Effect of Major Dust Events on Ambient Temperature and Solar Irradiance Components over Saudi Arabia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Sites and Parameters
2.1.1. The Moderate Resolution Imaging Spectroradiometer (MODIS)
2.1.2. Solar Stations
2.1.3. Aerosol Optical Depth (AOD)
2.1.4. Angstrom Exponent (AE)
2.1.5. Solar Irradiance Components
2.1.6. HYSPLIT Model
3. Results and Discussion
3.1. AOD and AE Variability
3.2. Wind Patterns
3.3. Temperature Variability
3.4. Air Mass Trajectories
3.5. Solar Irradiance Variability
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Almazroui, M.; Hasanean, H.M.; Al-Khalaf, A.K.; Abdel Basset, H. Detecting climate change signals in Saudi Arabia using mean annual surface air temperatures. Theor. Appl. Climatol. 2013, 113, 585–598. [Google Scholar] [CrossRef]
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 2018, 5, 180214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patlakas, P.; Stathopoulos, C.; Flocas, H.; Kalogeri, C.; Kallos, G. Regional climatic features of the Arabian Peninsula. Atmosphere 2019, 10, 220. [Google Scholar] [CrossRef] [Green Version]
- Al-Mutairi, M.; Abdel Basset, H.; Morsy, M.; Abdeldym, A. On the effect of red sea and topography on rainfall over Saudi Arabia: Case study. Atmosphere 2019, 10, 669. [Google Scholar] [CrossRef] [Green Version]
- Patlakas, P.; Stathopoulos, C.; Flocas, H.; Bartsotas, N.S.; Kallos, G. Precipitation climatology for the arid region of the Arabian Peninsula—Variability, trends and extremes. Climate 2021, 9, 103. [Google Scholar] [CrossRef]
- Almazroui, M. Changes in temperature trends and extremes over Saudi Arabia for the period 1978–2019. Adv. Meteorol. 2020, 2020, e8828421. [Google Scholar] [CrossRef]
- Syed, F.S.; Adnan, S.; Zamreeq, A.; Ghulam, A. Identification of droughts over Saudi Arabia and global teleconnections. Nat. Hazards 2022, 112, 2717–2737. [Google Scholar] [CrossRef]
- Farahat, A. Air pollution in the Arabian Peninsula (Saudi Arabia, the United Arab Emirates, Kuwait, Qatar, Bahrain, and Oman): Causes, effects, and aerosol categorization. Arab. J. Geosci. 2016, 9, 196. [Google Scholar] [CrossRef]
- Farahat, A.; El-Askary, H.; Al-Shaibani, A. Study of Aerosols’ characteristics and dynamics over the Kingdom of Saudi Arabia using a multisensor approach combined with ground observations. Adv. Meteorol. 2015, 2015, e247531. [Google Scholar] [CrossRef] [Green Version]
- Al Otaibi, M.; Farahat, A.; Tawabini, B.; Omar, M.H.; Ramadan, E.; Abuelgasim, A.; P. Singh, R. Long-term aerosol trends and variability over central Saudi Arabia using optical characteristics from solar village aeronet measurements. Atmosphere 2019, 10, 752. [Google Scholar] [CrossRef] [Green Version]
- Labban, A. Dust storms over Saudi Arabia: Temporal and spatial characteristics, climatology and synoptic case studies. Environ. Sci. 2016. [Google Scholar] [CrossRef]
- Shalaby, A.; Rappenglueck, B.; Eltahir, E.A.B. The Climatology of Dust Aerosol over the Arabian Peninsula. Atmos. Chem. Phys. Discuss. 2015, 15, 1523–1571. [Google Scholar] [CrossRef] [Green Version]
- Gandham, H.; Dasari, H.P.; Langodan, S.; Karumuri, R.K.; Hoteit, I. Major changes in extreme dust events dynamics over the Arabian Peninsula during 2003–2017 driven by atmospheric conditions. J. Geophys. Res. Atmos. 2020, 125, e2020JD032931. [Google Scholar] [CrossRef]
- Almasoud, A.H.; Gandayh, H.M. Future of solar energy in Saudi Arabia. J. King Saud Univ. Eng. Sci. 2015, 27, 153–157. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.M.A.; Asif, M.; Stach, E. Rooftop PV potential in the residential sector of the Kingdom of Saudi Arabia. Buildings 2017, 7, 46. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.M.; Hasanuzzaman, M.; Rahim, N.A. Effects of various parameters on PV-module power and efficiency. Energy Convers. Manag. 2015, 103, 348–358. [Google Scholar] [CrossRef]
- Saudi Arabia Population (2022)-Worldometer. Available online: https://www.worldometers.info/world-population/saudi-arabia-population/ (accessed on 2 December 2022).
