google Scholar] [CrossRef]
- Debevec, C.; Sauvage, S.; Gros, V.; Salameh, T.; Sciare, J.; Dulac, F.; Locoge, N. Seasonal Variation and Origins of Volatile Organic Compounds Observed during 2 Years at a Western Mediterranean Remote Background Site (Ersa, Cape Corsica). Atmos. Chem. Phys. 2021, 21, 1449–1484. [Google Scholar] [CrossRef]
- Debevec, C.; Sauvage, S.; Gros, V.; Sciare, J.; Pikridas, M.; Stavroulas, I.; Salameh, T.; Leonardis, T.; Gaudion, V.; Depelchin, L.; et al. Origin and Variability in Volatile Organic Compounds Observed at an Eastern Mediterranean Background Site (Cyprus). Atmos. Chem. Phys. 2017, 17, 11355–11388. [Google Scholar] [CrossRef] [Green Version]
- Debevec, C.; Sauvage, S.; Gros, V.; Sellegri, K.; Sciare, J.; Pikridas, M.; Stavroulas, I.; Leonardis, T.; Gaudion, V.; Depelchin, L.; et al. Driving Parameters of Biogenic Volatile Organic Compounds and Consequences on New Particle Formation Observed at an Eastern Mediterranean Background Site. Atmos. Chem. Phys. 2018, 18, 14297–14325. [Google Scholar] [CrossRef] [Green Version]
- Harrison, D.; Hunter, M.C.; Lewis, A.C.; Seakins, P.W.; Bonsang, B.; Gros, V.; Kanakidou, M.; Touaty, M.; Kavouras, I.; Mihalopoulos, N.; et al. Ambient Isoprene and Monoterpene Concentrations in a Greek Fir (Abies Borisii-Regis) Forest. Reconciliation with Emissions Measurements and Effects on Measured OH Concentrations. Atmos. Environ. 2001, 35, 4699–4711. [Google Scholar] [CrossRef]
- Jones, C.; Hopkins, J.; Lewis, A. In Situ Measurements of Isoprene and Monoterpenes within a South-East Asian Tropical Rainforest. Atmos. Chem. Phys. Discuss. 2011, 11, 6971–6984. [Google Scholar] [CrossRef] [Green Version]
- Ait-Helal, W.; Borbon, A.; Sauvage, S.; de Gouw, J.A.; Colomb, A.; Gros, V.; Freutel, F.; Crippa, M.; Afif, C.; Baltensperger, U.; et al. Volatile and Intermediate Volatility Organic Compounds in Suburban Paris: Variability, Origin and Importance for SOA Formation. Atmos. Chem. Phys. 2014, 14, 10439–10464. [Google Scholar] [CrossRef] [Green Version]
- Yáñez-Serrano, A.M.; Nölscher, A.C.; Bourtsoukidis, E.; Gomes Alves, E.; Ganzeveld, L.; Bonn, B.; Wolff, S.; Sa, M.; Yamasoe, M.; Williams, J.; et al. Monoterpene Chemical Speciation in a Tropical Rainforest:Variation with Season, Height, and Time of Dayat the Amazon Tall Tower Observatory (ATTO). Atmos. Chem. Phys. 2018, 18, 3403–3418. [Google Scholar] [CrossRef] [Green Version]
- Tsikoudi, I.; Marinou, E.; Vakkari, V.; Gialitaki, A.; Tsichla, M.; Amiridis, V.; Komppula, M.; Raptis, I.P.; Kampouri, A.; Daskalopoulou, V.; et al. PBL Height Retrievals at a Coastal Site Using Multi-Instrument Profiling Methods. Remote Sens. 2022, 14, 4057. [Google Scholar] [CrossRef]
