Interlaboratory Study on Brake Particle Emissions Part II: Particle Number Emissions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Tested Brakes
2.2. Testing Protocol
- The test cycle during the ILS was the WLTP-Brake cycle. The WLTP-Brake cycle is derived from real-world driving behaviour and is structured into 10 trips with 303 stops and a total distance of 192 km. Mathissen et al. discussed the details of the test cycle [33].
- The participating facilities followed a predefined test sequence using test systems that met a set of mandatory design and operational requirements. Reference Part I of this study for more details about the testing sequence [10], with the main elements given below:
- Phase 1—cooling section: a section to adjust the cooling airflow to match predefined thermal regimes measured or predicted from proving ground test data [34]. It involves one or more repetitions of Trip #10 of the WLTP-Brake cycle.
- Phase 2—bedding section: a section to precondition the brakes and stabilise their emissions behaviour. The bedding section includes five repeats of the WLTP-Brake cycle without any warm-up stops.
- Phase 3—emissions measurement section: a section to measure brake PM and PN emissions. The emissions measurement section includes three WLTP-Brake cycle repeats following the bedding section.
2.3. PN Measurement Specifications and Instrumentation
- -
- The protocol required the sampling plane to be at least five (inner) duct diameters downstream and at least two (inner) duct diameters upstream of the last flow disturbance.
- -
- A pre-classifier with a cut-off point between 2.5 and 10 μm was used to protect the PN system from contamination. The recommendation given to the labs was to use a pre-classifier with a cut-off point close to 2.5 μm.
- -
- A maximum residence time of 1.5 s was defined for the sampling line from the probe tip to the diluter to minimise coagulation. Similarly, a maximum length (L) to sample flow ratio (Q) of 60,000 s/m2 was defined to minimise diffusion losses.
- -
- When the testing facilities applied a flow splitter for connecting the diluter to the sampling probe (to measure TPN and SPN simultaneously), the recommendation was to keep the change in the flow angle to within 20° for each outlet. The particle concentration reduction factors (PCRFs) were determined with the flow splitter installed on the PN measurement system (operating at the same flows as during the measurements) for the labs that employed a y-splitter.
- -
- A diluter was used to ensure that the measured concentrations during testing would not exceed the certified linearity range of the PNC in single-count mode. The protocol [34] provided critical specifications for the diluter. The PCRF for the diluter at 15, 30, 50, and 100 nm at each operating condition was determined and reported. All testing facilities provided a calibration certificate for the diluter issued less than a year before conducting the tests.
- -
- Full-flow PNCs following the specifications of GTR 15 for 10 nm measurements were used [36]. These included a counting efficiency of 65% (±15%) at 10 nm and >90% at 15 nm and operation in single-count mode only. Most PNCs were calibrated in ISO 27,891 accredited laboratories using either emery oil or soot-like particles, as defined in GTR 15 [36]. As for the diluter, all test facilities provided a copy of the calibration certificate for the full-flow PNC.
- -
- The participating labs measured the sampling airflow of the PNC before each test using a flowmeter with a third-party calibration. The measured flows were reported at normal conditions and were required to be within 5% of the most recent PNC calibration certificate.
2.4. Test Matrix
3. Results
3.1. Test and Background Concentrations
3.2. Tunnel Flow Rate
3.3. Total and Solid Particle Number Emissions
3.4. Particle Number as a Function of Friction Work
4. Summary and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Grigoratos, T.; Martini, G. Brake Wear Particle Emissions: A Review. Environ. Sci. Pollut. Res. 2015, 22, 2491–2504. [Google Scholar] [CrossRef] [Green Version]
- Hesse, D.; Feißel, T.; Kunze, M.; Bachmann, E.; Bachmann, T.; Gramstat, S. Comparison of Methods for Sampling Particulate Emissions from Tires under Different Test Environments. Atmosphere 2022, 13, 1262. [Google Scholar] [CrossRef]
- Rienda, I.; Alves, C. Road dust resuspension: A review. Atmos. Res. 2021, 261, 105740. [Google Scholar] [CrossRef]
- National Emissions Reported to the Convention on Long-Range Transboundary Air Pollution (LRTAP Convention). Available online: https://www.eea.europa.eu/ds_resolveuid/f54753b5901e4a8591060bb4ba23c497 (accessed on 20 December 2022).
- EMEP/EEA Air Pollutant Emission Inventory Guidebook. 2019. Available online: https://www.eea.europa.eu/publications/emep-eea-guidebook-2019 (accessed on 20 December 2022).
