Airglow Imaging Observations of Plasma Blobs: Merging and Bifurcation during Solar Minimum over Tropical Region
Abstract
:1. Introduction
2. Instruments
3. Observations and Methodology
4. Results and Discussion
4.1. Plasma Blobs Merging
4.2. Plasma Blobs Bifurcation
5. Conclusions
- Wind Reversion Effect (WRE) mechanism: in this mechanism, the change in the direction of the zonal thermospheric wind from eastward to westward at the equatorial region may cause the steepening of plasma; in some cases, the slower drifting plasma blobs may merge with faster ones.
- Secondly, based on the results revealed from the scale-size evolution of plasma blobs during merging, we proposed that the accumulated plasma blob along the magnetic field lines would merge with adjacent blob when its scale size (E-W extension) is substantially large, and the decrease in zonal thermospheric wind velocity and ion diffusion along field lines in the F- region could be responsible for this process. Nevertheless, the three merging cases observed in this study give an average zonal scale-size of 105 ± 7 km. As the cases are few statistically, we could not infer the scale-size of blobs liable for merging. Thus, further studies on larger sample size of the cases could reveal the scale-size of plasma blobs liable for merging.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kelley, M.C. The Earth’s Ionosphere: Plasma Physics and Electrodynamics; Academic Press: San Diego, CA, USA, 2009. [Google Scholar]
- Ossakow, S.; Zalesak, S.; McDonald, B.; Chaturvedi, P. Nonlinear equatorial spread F: Dependence on altitude of the F peak and bottomside background electron density gradient scale length. J. Geophys. Res. Space Phys. 1979, 84, 17–29. [Google Scholar] [CrossRef]
- Mendillo, M.; Baumgardner, J. Airglow characteristics of equatorial plasma depletions. J. Geophys. Res. Space Phys. 1982, 87, 7641–7652. [Google Scholar] [CrossRef]
- Watanabe, S.; Oya, H. Occurrence characteristics of low latitude ionosphere irregularities observed by impedance probe on board the Hinotori satellite. J. Geomagn. Geoelectr. 1986, 38, 125–149. [Google Scholar] [CrossRef] [Green Version]
- Pimenta, A.; Sahai, Y.; Bittencourt, J.; Abdu, M.; Takahashi, H.; Taylor, M.J. Plasma blobs observed by ground-based optical and radio techniques in the Brazilian tropical sector. Geophys. Res. Lett. 2004, 31, L12810. [Google Scholar] [CrossRef] [Green Version]
- Park, J.; Lühr, H.; Stolle, C.; Rother, M.; Min, K.; Michaelis, I. Field-aligned current associated with low-latitude plasma blobs as observed by the CHAMP satellite. Ann. Geophys. 2010, 28, 697–703. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.-S.; Le, G.; de La Beaujardiere, O.; Roddy, P.A.; Hunton, D.E.; Pfaff, R.F.; Hairston, M.R. Relationship between plasma bubbles and density enhancements: Observations and interpretation. J. Geophys. Res. Space Phys. 2014, 119, 1325–1336. [Google Scholar] [CrossRef]
- Luo, W.; Xiong, C.; Zhu, Z.; Mei, X. Onset condition of plasma density enhancements: A case study for the effects of meridional wind during 17–18 August 2003. J. Geophys. Res. Space Phys. 2018, 123, 6714–6726. [Google Scholar] [CrossRef]
- Park, J.; Min, K.W.; Eastes, R.W.; Chao, C.K.; Kim, H.-E.; Lee, J.; Sohn, J.; Ryu, K.; Seo, H.; Yoo, J.-H.; et al. Low-latitude plasma blobs above Africa: Exploiting GOLD and multi-satellite in situ measurements. Adv. Space Res. 2022; in press. [Google Scholar] [CrossRef]