- Hertel, O.; Skjøth, C.; Reis, S.; Bleeker, A.; Harrison, R.; Cape, J.N.; Fowler, D.; Skiba, U.; Simpson, D.; Jickells, T.; et al. Governing Processes for Reactive Nitrogen Compounds in the European Atmosphere. Biogeosciences 2012, 9, 4921–4954. [Google Scholar] [CrossRef] [Green Version]
- Draxler, R.; Hess, G. An Overview of the HYSPLIT_4 Modeling System for Trajectories, Dispersion, and Deposition. Aust. Meteorol. Mag. 1998, 47, 295–308. [Google Scholar]
α-Pinene | Limonene | 1,8-Cineol | |
---|---|---|---|
Number of samples | 345 | 345 | 345 |
Number of samples above LOD | 223 | 263 | 78 |
Average mixing ratio (ppt) | 6.1 ± 2.5 | 36.3 ± 66.1 | 16.3 ± 17.7 |
LOD (ppt) | 1.8 | 2.3 | 5.3 |
Maximum value (ppt) | 110.4 | 332.9 | 380.3 |
Factor 1 | Factor 2 | Factor 3 | Factor 4 | Factor 5 | |
---|---|---|---|---|---|
Limonene | 0.721 | ||||
α-pinene | 0.862 | ||||
NH3 | 0.820 | ||||
HCl | 0.881 | ||||
HNO3 | 0.726 | ||||
SO2 | 0.875 | ||||
Cl− | 0.966 | ||||
NO3− | 0.842 | ||||
nssSO4= | 0.893 | ||||
C2O4= | 0.643 | ||||
Na+ | 0.965 | ||||
NH4+ | 0.925 | ||||
nssK+ | 0.840 | ||||
Mg++ | 0.948 | ||||
nssCa++ | 0.940 | ||||
Variance explained% | 35.5 | 23.9 | 10.8 | 8.2 | 6.1 |
Air Mass Origin | n | α-Pinene | Limonene | 1,8-Cineol |
---|---|---|---|---|
Mixed | 43 | 6.5 (3.2) | 45.6 (32.9) | 21.3 (22.3) |
N | 100 | 5.2(3.2) | 30.9 (30.6) | 10.2 (12.8) |
NE | 64 | 8.0 (7.5) | 42.0 (49.2) | 12.3 (18.3) |
SW | 54 | 5.4 (2.1) | 46.2 (51.4) | 11.8 (13.2) |
W | 24 | 6.7 (3.9) | 15.7 (11.7) | 22.4 (24.0) |
NW | 23 | 4.5 (3.0) | 35.3 (47.0) | 12.7 (10.7) |
S | 29 | 7.8(1.3) | 25.3 (16.3) | 6.2 (1.8) |
SE | 8 | 3.9 | 8.4 | 5.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tzitzikalaki, E.; Kalivitis, N.; Kouvarakis, G.; Mihalopoulos, N.; Kanakidou, M. Seasonal and Diurnal Variability of Monoterpenes in the Eastern Mediterranean Atmosphere. Atmosphere 2023, 14, 392. https://doi.org/10.3390/atmos14020392
Tzitzikalaki E, Kalivitis N, Kouvarakis G, Mihalopoulos N, Kanakidou M. Seasonal and Diurnal Variability of Monoterpenes in the Eastern Mediterranean Atmosphere. Atmosphere. 2023; 14(2):392. https://doi.org/10.3390/atmos14020392
Chicago/Turabian StyleTzitzikalaki, Evangelia, Nikos Kalivitis, Giorgos Kouvarakis, Nikos Mihalopoulos, and Maria Kanakidou. 2023. "Seasonal and Diurnal Variability of Monoterpenes in the Eastern Mediterranean Atmosphere" Atmosphere 14, no. 2: 392. https://doi.org/10.3390/atmos14020392
APA StyleTzitzikalaki, E., Kalivitis, N., Kouvarakis, G., Mihalopoulos, N., & Kanakidou, M. (2023). Seasonal and Diurnal Variability of Monoterpenes in the Eastern Mediterranean Atmosphere. Atmosphere, 14(2), 392. https://doi.org/10.3390/atmos14020392