- Grigoratos, T.; Martini, G. Non-Exhaust Traffic-Related Emissions—Brake and Tyre Wear PM: Literature Review, Publications Office. 2014. Available online: https://data.europa.eu/doi/10.2790/21481 (accessed on 20 December 2022).
- Chasapidis, L.; Grigoratos, T.; Zygogianni, A.; Tsakis, A.; Konstandopoulos, A.G. Study of Brake Wear Particle Emissions of a Minivan on a Chassis Dynamometer. Emiss. Control Sci. Technol. 2018, 4, 271–278. [Google Scholar] [CrossRef] [Green Version]
- Mellios, G.; Ntziachristos, L. Non-Exhaust Emissions: Evaporation & Brake Wear Control. 2021. Available online: https://circabc.europa.eu/sd/a/1c0efc15-8507-4797-9647-97c12d82fa28/AGVES-2021-04-08-EVAP_Non-Exh.pdf (accessed on 20 December 2022).
- Sanders, P.; Xu, N.; Dalka, T.; Maricq, M. Airborne Brake Wear Debris: Size Distributions, Composition, and a Comparison of Dynamometer and Vehicle Tests. Environ. Sci. Technol. 2003, 37, 4060–4069. [Google Scholar] [CrossRef]
- Grigoratos, T.; Mathissen, M.; Mamakos, A.; Vedula, R.T.; Agudelo, C.; Gramstat, S.; Giechaskiel, B. Interlaboratory Study on Brake Particle Emissions—Part I: Particulate Matter Mass Emissions. Under Rev. Atmos. 2023, 14, 103. [Google Scholar]
- OECD. Non-Exhaust Particulate Emissions from Road Transport: An Ignored Environmental Policy Challenge; OECD Publishing: Paris, France, 2020. [CrossRef]
- Harrison, R.; Jones, A.; Gietl, J.; Yin, J.; Green, D. Estimation of the Contributions of Brake Dust, Tire Wear, and Resuspension to Non exhaust Traffic Particles Derived from Atmospheric Measurements. Environ. Sci. Technol. 2012, 46, 6523–6529. [Google Scholar] [CrossRef]
- Grange, S.K.; Fischer, A.; Zellweger, C.; Alastuey, A.; Querol, X.; Jaffrezo, J.-L.; Weber, S.; Uzu, G.; Hueglin, C. Switzerland’s PM10 and PM 2.5 Environmental Increments Show the Importance of Non-Exhaust Emissions. Atmos. Environ. X 2021, 12, 100145. [Google Scholar] [CrossRef]
- Piscitello, A.; Bianco, C.; Casasso, A.; Sethi, R. Non-Exhaust Traffic Emissions: Sources, Characterization, and Mitigation Measures. Sci. Total Environ. 2021, 766, 144440. [Google Scholar] [CrossRef]
- Li, N.; Georas, S.; Alexis, N.; Fritz, P.; Xia, T.; Williams, M.; Horner, E.; Nel, A. A work group report on ultrafine particles (American Academy of Allergy, Asthma & Immunology): Why ambient ultrafine and engineered nanoparticles should receive special attention for possible adverse health outcomes in human subjects. J. Allergy Clin. Immunol. 2016, 138, 386–396. [Google Scholar] [PubMed] [Green Version]
- Lin, S.; Ryan, I.; Paul, S.; Deng, X.; Zhang, W.; Luo, G.; Dong, G.-H.; Nair, A.; Yu, F. Particle surface area, ultrafine particle number concentration, and cardiovascular hospitalizations. Environ. Pollut. 2022, 310, 119795. [Google Scholar] [CrossRef]
- Lin, S.; Ryan, I.; Paul, S.; Deng, X.; Zhang, W.; Luo, G.; Dong, G.-H.; Nair, A.; Yu, F. Revisiting Total Particle Number Measurements for Vehicle Exhaust Regulations. Atmosphere 2022, 13, 155. [Google Scholar] [CrossRef]
- Lähde, T.; Giechaskiel, B.; Martini, G. Development of Measurement Methodology for Sub 23 nm Particle Number (PN) Measurements. SAE Int. J. Adv. Curr. Pract. Mobil. 2021, 3, 551–560. [Google Scholar] [CrossRef]
- Giechaskiel, B.; Melas, A.; Martini, G.; Dilara, P. Overview of Vehicle Exhaust Particle Number Regulations. Processes 2021, 9, 2216. [Google Scholar] [CrossRef]