- Kil, H.; Paxton, L.J.; Jee, G.; Nikoukar, R. Plasma blobs associated with medium-scale traveling ionospheric disturbances. Geophys. Res. Lett. 2019, 46, 3575–3581. [Google Scholar] [CrossRef]
- Bhat, A.; Ganaie, B.A.; Ramkumar, T.K.; Malik, M.A. Bifurcation and merging of low mid-latitude plasma irregularities seeded by Medium Scale Traveling Ionospheric Disturbances over Srinagar, Jammu and Kashmir, India. AGU Fall Meet. Abstr. 2020, 2020, SA009-0004. [Google Scholar]
- Carrasco, A.; Batista, I.; Wrasse, C.; Takahashi, H.; Pimenta, A. Disconnection and reconnection in plasma bubbles observed by OI 630 nm airglow images from Cariri Observatory. J. Geophys. Res. Space Phys. 2022, 127, e2021JA030042. [Google Scholar] [CrossRef]
- Sahai, Y.; Abalde, J.; Fagundes, P.; Pillat, V.; Bittencourt, J. First observations of detached equatorial ionospheric plasma depletions using OI 630.0 nm and OI 777.4 nm emissions nightglow imaging. Geophys. Res. Lett. 2006, 33, L11104. [Google Scholar] [CrossRef] [Green Version]
- Pimenta, A.; Fagundes, P.; Bittencourt, J.; Sahai, Y. Relevant aspects of equatorial plasma bubbles under different solar activity conditions. Adv. Space Res. 2001, 27, 1213–1218. [Google Scholar] [CrossRef]
- Huba, J.; Wu, T.; Makela, J. Electrostatic reconnection in the ionosphere. Geophys. Res. Lett. 2015, 42, 1626–1631. [Google Scholar] [CrossRef]
- Gurav, O.; Narayanan, V.; Sharma, A.; Ghodpage, R.; Gaikwad, H.; Patil, P. Airglow imaging observations of some evolutionary aspects of equatorial plasma bubbles from Indian sector. Adv. Space Res. 2019, 64, 385–399. [Google Scholar] [CrossRef]
- Chian, A.C.-L.; Abalde, J.R.; Miranda, R.A.; Borotto, F.A.; Hysell, D.L.; Rempel, E.L.; Ruffolo, D. Multi-spectral optical imaging of the spatiotemporal dynamics of ionospheric intermittent turbulence. Sci. Rep. 2018, 8, 10568. [Google Scholar] [CrossRef] [Green Version]
- Crowley, G.; Ridley, A.J.; Deist, D.; Wing, S.; Knipp, D.J.; Emery, B.A.; Foster, J.; Heelis, R.; Hairston, M.; Reinisch, B.W. Transformation of high-latitude ionospheric F region patches into blobs during the March 21, 1990, storm. J. Geophys. Res. Space Phys. 2000, 105, 5215–5230. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.; Manoharan, P. Eruption of a plasma blob, associated M-class flare, and large-scale extreme-ultraviolet wave observed by SDO. Astron. Astrophys. 2013, 553, A109. [Google Scholar] [CrossRef]
- De Keyser, J.; Darrouzet, R.; Roth, M.; Vaisberg, O.L.; Rybjeva, N.; Smirnov, V.; Avanov, L.; Němeček, Z.; Safrankova, J. Transients at the dusk side magnetospheric boundary: Surface waves or isolated plasma blobs? J. Geophys. Res. Space Phys. 2001, 106, 25503–25516. [Google Scholar] [CrossRef]
- Manz, P.; Ribeiro, T.T.; Scott, B.D.; Birkenmeier, G.; Carralero, D.; Fuchert, G.; Müller, S.H.; Müller, H.W.; Stroth, U.; Wolfrum, E. Origin and turbulence spreading of plasma blobs. Phys. Plasmas 2015, 22, 022308. [Google Scholar] [CrossRef] [Green Version]
- Maruyama, T. Observations of quasi-periodic scintillations and their possible relation to the dynamics of E s plasma blobs. Radio Sci. 1991, 26, 691–700. [Google Scholar] [CrossRef]
- Garcia, F.; Taylor, M.J.; Kelley, M. Two-dimensional spectral analysis of mesospheric airglow image data. Appl. Opt. 1997, 36, 7374–7385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dalgarno, A.; Walker, J.C. The red line of atomic oxygen in the day airglow. J. Atmos. Sci. 1964, 21, 463–474. [Google Scholar] [CrossRef]
- Rishbeth, H.; Garriott, O.K. Introduction to Ionospheric Physics; Academic Press: New York, NY, USA, 1969. [Google Scholar]
