The Role of Crop Management Practices and Adaptation Options to Minimize the Impact of Climate Change on Maize (Zea mays L.) Production for Ethiopia
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Study Sites
2.2. Data Collection
2.2.1. Weather, Soil, and Crop Data
2.2.2. Crop Simulation Models
2.2.3. Climate Change Projections
2.2.4. Crop Management Practices for Climate Change Adaptation
3. Results
3.1. Projected Climate Change by 2030s
3.1.1. Precipitation
3.1.2. Maximum Air Temperature
3.1.3. Minimum Air Temperature
3.2. Yield Simulation for the Baseline (1995–2017) Climate
3.3. Impact of Projected Climate on Maize Yield
3.4. Crop Management Practices as Adaptation Options
3.5. Crop Model Uncertainty in Yield Simulation
3.6. Climate Model Uncertainty in Yield Simulation
4. Discussion
4.1. Climate Change Projections and Impacts
4.2. Impact of Climate Change on Maize Yield Compared to the Baseline
4.3. Crop Management Practices as Adaptation Options
4.4. Crop and Climate Models Uncertainty in Yield Simulation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Setegn, S.G.; Rayner, D.; Melesse, A.M.; Dargahi, B.; Srinivasan, R. Impact of Climate Change on the Hydroclimatology of Lake Tana Basin, Ethiopia. Water Resour. Res. 2011, 47. [Google Scholar] [CrossRef]
- Muluneh, A.; Biazin, B.; Stroosnijder, L.; Bewket, W.; Keesstra, S. Impact of Predicted Changes in Rainfall and Atmospheric Carbon Dioxide on Maize and Wheat Yields in the Central Rift Valley of Ethiopia. Reg. Environ. Chang. 2015, 15, 1105–1119. [Google Scholar] [CrossRef]
- Cheung, W.H.; Senay, G.B.; Singh, A. Trends and Spatial Distribution of Annual and Seasonal Rainfall in Ethiopia. Int. J. Climatol. 2008, 28, 1723–1734. [Google Scholar] [CrossRef]
- Williams, A.P.; Funk, C.; Michaelsen, J.; Rauscher, S.A.; Robertson, I.; Wils, T.H.G.; Koprowski, M.; Eshetu, Z.; Loader, N.J. Recent Summer Precipitation Trends in the Greater Horn of Africa and the Emerging Role of Indian Ocean Sea Surface Temperature. Clim. Dyn. 2012, 39, 2307–2328. [Google Scholar] [CrossRef] [Green Version]
- Hirut, G.; Kindie, T. Analysis of Risks in Crop Production Due to Climate Change in the Central Rift Valley of Ethiopia. Afri. J. Agric. Res. 2015, 10, 1913–1922. [Google Scholar] [CrossRef] [Green Version]
- Setegn, S.G.; Rayner, D.; Melesse, A.M.; Dargahi, B.; Srinivasan, R.; Wörman, A. Climate Change Impact on Agricultural Water Resources Variability in the Northern Highlands of Ethiopia. In Nile River Basin; Springer: Dordrecht, The Netherlands, 2011. [Google Scholar]
- Conway, D.; Schipper, E.L.F. Adaptation to Climate Change in Africa: Challenges and Opportunities Identified from Ethiopia. Glob. Environ. Chang. 2011, 21, 227–237. [Google Scholar] [CrossRef]
- Vanaja, M.; Sathish, P.; Vijay Kumar, G.; Razzaq, A.; Vagheera, P.; Jyothi Lakshmi, N.; Yadav, S.K.; Sarkar, B.; Maheswari, M. Elevated Temperature and Moisture Deficit Stress Impact on Phenology, Physiology and Yield Responses of Hybrid Maize. J. Agrometeorol. 2017, 19, 295–300. [Google Scholar] [CrossRef]