- Lähde, T.; Giechaskiel, B.; Martini, G.; Woodburn, J.; Bielaczyc, P.; Schreiber, D.; Huber, M.; Dimopoulos Eggenschwiler, P.; Fittavolini, C.; Florio, S.; et al. Reproducibility of the 10-nm Solid Particle Number Methodology for Light-Duty Vehicles Exhaust Measurements. Atmosphere 2022, 13, 872. [Google Scholar] [CrossRef]
- Niemann, H.; Winner, H.; Asbach, C.; Kaminski, H.; Frentz, G.; Milczarek, R. Influence of Disc Temperature on Ultrafine, Fine, and Coarse Particle Emissions of Passenger Car Disc Brakes with Organic and Inorganic Pad Binder Materials. Atmosphere 2020, 11, 1060. [Google Scholar] [CrossRef]
- Gramstat, S.; Mertens, T.; Waninger, R.; Lugovyy, D. Impacts on Brake Particle Emission Testing. Atmosphere 2020, 11, 1132. [Google Scholar] [CrossRef]
- Mamakos, A.; Kolbeck, K.; Arndt, M.; Schröder, T.; Bernhard, M. Particle Emissions and Disc Temperature Profiles from a Commercial Brake System Tested on a Dynamometer under Real-World Cycles. Atmosphere 2021, 12, 377. [Google Scholar] [CrossRef]
- Mathissen, M.; Grigoratos, T.; Lahde, T.; Vogt, R. Brake Wear Particle Emissions of a Passenger Car Measured on a Chassis Dynamometer. Atmosphere 2019, 10, 556. [Google Scholar] [CrossRef] [Green Version]
- Farwick zum Hagen, F.H.; Mathissen, M.; Grabiec, T.; Hennicke, T.; Rettig, M.; Grochowicz, J.; Vogt, R.; Benter, T. On-Road Vehicle Measurements of Brake Wear Particle Emissions. Atmos. Environ. 2019, 217, 116943. [Google Scholar] [CrossRef]
- Farwick zum Hagen, F.H.; Mathissen, M.; Grabiec, T.; Hennicke, T.; Rettig, M.; Grochowicz, J.; Vogt, R.; Benter, T. Study of Brake Wear Particle Emissions: Impact of Braking and Cruising Conditions. Environ. Sci. Technol. 2019, 53, 5143–5150. [Google Scholar] [CrossRef]
- Alemani, M.; Nosko, O.; Metinoz, I.; Olofsson, U. A Study on Emission of Airborne Wear Particles from Car Brake Friction Pairs. SAE Int. J. Mater. Manf. 2015, 9, 147–157. [Google Scholar] [CrossRef]
- Kukutschová, J.; Moravec, P.; Tomášek, V.; Matějka, V.; Smolík, J.; Schwarz, J.; Seidlerová, J.; Šafářová, K.; Filip, P. On Airborne Nano/Micro-Sized Wear Particles Released from Low-Metallic Automotive Brakes. Environ. Pollut. 2011, 159, 998–1006. [Google Scholar] [CrossRef]
- Nosko, O.; Olofsson, U. Effective Density of Airborne Wear Particles from Car Brake Materials. J. Aerosol Sci. 2017, 107, 94–106. [Google Scholar] [CrossRef]
- Stanard, A.; DeFries, T.; Palacios, C.; Kishan, S. Brake and Tire Wear Emissions; ERG: Concord, MA, USA, 2021. [Google Scholar]
- PMP. PMP Brake Protocol—Testing Specifications. 2021. Available online: https://wiki.unece.org/display/trans/PMP+Web+Conference+15.07.2021 (accessed on 20 December 2022).
- GRPE-2023-4e. Proposal for a New UN GTR on Laboratory Measurement of Brake Emissions for Light-Duty Vehicles. Available online: https://unece.org/transport/documents/2022/10/working-documents/iwg-pmp-proposal-new-un-gtr-laboratory-measurement (accessed on 20 December 2022).
- Mathissen, M.; Grochowicz, J.; Schmidt, C.; Vogt, R.; Farwick zum Hagen, F.; Grabiec, T.; Steven, H.; Grigoratos, T. A novel real-world braking cycle for studying brake wear particle emissions. Wear 2018, 414, 219–226. [Google Scholar] [CrossRef]
- PMP. Web Conference 15.07.2021—Transport—Vehicle Regulations—UNECE Wiki. Available online: https://wiki.unece.org/display/trans/PMP+Web+Conference+15.07.2021 (accessed on 20 December 2022).