- Saudi Arabia Launches 5 Renewable Projects to Produce 3300 MW Energy | Arab News. Available online: https://www.arabnews.com/node/2169081/business-economy (accessed on 1 February 2023).
- Farahat, A.; Kambezidis, H.D.; Almazroui, M.; Ramadan, E. Solar potential in Saudi Arabia for southward-inclined flat-plate surfaces. Appl. Sci. 2021, 11, 4101. [Google Scholar] [CrossRef]
- Farahat, A.; Kambezidis, H.D.; Almazroui, M.; Ramadan, E. Solar energy potential on surfaces with various inclination modes in Saudi Arabia: Performance of an isotropic and an anisotropic model. Appl. Sci. 2022, 12, 5356. [Google Scholar] [CrossRef]
- Sayigh, A.A.M. Photovoltaic powered villages in Saudi Arabia. In Proceedings of the IEE Colloquium on Energy for Isolated Communities, Reading, UK, 18 May 1988; pp. 2/1–2/4. [Google Scholar]
- Parrott, B.; Carrasco Zanini, P.; Shehri, A.; Kotsovos, K.; Gereige, I. Automated, robotic dry-cleaning of solar panels in Thuwal, Saudi Arabia using a silicone rubber brush. Sol. Energy 2018, 171, 526–533. [Google Scholar] [CrossRef]
- Saudi Arabia to Build Giant Solar Power Plant-Al-Monitor: Independent, Trusted Coverage of the Middle East. Available online: https://www.al-monitor.com/originals/2022/11/saudi-arabia-build-giant-solar-power-plant (accessed on 1 February 2023).
- Life, B.S. World Largest Solar Parking Project in the Kingdom of Saudi Arabia, at HQ of Saudi Arabian Oil Company (Saudi Aramco). Available online: https://www.prnewswire.com/news-releases/world-largest-solar-parking-project-in-the-kingdom-of-saudi-arabia-at-hq-of-saudi-arabian-oil-company-saudi-aramco-119071674.html (accessed on 26 January 2023).
- Zaihidee, F.M.; Mekhilef, S.; Seyedmahmoudian, M.; Horan, B. Dust as an unalterable deteriorative factor affecting PV panel’s efficiency: Why and how. Renew. Sustain. Energy Rev. 2016, 65, 1267–1278. [Google Scholar] [CrossRef]
- Mani, M.; Pillai, R. Impact of dust on solar photovoltaic (PV) performance: Research status, challenges and recommendations. Renew. Sustain. Energy Rev. 2010, 14, 3124–3131. [Google Scholar] [CrossRef]
- Shenouda, R.; Abd-Elhady, M.S.; Kandil, H.A. A Review of dust accumulation on PV panels in the MENA and the far east regions. J. Eng. Appl. Sci. 2022, 69, 8. [Google Scholar] [CrossRef]
- A Decision Aiding Framework for Investing in Cleaning Systems for Solar Photovoltaic (PV) Power Plants in Arid Regions-Sécheresse Info. Available online: http://www.secheresse.info/spip.php?article26208 (accessed on 25 January 2023).
- AlYahya, S.; Irfan, M.A. Analysis from the new solar radiation atlas for Saudi Arabia. Sol. Energy 2016, 130, 116–127. [Google Scholar] [CrossRef]
- Rehman, S. Solar Radiation over Saudi Arabia and comparisons with empirical models. Energy 1998, 23, 1077–1082. [Google Scholar] [CrossRef]
- Zell, E.; Gasim, S.; Wilcox, S.; Katamoura, S.; Stoffel, T.; Shibli, H.; Engel-Cox, J.; Subie, M.A. Assessment of solar radiation resources in Saudi Arabia. Sol. Energy 2015, 119, 422–438. [Google Scholar] [CrossRef] [Green Version]
- Zuhairy, A.A.; Sayigh, A.A.M. Simulation and modeling of solar radiation in Saudi Arabia. Renew. Energy 1995, 6, 107–118. [Google Scholar] [CrossRef]
- El-Sebaii, A.A.; Al-Hazmi, F.S.; Al-Ghamdi, A.A.; Yaghmour, S.J. Global, direct and diffuse solar radiation on horizontal and tilted surfaces in Jeddah, Saudi Arabia. Appl. Energy 2010, 87, 568–576. [Google Scholar] [CrossRef]
- Maghrabi, A.H. Parameterization of a simple model to estimate monthly global solar radiation based on meteorological variables, and evaluation of existing solar radiation models for Tabouk, Saudi Arabia. Energy Convers. Manag. 2009, 50, 2754–2760. [Google Scholar] [CrossRef]
- Bahel, V.; Srinivasan, R.; Bakhsh, H. Solar radiation for Dhahran, Saudi Arabia. Energy 1986, 11, 985–989. [Google Scholar] [CrossRef]
- Articles. Available online: https://earthobservatory.nasa.gov/features (accessed on 26 January 2023).