- Alemu, H.W.; Carlson, A.S. Thirteen Years on: The Long Journey of Optometry in Ethiopia. African Vis. Eye Health 2020, 79, 6. [Google Scholar] [CrossRef] [Green Version]
- Degu, A.A.; Huluka, A.T. Does the Declining Share of Agricultural Output in GDP Indicate Structural Transformation? The Case of Ethiopia. J. Econ. Behav. Stud. 2019, 11, 54–68. [Google Scholar] [CrossRef] [Green Version]
- Alemu, T.; Mengistu, A. Impacts of Climate Change on Food Security in Ethiopia: Adaptation and Mitigation Options: A Review. In Climate Change Management; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Mera, G.A. Drought and Its Impacts in Ethiopia. Weather Clim. Extrem. 2018, 22, 24–35. [Google Scholar] [CrossRef]
- Viste, E.; Korecha, D.; Sorteberg, A. Recent Drought and Precipitation Tendencies in Ethiopia. Theor. Appl. Climatol. 2013, 112, 535–551. [Google Scholar] [CrossRef] [Green Version]
- Deressa, T.T.; Hassan, R.M. Economic Impact of Climate Change on Crop Production in Ethiopia: Evidence from Cross-Section Measures. J. Afr. Econ. 2009, 18, 529–554. [Google Scholar] [CrossRef]
- Mideksa, T.K.; Kallbekken, S. The Impact of Climate Change on the Electricity Market: A Review. Energy Policy 2010, 38, 3579–3585. [Google Scholar] [CrossRef]
- IPCC. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- CSA. CSA Agricultural Sample Survey 2019/2020. Volume I Report on Area and Production of Major Crops (Private Peasant Holdings, Meher Season); Statistical Bulletin; CSA: Addis Ababa, Ethiopia, 2020. [Google Scholar]
- Abate, T.; Shiferaw, B.; Menkir, A.; Wegary, D.; Kebede, Y.; Tesfaye, K.; Kassie, M.; Bogale, G.; Tadesse, B.; Keno, T. Factors That Transformed Maize Productivity in Ethiopia. Food Secur. 2015, 7, 965–981. [Google Scholar] [CrossRef] [Green Version]
- CSA. CSA Agricultural Sample Survey 2009/2010. Volume I Report on Area and Production of Major Crops (Private Peasant Holdings, Meher Season); Statistical Bulletin; CSA: Addis Ababa, Ethiopia, 2010. [Google Scholar]
- Shiferaw, B.; Prasanna, B.M.; Hellin, J.; Bänziger, M. Crops That Feed the World 6. Past Successes and Future Challenges to the Role Played by Maize in Global Food Security. Food Secur. 2011, 3, 307–327. [Google Scholar] [CrossRef] [Green Version]
- Araya, A.; Hoogenboom, G.; Luedeling, E.; Hadgu, K.M.; Kisekka, I.; Martorano, L.G. Assessment of Maize Growth and Yield Using Crop Models under Present and Future Climate in Southwestern Ethiopia. Agric. For. Meteorol. 2015, 214–215, 252–265. [Google Scholar] [CrossRef]
- Tesfaye, K.; Gbegbelegbe, S.; Cairns, J.E.; Shiferaw, B.; Prasanna, B.M.; Sonder, K.; Boote, K.; Makumbi, D.; Robertson, R. Maize Systems under Climate Change in Sub-Saharan Africa. Int. J. Clim. Chang. Strateg. Manag. 2015, 7, 247–271. [Google Scholar] [CrossRef]
- Timothy, T.; Paul, D.; Richard, R. Climate Change Impacts on Crop Yields in Ethiopia; ESSP Working Paper 130; International Food Policy Research Institute (IFPRI): Washington, DC, USA; Ethiopian Development Research Institute (EDRI): Addis Ababa, Ethiopia, 2019. [Google Scholar]