- Abdu, M.A.; Bhattacharyya, A.; Pancheva, D. Aeronomy of the Earth’s Atmosphere and Ionosphere; Springer Science & Business Media: Berlin, Germany, 2011; Volume 2. [Google Scholar]
- Taylor, M.J.; Eccles, J.; LaBelle, J.; Sobral, J. High resolution OI (630 nm) image measurements of F-region depletion drifts during the Guará Campaign. Geophys. Res. Lett. 1997, 24, 1699–1702. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez, W.D.; Joselyn, J.A.; Kamide, Y.; Kroehl, H.W.; Rostoker, G.; Tsurutani, B.T.; Vasyliunas, V.M. What is a geomagnetic storm? J. Geophys. Res. Space Phys. 1994, 99, 5771–5792. [Google Scholar] [CrossRef] [Green Version]
- Pimenta, A.; Sahai, Y.; Bittencourt, J.; Rich, F. Ionospheric plasma blobs observed by OI 630 nm all-sky imaging in the Brazilian tropical sector during the major geomagnetic storm of April 6–7, 2000. Geophys. Res. Lett. 2007, 34, L02820. [Google Scholar] [CrossRef] [Green Version]
- Banks, P.M.; Kockarts, G. Aeronomy; Elsevier: New York, NY, USA, 2013. [Google Scholar]
- Krall, J.; Huba, J.; Joyce, G.; Yokoyama, T. Density enhancements associated with equatorial spread F. Ann. Geophys. 2010, 28, 327–337. [Google Scholar] [CrossRef] [Green Version]
- Zabusky, N.; Doles, J., III; Perkins, F. Deformation and striation of plasma clouds in the ionosphere: 2. Numerical simulation of a nonlinear two-dimensional model. J. Geophys. Res. 1973, 78, 711–724. [Google Scholar] [CrossRef]
- de Paula, E.R.; de Oliveira, C.B.; Caton, R.G.; Negreti, P.M.; Batista, I.S.; Martinon, A.R.; Neto, A.C.; Abdu, M.A.; Monico, J.F.; Sousasantos, J.; et al. Ionospheric irregularity behavior during the September 6–10, 2017 magnetic storm over Brazilian equatorial–low latitudes. Earth Planets Space 2019, 71, 42. [Google Scholar] [CrossRef]
- Yokoyama, T.; Su, S.; Fukao, S. Plasma blobs and irregularities concurrently observed by ROCSAT-1 and Equatorial Atmosphere Radar. J. Geophys. Res. Space Phys. 2007, 112, A05311. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Liu, H.; Shi, J.; Wang, G.; Wang, X. Plasma blobs concurrently observed with bubbles in the Asian-Oceanian sector during solar maximum. J. Geophys. Res. Space Phys. 2019, 124, 7062–7071. [Google Scholar] [CrossRef]
S/N | Bifurcation Events | Dst (nT) | Merging Events | Dst (nT) |
---|---|---|---|---|
1 | 1 March 2019 | >−29 | 8 March 2019 | >−16 |
2 | 9 October 2019 | >−9 | 13 March 2019 | >−16 |
3 | 19 October 2019 | >−4 | 25–26 March 2019 | >−34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adebayo, M.O.; Pimenta, A.A.; Savio, S.; Nyassor, P.K. Airglow Imaging Observations of Plasma Blobs: Merging and Bifurcation during Solar Minimum over Tropical Region. Atmosphere 2023, 14, 514. https://doi.org/10.3390/atmos14030514
Adebayo MO, Pimenta AA, Savio S, Nyassor PK. Airglow Imaging Observations of Plasma Blobs: Merging and Bifurcation during Solar Minimum over Tropical Region. Atmosphere. 2023; 14(3):514. https://doi.org/10.3390/atmos14030514
Chicago/Turabian StyleAdebayo, Micheal O., Alexandre A. Pimenta, Siomel Savio, and Prosper K. Nyassor. 2023. "Airglow Imaging Observations of Plasma Blobs: Merging and Bifurcation during Solar Minimum over Tropical Region" Atmosphere 14, no. 3: 514. https://doi.org/10.3390/atmos14030514
APA StyleAdebayo, M. O., Pimenta, A. A., Savio, S., & Nyassor, P. K. (2023). Airglow Imaging Observations of Plasma Blobs: Merging and Bifurcation during Solar Minimum over Tropical Region. Atmosphere, 14(3), 514. https://doi.org/10.3390/atmos14030514