- North African Sandstorm ‘Madar’ Disrupts Life in Saudi Arabia. Available online: https://www.arabnews.com/node/1070706/saudi-arabia (accessed on 1 February 2023).
- Francis, D.; Fonseca, R.; Nelli, N.; Teixido, O.; Mohamed, R.; Perry, R. Increased shamal winds and dust activity over the Arabian Peninsula during the COVID-19 lockdown period in 2020. Aeolian Res. 2022, 55, 100786. [Google Scholar] [CrossRef]
- Chaichitehrani, N.; Allahdadi, M.N. Overview of wind climatology for the gulf of Oman and the Northern Arabian Sea. Am. J. Fluid Dyn. 2018, 8, 1–9. [Google Scholar]
- Ghalib, W.A.M.; Mansoor, A.M.; Ponnappa, S.C. Environmental factors that influence the geography of yemen leading to dust and sand storms—A case Study. J. Environ. Geogr. 2021, 14, 24–37. [Google Scholar] [CrossRef]
- Mapping the Global Dust Storm Records: Review of Dust Data Sources in Supporting Modeling/Climate Study | SpringerLink. Available online: https://link.springer.com/article/10.1007/s40726-015-0008-y (accessed on 9 February 2023).
- Albugami, S.; Palmer, S.; Cinnamon, J.; Meersmans, J. Spatial and temporal variations in the incidence of dust storms in Saudi Arabia revealed from In Situ observations. Geosciences 2019, 9, 162. [Google Scholar] [CrossRef] [Green Version]
- Al-Housani, M.; Bicer, Y.; Koç, M. Experimental investigations on PV cleaning of large-scale solar power plants in desert climates: Comparison of cleaning techniques for drone retrofitting. Energy Convers. Manag. 2019, 185, 800–815. [Google Scholar] [CrossRef]
- Kazem, H.A.; Chaichan, M.T. The Effect of dust accumulation and cleaning methods on PV panels’ outcomes based on an experimental study of six locations in northern Oman. Sol. Energy 2019, 187, 30–38. [Google Scholar] [CrossRef]
- Shi, W.; Wang, M. Sea ice properties in the Bohai Sea measured by MODIS-Aqua: 1. Satellite algorithm development. J. Mar. Syst. 2012, 95, 32–40. [Google Scholar] [CrossRef]
- Mukherjee, R.; Liu, D. Downscaling MODIS spectral bands using deep learning. GISci. Remote Sens. 2021, 58, 1300–1315. [Google Scholar] [CrossRef]
- Stibig, H.-J.; Bucha, T. Feasibility Study on the Use of Medium Resolution Satellite Data for the Detection of Forest Cover Change Caused by Clear Cutting of Coniferous Forests in the Northwest of Russia: Report; EUR 21579 EN, 2005. JRC31125. Available online: https://publications.jrc.ec.europa.eu/repository/handle/JRC31125 (accessed on 25 January 2023).
- Kaufman, Y.J.; Tanré, D.; Remer, L.A.; Vermote, E.F.; Chu, A.; Holben, B.N. Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer. J. Geophys. Res. Atmos. 1997, 102, 17051–17067. [Google Scholar] [CrossRef]
- Earth Science Data Systems, N. MODIS/Terra Collection 6 Aerosol, Cloud, and Other Atmospheric Level-2 and Level-3 Products Released. Available online: https://www.earthdata.nasa.gov/news/modis-terra-collection-6-aerosol-cloud-and-other-atmospheric-level-2-and-level-3-products (accessed on 2 February 2023).
- Giovanni. Available online: https://giovanni.gsfc.nasa.gov/giovanni/ (accessed on 2 February 2023).
- Projects | King Abdullah City for Atomic and Renewable Energy. Available online: https://www.kacare.gov.sa/en/projects/Pages/atlas.aspx (accessed on 3 February 2023).
- Aerosol Optical Depth. Available online: https://earthobservatory.nasa.gov/global-maps/MODAL2_M_AER_OD (accessed on 3 February 2023).
- Earth Science Data Systems, N. Angstrom Exponent. Available online: https://www.earthdata.nasa.gov/topics/atmosphere/aerosols/aerosol-optical-depth-thickness/angstrom-exponent (accessed on 3 February 2023).
- HYSPLIT. Air Resources Laboratory. Available online: https://www.ready.noaa.gov/HYSPLIT.php (accessed on 25 January 2023).