- Yin, X.G.; Jabloun, M.; Olesen, J.E.; Öztürk, I.; Wang, M.; Chen, F. Effects of Climatic Factors, Drought Risk and Irrigation Requirement on Maize Yield in the Northeast Farming Region of China. J. Agric. Sci. 2016, 154, 1171–1189. [Google Scholar] [CrossRef]
- Belay, A.; Recha, J.W.; Woldeamanuel, T.; Morton, J.F. Smallholder Farmers’ Adaptation to Climate Change and Determinants of Their Adaptation Decisions in the Central Rift Valley of Ethiopia. Agric. Food Secur. 2017, 6, 24. [Google Scholar] [CrossRef] [Green Version]
- Tripathi, A.; Mishra, A.K. Knowledge and Passive Adaptation to Climate Change: An Example from Indian Farmers. Clim. Risk Manag. 2017, 16, 195–207. [Google Scholar] [CrossRef]
- Bryan, E.; Deressa, T.T.; Gbetibouo, G.A.; Ringler, C. Adaptation to Climate Change in Ethiopia and South Africa: Options and Constraints. Environ. Sci. Policy 2009, 12, 413–426. [Google Scholar] [CrossRef]
- Tao, F.; Zhang, Z. Adaptation of Maize Production to Climate Change in North China Plain: Quantify the Relative Contributions of Adaptation Options. Eur. J. Agron. 2010, 33, 103–111. [Google Scholar] [CrossRef]
- Challinor, A.J.; Simelton, E.S.; Fraser, E.D.G.; Hemming, D.; Collins, M. Increased Crop Failure Due to Climate Change: Assessing Adaptation Options Using Models and Socio-Economic Data for Wheat in China. Environ. Res. Lett. 2010, 5, 034012. [Google Scholar] [CrossRef]
- Rosenzweig, C.; Wilbanks, T.J. The State of Climate Change Vulnerability, Impacts, and Adaptation Research: Strengthening Knowledge Base and Community. Clim. Change 2010, 100, 103–106. [Google Scholar] [CrossRef]
- Perego, A.; Sanna, M.; Giussani, A.; Chiodini, M.E.; Fumagalli, M.; Pilu, S.R.; Bindi, M.; Moriondo, M.; Acutis, M. Designing a High-Yielding Maize Ideotype for a Changing Climate in Lombardy Plain (Northern Italy). Sci. Total Environ. 2014, 499, 497–509. [Google Scholar] [CrossRef]
- White, J.W.; Hoogenboom, G.; Kimball, B.A.; Wall, G.W. Methodologies for Simulating Impacts of Climate Change on Crop Production. Field Crop. Res. 2011, 124, 357–368. [Google Scholar] [CrossRef] [Green Version]
- Kassie, B.T.; Hengsdijk, H.; Rötter, R.; Kahiluoto, H.; Asseng, S.; Van Ittersum, M. Adapting to Climate Variability and Change: Experiences from Cereal-Based Farming in the Central Rift and Kobo Valleys, Ethiopia. Environ. Manage. 2013, 52, 1115–1131. [Google Scholar] [CrossRef]
- Deb, P.; Shrestha, S.; Babel, M.S. Forecasting Climate Change Impacts and Evaluation of Adaptation Options for Maize Cropping in the Hilly Terrain of Himalayas: Sikkim, India. Theor. Appl. Climatol. 2015, 121, 649–667. [Google Scholar] [CrossRef]
- Corbeels, M.; Berre, D.; Rusinamhodzi, L.; Lopez-Ridaura, S. Can We Use Crop Modelling for Identifying Climate Change Adaptation Options? Agric. For. Meteorol. 2018, 256–257, 46–52. [Google Scholar] [CrossRef]
- Kelbore, Z.G. An Analysis of the Impacts of Climate Change on Crop Yield and Yield Variability in Ethiopia. IDEAS Work. Pap. Ser. RePEc 2012, 49466. [Google Scholar]