- Grigoratos, T.; Mamakos, A.; Arndt, M.; Lugovyy, D.; Anderson, R.; Hafenmayer, C.; Moisio, M.; Vanhanen, J.; Frazee, R.; Agudelo, C.; et al. Characterization of Particle Number Setups for Measuring Brake Particle Emissions and Comparison with Exhaust Setups. Atmosphere 2023, 14, 103. [Google Scholar] [CrossRef]
- United Nations Global. Technical Regulation No. 15: United Nations Global Technical Regulation on Worldwide Harmonised Light Vehicles Test Procedures (WLTP). 2021. Available online: https://unece.org/transport/standards/transport/vehicle-regulations-wp29/global-technical-regulations-gtrs (accessed on 20 December 2022).
- Giechaskiel, B.; Casadei, S.; Mazzini, M.; Sammarco, M.; Montabone, G.; Tonelli, R.; Deana, M.; Costi, G.; Di Tanno, F.; Prati, M.V.; et al. Inter-Laboratory Correlation Exercise with Portable Emissions Measurement Systems (PEMS) on Chassis Dynamometers. Appl. Sci. 2018, 8, 2275. [Google Scholar] [CrossRef] [Green Version]
- Giechaskiel, B.; Casadei, S.; Rossi, T.; Forloni, F.; Di Domenico, A. Measurements of the Emissions of a “Golden” Vehicle at Seven Laboratories with Portable Emission Measurement Systems (PEMS). Sustainability 2021, 13, 8762. [Google Scholar] [CrossRef]
- Vasiljevic, S.; Glišović, J.; Stojanovic, B.; Stojanovic, N.; Grujic, I. The analysis of the influential parameters that cause particles formation during the braking process: A review. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2022, 236, 31–48. [Google Scholar] [CrossRef]
- Seo, H.; Park, J.; Kim, Y.C.; Lee, J.J.; Jang, H. Effect of Disc Materials on Brake Emission during Moderate-temperature Braking. Tribol. Int. 2021, 163, 107185. [Google Scholar] [CrossRef]
Brake ID | Axle | Veh. Test Mass/kg | Test Inertia/ kg·m2 | Tyre Rolling Radius/mm | Friction Material | WL/DM Ratio | Comments |
---|---|---|---|---|---|---|---|
Br1Fa | Front | 1600 | 49.3 | 315 | ECE | 88.1 | Reference brake |
Br1Fb | Front | 1600 | 49.3 | 315 | NAO | 88.1 | To compare emissions between NAO and ECE friction materials |
Br2 | Front | 1668 | 50.8 | 321 | ECE | 44.6 | Equivalent vehicle mass to Brake 1 but with 2× heavier disc |
Br3 | Front | 2623 | 112.1 | 383 | ECE | 50.7 | SUV brake segment |
Br4 | Rear | 1253 | 16.1 | 314 | - | 44.7 | Drum brake |
Br5La | Front | 2500 | 86.7 | 345 | ECE | 90.1 | Cargo van brake segment |
Br5Lb | Front | 3690 | 117.6 | 345 | ECE | 122.1 | Cargo van at 90% payload |
Pre-Classifier Cut-Off Point (μm) | Nozzle-To-Diluter L/Q (s/m2) | PN Flowsplit Angle (°) | Dilution System Applied | Particle Number Counter (PNC) | PNC’s Lower Cut-Off CE at d (nm) | PNC’s Certified Max Concentration | |
---|---|---|---|---|---|---|---|
Lab B | Not applied | * | Not applied | No | TSI 3752 | 4 nm (50%) d | 1 × 105 |
Lab C | 2.5 | 38,399 | Not applied | Yes | TSI C100 | 10 nm (73%) a | 5 × 104 b |
Lab D | 10 | * | Not applied | No | TSI 3750 | 7 nm (50%) | 5 × 104 |
Lab F | 2.5 | 1181 | 40 | Yes | TSI 3750 | 7 nm (50%) | 5 × 104 |
Lab G | 2.2 | * | 20 | No | TSI 3790A | 7 nm (50%) | 5 × 104 |
Lab H | 3.0 | * | 20 | No | TSI 3752 | 4 nm (50%) d | 1 × 105 |