- Pazheri, F.; Malik, N.H.; Al-Arainy, A.; Ottukulotk, S.; Othman, F.; Al-Ammar, E.; Ahamed, I. Use of renewable energy sources in Saudi Arabia through smart grid. J. Energy Power Eng. 2012, 6, 1065–1070. [Google Scholar]
- Kambezidis, H.D.; Farahat, A.; Almazroui, M.; Ramadan, E. Solar potential in Saudi Arabia for flat-plate surfaces of varying tilt tracking the sun. Appl. Sci. 2021, 11, 11564. [Google Scholar] [CrossRef]
- Alwadei, S.; Farahat, A.; Ahmed, M.; Kambezidis, H.D. Prediction of solar irradiance over the Arabian Peninsula: Satellite data, radiative transfer model, and machine learning integration approach. Appl. Sci. 2022, 12, 717. [Google Scholar] [CrossRef]
- A Sustainable Saudi Vision—Vision 2030. Available online: https://www.vision2030.gov.sa/v2030/a-sustainable-saudi-vision/ (accessed on 3 February 2023).
Date | Location | Source | |
---|---|---|---|
1 | 20 March 2017 | NW and W regions (Arar and Jeddah) | Sahara Desert |
2 | 23 April 2018 | NE (Dammam, Riyadh) regions | Iraqi and Syrian Deserts |
3 | 15 April 2021 | SW (Najran) | Yemen |
City | Solar Monitoring Station Name | Latitude °N | Longitude °E | Operating Since | Elevation (A.S.L) (m) |
---|---|---|---|---|---|
Dammam | Imam Abdulrahman Bin Faisal University | 26.39 | 50.18 | 26 May 2013 | 28 |
Hafar Al Batin | Hafar Al Batin Technical College | 28.33 | 49.95 | 6 October 2013 | 383 |
Riyadh | King Saud University | 24.72 | 46.61 | 1 November 2014 | 688 |
Jeddah | King Abdulaziz University | 21.80 | 39.72 | 4 June 2013 | 245 |
Najran | Najran University | 17.63 | 44.53 | 12 December 2013 | 1187 |
Arar | Arar Technical Institute | 31.02 | 40.90 | 20 October 2014 | 583 |
City | Temperature Variability | ||
---|---|---|---|
18–22 March 2017 (Dust Storm on 20 March) | |||
T Range °C | T1 °C | T2 °C | |
Dammam | 18–24 | −2 | −8 |
Hafar Al Batin | 14–28 | −6 | −7 |
Riyadh | 14–30 | −5 | −5.5 |
Jeddah | 22–32 | −5 | −5 |
Najran | 24–34 | +5 | +8 |
Arar | 8–27 | −10 | −6 |
21–25 April 2018 dust storm (dust storm on 23 April) | |||
Dammam | 23–36 | −3 | +4 |
Hafar Al Batin | 18–39 | −9 | −5 |
Riyadh | 20–40 | −2 | +14 |
Jeddah | 25–38 | −2 | +1 |
Najran | 22–36 | +2 | +4 |
Arar | 15–30 | −4 | −4 |
13–17 April 2021 dust storm (dust storm on 15 April) | |||
Dammam | 18–31 | +0.5 | −5 |
Hafar Al Batin | 18–33 | −4 | −3 |
Riyadh | 20–38 | −8.8 | No data |
Jeddah | No data | No data | No data |
Najran | 22–36 | −2 | +5 |
Arar | 8–32 | +10 | −5 |
City | Date | Correlation Coefficient of | ||
---|---|---|---|---|
DHI-AOD | DNI-AOD | GHI-AOD | ||
Jeddah | 19–20 March 2017 | 0.52354 | −0.5467 | −0.5954 |
Riyadh | 19–20 March 2017 | 0.75203 | −0.7495 | −0.6325 |
Riyadh | 23–24 April 2018 | 0.27226 | −0.5392 | −0.2049 |
Najran | 14–15 April 2021 | 0.9390 | −0.9016 | −0.7888 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Labban, A.; Farahat, A. Effect of Major Dust Events on Ambient Temperature and Solar Irradiance Components over Saudi Arabia. Atmosphere 2023, 14, 408. https://doi.org/10.3390/atmos14020408
Labban A, Farahat A. Effect of Major Dust Events on Ambient Temperature and Solar Irradiance Components over Saudi Arabia. Atmosphere. 2023; 14(2):408. https://doi.org/10.3390/atmos14020408
Chicago/Turabian StyleLabban, Abdulhaleem, and Ashraf Farahat. 2023. "Effect of Major Dust Events on Ambient Temperature and Solar Irradiance Components over Saudi Arabia" Atmosphere 14, no. 2: 408. https://doi.org/10.3390/atmos14020408
APA StyleLabban, A., & Farahat, A. (2023). Effect of Major Dust Events on Ambient Temperature and Solar Irradiance Components over Saudi Arabia. Atmosphere, 14(2), 408. https://doi.org/10.3390/atmos14020408