- Kassie, B.T.; Asseng, S.; Rotter, R.P.; Hengsdijk, H.; Ruane, A.C.; van Ittersum, M.K. Exploring Climate Change Impacts and Adaptation Options for Maize Production in the Central Rift Valley of Ethiopia Using Different Climate Change Scenarios and Crop Models. Clim. Change 2015, 129, 145–158. [Google Scholar] [CrossRef]
- Tesfaye, K.; Kruseman, G.; Cairns, J.E.; Zaman-Allah, M.; Wegary, D.; Zaidi, P.H.; Boote, K.J.; Rahut, D.; Erenstein, O. Potential Benefits of Drought and Heat Tolerance for Adapting Maize to Climate Change in Tropical Environments. Clim. Risk Manag. 2018, 19, 106–111. [Google Scholar] [CrossRef]
- Mohammed, A.; Yimer, E.; Gessese, B.; Feleke, E. Predicting Maize (Zea Mays) Productivity under Projected Climate Change with Management Options in Amhara Region, Ethiopia. Environ. Sustain. Indic. 2022, 15, 100185. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2014 Synthesis Report; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Feleke, H.G.; Savage, M.J.; Tesfaye, K. Calibration and Validation of APSIM–Maize, DSSAT CERES–Maize and AquaCrop Models for Ethiopian Tropical Environments. South African J. Plant Soil 2021, 38, 36–51. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirement; FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998; p. 300. [Google Scholar]
- Allen, R.G.; Pruitt, W.O.; Wright, J.L.; Howell, T.A.; Ventura, F.; Snyder, R.; Itenfisu, D.; Steduto, P.; Berengena, J.; Yrisarry, J.B.; et al. A Recommendation on Standardized Surface Resistance for Hourly Calculation of Reference ETo by the FAO56 Penman-Monteith Method. Agric. Water Manag. 2006, 81, 1–22. [Google Scholar] [CrossRef]
- Liben, F.M.; Wortmann, C.S.; Yang, H.; Lindquist, J.L.; Tadesse, T.; Wegary, D. Crop Model and Weather Data Generation Evaluation for Conservation Agriculture in Ethiopia. Field Crop. Res. 2018, 228, 122–134. [Google Scholar] [CrossRef]
- Seyoum, S.; Rachaputi, R.; Chauhan, Y.; Prasanna, B.; Fekybelu, S. Application of the APSIM Model to Exploit G × E × M Interactions for Maize Improvement in Ethiopia. Field Crop. Res. 2018, 217, 113–124. [Google Scholar] [CrossRef]
- Keating, B.A.; Carberry, P.S.; Hammer, G.L.; Probert, M.E.; Robertson, M.J.; Holzworth, D.; Huth, N.I.; Hargreaves, J.N.G.; Meinke, H.; Hochman, Z.; et al. An Overview of APSIM, a Model Designed for Farming Systems Simulation. Eur. J. Agron. 2003, 18, 267–288. [Google Scholar] [CrossRef] [Green Version]
- Steduto, P.; Hsiao, T.C.; Raes, D.; Fereres, E. Aquacrop-the FAO Crop Model to Simulate Yield Response to Water: I. Concepts and Underlying Principles. Agron. J. 2009, 101, 426–437. [Google Scholar] [CrossRef] [Green Version]
- Hoogenboom, G.; Porter, C.H.; Boote, K.J.; Shelia, V.; Wilkens, P.W.; Singh, U.; White, J.W.; Asseng, S.; Lizaso, J.I.; Moreno, L.P.; et al. The DSSAT Crop Modeling Ecosystem. In Advances in Crop Modeling for a Sustainable Agriculture; Boote, K.J., Ed.; Burleigh Dodds Science Publishing: Cambridge, UK, 2019. [Google Scholar]