Lab J | 2.5 | * | <15 | No | TSI 3790A | 10 nm (69%) a | 1 × 105 b |
Lab K | 2.5 | * | Not applied | No | TSI 3750 | 7 nm (50%) | 1 × 105 |
Lab L | 2.5 | 26,400 | Not applied | Yes c | AVL 488-10 | 10 nm (75%) a | 3 × 104 |
Lab M | 2.5 | 4010 | Not applied | Yes | TSI 3790A | 10 nm (71%) a | 1 × 104 b |
Lab N | 2.2 | 58,800 | 20 | Yes | TSI 3750 | 7 nm (50%) | 5 × 104 |
Lab P | 2.5 | 18,000 | Not applied | Yes c | TSI C100 | 10 nm (65%) | 5 × 104 |
Lab Q | 8.8 | 30,000 | Not applied | Yes | TSI 3790A | 10 nm (73%) a | 5 × 104 b |
Lab R | Not applied | * | Not applied | No | TSI C100 | 23 nm (53%) a,d | 1 × 104 b |
Lab S | 2.5 < X < 10 | 9600 | Not applied | Yes c | AVL 488-10 | 10 nm (72%) a | 3 × 104 b |
Lab T | 2.5 | 9574 | 20 | Yes c | AVL 488-10 | 10 nm (75%) a | 3 × 104 |
Lab/Brake | Br1Fa | Br1Fb | Br2 | Br3 | Br4 | Br5La | Br5Lb | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TPN | SPN | TPN | SPN | TPN | SPN | TPN | SPN | TPN | SPN | TPN | SPN | TPN | SPN | |
Lab B | X | X | X | X | ||||||||||
Lab C | √ | √ | √ | √ | ||||||||||
Lab D | √ | √ | √ | √ | ||||||||||
Lab F | √ | √ | √ | √ | √ | √ | √ | |||||||
Lab G | √ | √ | X | √ | √ | |||||||||
Lab H | √ | √ | √ | |||||||||||
Lab J | √ | √ | √ | |||||||||||
Lab K | √ | √ | √ | |||||||||||
Lab L | √ | √ | √ | √ | √ | √ | √ | √ | ||||||
Lab M | √ | √ | √ | √ | √ | X | √ | X | √ | X | √ | X | √ | X |
Lab N | √ | √ | X | √ | √ | √ | √ | |||||||
Lab P | √ | X | X | |||||||||||
Lab Q | √ | √ | √ | |||||||||||
Lab R | √ | X | √ | |||||||||||
Lab S | √ | √ | √ | √ | √ | √ | √ | √ | ||||||
Lab T | √ | √ | √ | √ | √ | √ | √ | √ |
Brake | Mean TPN10 (#/km/Brake) | Mean SPN10 (#/km/Brake) | Deviation in % |
---|---|---|---|
Br1Fa | 1.93 × 109 | 2.19 × 109 | +13 |
Br1Fb | 9.37 × 108 | 1.03 × 109 | +10 |
Br2 | 8.97 × 109 | 8.55 × 109 | −5 |
Br3 | 4.11 × 109 | 3.33 × 109 | −19 |
Br4 | 1.76 × 109 | 1.66 × 109 | −5 |
Br5La | 5.81 × 109 | N/A | N/A |
Br5Lb | 1.11 × 1010 | N/A | N/A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mathissen, M.; Grigoratos, T.; Gramstat, S.; Mamakos, A.; Vedula, R.; Agudelo, C.; Grochowicz, J.; Giechaskiel, B. Interlaboratory Study on Brake Particle Emissions Part II: Particle Number Emissions. Atmosphere 2023, 14, 424. https://doi.org/10.3390/atmos14030424
Mathissen M, Grigoratos T, Gramstat S, Mamakos A, Vedula R, Agudelo C, Grochowicz J, Giechaskiel B. Interlaboratory Study on Brake Particle Emissions Part II: Particle Number Emissions. Atmosphere. 2023; 14(3):424. https://doi.org/10.3390/atmos14030424
Chicago/Turabian StyleMathissen, Marcel, Theodoros Grigoratos, Sebastian Gramstat, Athanasios Mamakos, RaviTeja Vedula, Carlos Agudelo, Jaroslaw Grochowicz, and Barouch Giechaskiel. 2023. "Interlaboratory Study on Brake Particle Emissions Part II: Particle Number Emissions" Atmosphere 14, no. 3: 424. https://doi.org/10.3390/atmos14030424
APA StyleMathissen, M., Grigoratos, T., Gramstat, S., Mamakos, A., Vedula, R., Agudelo, C., Grochowicz, J., & Giechaskiel, B. (2023). Interlaboratory Study on Brake Particle Emissions Part II: Particle Number Emissions. Atmosphere, 14(3), 424. https://doi.org/10.3390/atmos14030424