- Bassu, S.; Brisson, N.; Durand, J.-L.; Boote, K.; Lizaso, J.; Jones, J.W.; Rosenzweig, C.; Ruane, A.C.; Adam, M.; Baron, C.; et al. How Do Various Maize Crop Models Vary in Their Responses to Climate Change Factors? Glob. Chang. Biol. 2014, 20, 2301–2320. [Google Scholar] [CrossRef] [Green Version]
- Muluneh, A.; Stroosnijder, L.; Keesstra, S.; Biazin, B. Adapting to Climate Change for Food Security in the Rift Valley Dry Lands of Ethiopia: Supplemental Irrigation, Plant Density and Sowing Date. J. Agric. Sci. 2017, 155, 703–724. [Google Scholar] [CrossRef]
- Zhao, C.; Liu, B.; Piao, S.; Wang, X.; Lobell, D.B.; Huang, Y.; Huang, M.; Yao, Y.; Bassu, S.; Ciais, P.; et al. Temperature Increase Reduces Global Yields of Major Crops in Four Independent Estimates. Proc. Natl. Acad. Sci. USA 2017, 114, 9326–9331. [Google Scholar] [CrossRef] [Green Version]
- Vichi, M.; Manzini, E.; Fogli, P.G.; Alessandri, A.; Patara, L.; Scoccimarro, E.; Masina, S.; Navarra, A. Global and Regional Ocean Carbon Uptake and Climate Change: Sensitivity to a Substantial Mitigation Scenario. Clim. Dyn. 2011, 37, 1929–1947. [Google Scholar] [CrossRef]
- Voldoire, A.; Sanchez-Gomez, E.; Salas y Mélia, D.; Decharme, B.; Cassou, C.; Sénési, S.; Valcke, S.; Beau, I.; Alias, A.; Chevallier, M.; et al. The CNRM-CM5.1 Global Climate Model: Description and Basic Evaluation. Clim. Dyn. 2013, 40, 2091–2121. [Google Scholar] [CrossRef] [Green Version]
- Jeffrey, S.; Rotstayn, L.; Collier, M.; Dravitzki, S.; Hamalainen, C.; Moeseneder, C.; Wong, K.; Syktus, J. Australia’s CMIP5 Submission Usingthe CSIRO-Mk3. 6 Model. Aust. Meteorol. Oceanogr. J. 2013, 63, 1–13. [Google Scholar] [CrossRef]
- Hazeleger, W.; Severijns, C.; Semmler, T.; \cStefănescu, S.; Yang, S.; Wang, X.; Wyser, K.; Dutra, E.; Baldasano, J.M.; Bintanja, R.; et al. EC-Earth: A Seamless Earth-System Prediction Approach in Action. Bull. Am. Meteorol. Soc. 2010, 91, 1357–1364. [Google Scholar] [CrossRef] [Green Version]
- Collins, W.J.; Bellouin, N.; Doutriaux-Boucher, M.; Gedney, N.; Halloran, P.; Hinton, T.; Hughes, J.; Jones, C.D.; Joshi, M.; Liddicoat, S.; et al. Development and Evaluation of an Earth-System Model - HadGEM2. Geosci. Model Dev. 2011, 4, 1051–1075. [Google Scholar] [CrossRef] [Green Version]
- Dufresne, J.-L.; Foujols, M.-A.; Denvil, S.; Caubel, A.; Marti, O.; Aumont, O.; Balkanski, Y.; Bekki, S.; Bellenger, H.; Benshila, R.; et al. Climate Change Projections Using the IPSL-CM5 Earth System Model: From CMIP3 to CMIP5. Clim. Dyn. 2013, 40, 2123–2165. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, M.; Suzuki, T.; O’ishi, R.; Komuro, Y.; Watanabe, S.; Emori, S.; Takemura, T.; Chikira, M.; Ogura, T.; Sekiguchi, M.; et al. Improved Climate Simulation by MIROC5: Mean States, Variability, and Climate Sensitivity. J. Clim. 2010, 23, 6312–6335. [Google Scholar] [CrossRef]
- Samuelsson, P.; Jones, C.G.; Willén, U.; Ullerstig, A.; Gollvik, S.; Hansson, U.; Jansson, C.; Kjellström, E.; Nikulin, G.; Wyser, K. The Rossby Centre Regional Climate Model RCA3: Model Description and Performance. Tellus Ser. A Dyn. Meteorol. Oceanogr. 2011, 63, 4–23. [Google Scholar] [CrossRef] [Green Version]
- Giorgi, F.; Jones, C.; Asrar, G.R. Addressing Climate Information Needs at the Regional Level: The CORDEX Framework. World Meteorol. Organ. Bull. 2009, 58, 175. [Google Scholar]
- Nikulin, G.; Jones, C.; Giorgi, F.; Asrar, G.; Büchner, M.; Cerezo-Mota, R.; Christensen, O.B.; Déqué, M.; Fernandez, J.; Hänsler, A.; et al. Precipitation Climatology in an Ensemble of CORDEX-Africa Regional Climate Simulations. J. Clim. 2012, 25, 6057–6078. [Google Scholar] [CrossRef] [Green Version]
- Arnell, N.W. Climate Change and Global Water Resources: SRES Emissions and Socio-Economic Scenarios. Glob. Environ. Chang. 2004, 14, 31–52. [Google Scholar] [CrossRef]
- Levy, P.E.; Cannell, M.G.R.; Friend, A.D. Modelling the Impact of Future Changes in Climate, CO2 Concentration and Land Use on Natural Ecosystems and the Terrestrial Carbon Sink. Glob. Environ. Chang. 2004, 14, 21–30. [Google Scholar] [CrossRef]
- Ngai, S.T.; Tangang, F.; Juneng, L. Bias Correction of Global and Regional Simulated Daily Precipitation and Surface Mean Temperature over Southeast Asia Using Quantile Mapping Method. Glob. Planet. Change 2017, 149, 79–90. [Google Scholar] [CrossRef] [Green Version]
- Seyoum, S.; Chauhan, Y.; Rachaputi, R.; Fekybelu, S.; Prasanna, B. Characterising Production Environments for Maize in Eastern and Southern Africa Using the APSIM Model. Agric. For. Meteorol. 2017, 247, 445–453. [Google Scholar] [CrossRef]
- Asseng, S.; Ewert, F.; Martre, P.; Rötter, R.P.; Lobell, D.B.; Cammarano, D.; Kimball, B.A.; Ottman, M.J.; Wall, G.W.; White, J.W.; et al. Rising Temperatures Reduce Global Wheat Production. Nat. Clim. Chang. 2015, 5, 143–147. [Google Scholar] [CrossRef]
- Asfaw, A.; Simane, B.; Hassen, A.; Bantider, A. Variability and Time Series Trend Analysis of Rainfall and Temperature in Northcentral Ethiopia: A Case Study in Woleka Sub-Basin. Weather Clim. Extrem. 2018, 19, 29–41. [Google Scholar] [CrossRef]
- Wang, M.; Li, Y.; Ye, W.; Bornman, J.F.; Yan, X. Effects of Climate Change on Maize Production, and Potential Adaptation Measures: A Case Study in Jilin Province, China. Clim. Res. 2011, 46, 223–242. [Google Scholar] [CrossRef] [Green Version]
- Lobell, D.B.; Hammer, G.L.; McLean, G.; Messina, C.; Roberts, M.J.; Schlenker, W. The Critical Role of Extreme Heat for Maize Production in the United States. Nat. Clim. Chang. 2013, 3, 497–501. [Google Scholar] [CrossRef]
- Tesfaye, K.; Zaidi, P.H.; Gbegbelegbe, S.; Boeber, C.; Rahut, D.B.; Getaneh, F.; Seetharam, K.; Erenstein, O.; Stirling, C. Climate Change Impacts and Potential Benefits of Heat-Tolerant Maize in South Asia. Theor. Appl. Climatol. 2017, 130, 959–970. [Google Scholar] [CrossRef] [Green Version]
- Abraha, M.G.; Savage, M.J. Potential Impacts of Climate Change on the Grain Yield of Maize for the Midlands of KwaZulu-Natal, South Africa. Agric. Ecosyst. Environ. 2006, 115, 150–160. [Google Scholar] [CrossRef]
- Tachie-Obeng, E.; Akponikpè, P.B.I.; Adiku, S. Considering Effective Adaptation Options to Impacts of Climate Change for Maize Production in Ghana. Environ. Dev. 2013, 5, 131–145. [Google Scholar] [CrossRef]
- Meza, F.J.; Silva, D.; Vigil, H. Climate Change Impacts on Irrigated Maize in Mediterranean Climates: Evaluation of Double Cropping as an Emerging Adaptation Alternative. Agric. Syst. 2008, 98, 21–30. [Google Scholar] [CrossRef]
- Cairns, J.E.; Sonder, K.; Zaidi, P.H.; Verhulst, N.; Mahuku, G.; Babu, R.; Nair, S.K.; Das, B.; Govaerts, B.; Vinayan, M.T.; et al. Maize Production in a Changing Climate. Impacts, Adaptation, and Mitigation Strategies. Adv. Agron. 2012, 114, 1–58. [Google Scholar]
- Foulkes, M.J.; Slafer, G.A.; Davies, W.J.; Berry, P.M.; Sylvester-Bradley, R.; Martre, P.; Calderini, D.F.; Griffiths, S.; Reynolds, M.P. Raising Yield Potential of Wheat. III. Optimizing Partitioning to Grain While Maintaining Lodging Resistance. J. Exp. Bot. 2011, 62, 469–486. [Google Scholar] [CrossRef] [Green Version]
- Abera, K.; Crespo, O.; Seid, J.; Mequanent, F. Simulating the Impact of Climate Change on Maize Production in Ethiopia, East Africa. Environ. Syst. Res. 2018, 7, 4. [Google Scholar] [CrossRef]
- Challinor, A.J.; Watson, J.; Lobell, D.B.; Howden, S.M.; Smith, D.R.; Chhetri, N. A Meta-Analysis of Crop Yield under Climate Change and Adaptation. Nat. Clim. Chang. 2014, 4, 287–291. [Google Scholar] [CrossRef] [Green Version]
- Araya, A.; Kisekka, I.; Gowda, P.H.; Prasad, P.V.V. Evaluation of Water-Limited Cropping Systems in a Semi-Arid Climate Using DSSAT-CSM. Agric. Syst. 2017, 150, 86–98. [Google Scholar] [CrossRef] [Green Version]
- Araya, A.; Kisekka, I.; Lin, X.; Vara Prasad, P.V.; Gowda, P.H.; Rice, C.; Andales, A. Evaluating the Impact of Future Climate Change on Irrigated Maize Production in Kansas. Clim. Risk Manag. 2017, 17, 139–154. [Google Scholar] [CrossRef]
- Kanda, E.K.; Mabhaudhi, T.; Senzanje, A. Coupling Hydrological and Crop Models for Improved Agricultural Water Management—A Review. Bulg. J. Agric. Sci. 2018, 24, 380–390. [Google Scholar]
- Garibay, V.M.; Kothari, K.; Ale, S.; Gitz, D.C.; Morgan, G.D.; Munster, C.L. Determining Water-Use-Efficient Irrigation Strategies for Cotton Using the DSSAT CSM CROPGRO-Cotton Model Evaluated with in-Season Data. Agric. Water Manag. 2019, 223, 105695. [Google Scholar] [CrossRef]
- Brilli, L.; Bechini, L.; Bindi, M.; Carozzi, M.; Cavalli, D.; Conant, R.; Dorich, C.D.; Doro, L.; Ehrhardt, F.; Farina, R.; et al. Review and Analysis of Strengths and Weaknesses of Agro-Ecosystem Models for Simulating C and N Fluxes. Sci. Total Environ. 2017, 598, 445–470. [Google Scholar] [CrossRef] [Green Version]
- Sharda, V.; Mekonnen, M.M.; Ray, C.; Gowda, P.H. Use of Multiple Environment Variety Trials Data to Simulate Maize Yields in the Ogallala Aquifer Region: A Two Model Approach. J. Am. Water Resour. Assoc. 2021, 57, 281–295. [Google Scholar] [CrossRef]
- Jian-Ping, Z.; Yong-Kun, H.E.; Jing, W.; Yan-Xia, Z.; Chun-Yi, W. Impact Simulation of Drought at Different Growth Stages on Grain Formation and Yield of Maize. Chin. J. Agrometeorol. 2015, 36, 43. [Google Scholar]
- Asseng, S.; Ewert, F.; Rosenzweig, C.; Jones, J.W.; Hatfield, J.L.; Ruane, A.C.; Boote, K.J.; Thorburn, P.J.; Rötter, R.P.; Cammarano, D.; et al. Uncertainty in Simulating Wheat Yields under Climate Change. Nat. Clim. Chang. 2013, 3, 827–832. [Google Scholar] [CrossRef] [Green Version]
- Yang, Q.; Lu, T.; Yao, T.; Zhang, B. The Impact of Uncertainty and Ambiguity Related to Iteration and Overlapping on Schedule of Product Development Projects. Int. J. Proj. Manag. 2014, 32, 827–837. [Google Scholar] [CrossRef]
Location | Ambo | Bako | Melkassa |
---|---|---|---|
Latitude (o) | 8.57 | 9.12 | 8.42 |
Longitude (o) | 38.07 | 37.04 | 39.32 |
Altitude (m) | 2225 | 1650 | 1550 |
Soil characteristics | |||
Soil type | Eutric regoSol | Nitosol | Vitric andosols |
Soil texture | sandy clay loam | clay | loam |
Baseline climate (1995–2017) | |||
Seasonal total precipitation (mm) | 718 | 1206 | 587 |
Seasonal ETo (mm) * | 543 | 431 | 770 |
Mean max. air temperature (°C) | 24.0 | 24.0 | 28.4 |
Mean min. air temperature (°C) | 10.3 | 14.5 | 13.9 |
GCM Name | Institute | Country | References |
---|---|---|---|
CanESM2 | CCCma: Canadian Centre for Climate Modelling and Analysis | Canada | [52] |
CNRM-CM5 | CERFACS: Centre Européen de Recherche | France | [53] |
et de Formation Avancée en Calcul Scientifique | |||
CSIRO-MK3-6-0 | CSIRO: Commonwealth Scientific and Industrial Research Organization | Australia | [54] |
EC-EARTH | ICHEC: Consortium of European research | Europe | [55] |
institutions and researchers | |||
HadGEM2-ES | MOHC: Met Office Hadley Centre | United Kingdom | [56] |
IPSL-CM5A-MR | IPSL: Institut Pierre Simon Laplace | France | [57] |
MIROC5 | AORI: Atmospheric and Ocean Research Institute | Japan | [58] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feleke, H.G.; Savage, M.J.; Fantaye, K.T.; Rettie, F.M. The Role of Crop Management Practices and Adaptation Options to Minimize the Impact of Climate Change on Maize (Zea mays L.) Production for Ethiopia. Atmosphere 2023, 14, 497. https://doi.org/10.3390/atmos14030497
Feleke HG, Savage MJ, Fantaye KT, Rettie FM. The Role of Crop Management Practices and Adaptation Options to Minimize the Impact of Climate Change on Maize (Zea mays L.) Production for Ethiopia. Atmosphere. 2023; 14(3):497. https://doi.org/10.3390/atmos14030497
Chicago/Turabian StyleFeleke, Hirut Getachew, Michael J. Savage, Kindie Tesfaye Fantaye, and Fasil Mequanint Rettie. 2023. "The Role of Crop Management Practices and Adaptation Options to Minimize the Impact of Climate Change on Maize (Zea mays L.) Production for Ethiopia" Atmosphere 14, no. 3: 497. https://doi.org/10.3390/atmos14030497
APA StyleFeleke, H. G., Savage, M. J., Fantaye, K. T., & Rettie, F. M. (2023). The Role of Crop Management Practices and Adaptation Options to Minimize the Impact of Climate Change on Maize (Zea mays L.) Production for Ethiopia. Atmosphere, 14(3), 497. https://doi.org/10.3390/atmos14030497