Trends and Variability in Flood Magnitude: A Case Study of the Floods in the Qilian Mountains, Northwest China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Methods
2.3.1. Determination of Flood Independence in the POT3M Flood Series
2.3.2. Test Methods for Trend and Abrupt Change Analysis
2.3.3. Meteorological Variables
3. Results
3.1. Flood Independence Analysis
3.2. Trends in AMPD Series
3.3. Abrupt Behavior for Changes in AMPD Series
3.4. Trends in POT3M Flood Series
3.5. Trends of Flood Magnitude in the Eastern, Central, and Western Regions
4. Discussion
4.1. Attribution of Climate Change to Variability in Flood Magnitude
4.2. Regional Differences in the Evolution of Flood Magnitude
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Desai, B.; Maskrey, A.; Peduzzi, P.; De Bono, A.; Herold, C. Making Development Sustainable: The Future of Disaster Risk Management, Global Assessment Report on Disaster Risk Reduction; United Nations Office for Disaster Risk Reduction (UNISDR): Geneva, Switzerland, 2015; Available online: https://archive-ouverte.unige.ch/unige:78299 (accessed on 10 October 2022).
- Winsemius, H.C.; Aerts, J.; van Beek, L.P.H.; Bierkens, M.F.P.; Bouwman, A.; Jongman, B.; Kwadijk, J.C.J.; Ligtvoet, W.; Lucas, P.L.; van Vuuren, D.P.; et al. Global drivers of future river flood risk. Nat. Clim. Chang. 2016, 6, 381–385. [Google Scholar] [CrossRef] [Green Version]
- Hirabayashi, Y.; Mahendran, R.; Koirala, S.; Konoshima, L.; Yamazaki, D.; Watanabe, S.; Kim, H.; Kanae, S. Global flood risk under climate change. Nat. Clim. Chang. 2013, 3, 816–821. [Google Scholar] [CrossRef]
- IPCC. Intergovernmental Panel on Climate Change, Climate Change 2021: Impacts, Adaptation, and Vulnerability; Cambridge Univ. Press: Cambridge, UK, 2021. [Google Scholar]
- Kundzewicz, Z.W.; Su, B.; Wang, Y.J.; Wang, G.J.; Wang, G.F.; Huang, J.L.; Jiang, T. Flood risk in a range of spatial perspectives—From global to local scales. Nat. Hazards Earth Syst. 2019, 19, 1319–1328. [Google Scholar] [CrossRef] [Green Version]
- Bloeschl, G.; Hall, J.; Viglione, A.; Perdigao, R.A.P.; Parajka, J.; Merz, B.; Lun, D.; Arheimer, B.; Aronica, G.T.; Bilibashi, A.; et al. Changing climate both increases and decreases European river floods. Nature 2019, 573, 108. [Google Scholar] [CrossRef]
- Bloschl, G.; Hall, J.; Parajka, J.; Perdigao, R.A.P.; Merz, B.; Arheimer, B.; Aronica, G.T.; Bilibashi, A.; Bonacci, O.; Borga, M.; et al. Changing climate shifts timing of European floods. Science 2017, 357, 588–590. [Google Scholar] [CrossRef] [Green Version]
- Wilby, R.L.; Keenan, R. Adapting to flood risk under climate change. Prog. Phys. Geogr. 2012, 36, 348–378. [Google Scholar] [CrossRef]
- Nigel, W.; Gosling, S.N. The impacts of climate change on river flood risk at the global scale. Clim. Chang. 2014, 134, 387–401. [Google Scholar] [CrossRef] [Green Version]
- Cornwall, W. Europe’s deadly floods leave scientists stunned. Science 2021, 373, 372–373. [Google Scholar] [CrossRef]
- Alfieri, L.; Bisselink, B.; Dottori, F.; Naumann, G.; de Roo, A.; Salamon, P.; Wyser, K.; Feyen, L. Global projections of river flood risk in a warmer world. Earths Future 2017, 5, 171–182. [Google Scholar] [CrossRef]
- Hodgkins, G.A.; Whitfield, P.H.; Burn, D.H.; Hannaford, J.; Renard, B.; Stahl, K.; Fleig, A.K.; Madsen, H.; Mediero, L.; Korhonen, J.; et al. Climate-driven variability in the occurrence of major floods across North America and Europe. J. Hydrol. 2017, 552, 704–717. [Google Scholar] [CrossRef] [Green Version]
- Mediero, L.; Santillan, D.; Garrote, L.; Granados, A. Detection and attribution of trends in magnitude, frequency and timing of floods in Spain. J. Hydrol. 2014, 517, 1072–1088. [Google Scholar] [CrossRef]
- Zadeh, S.M.; Burn, D.H.; O’Brien, N. Detection of trends in flood magnitude and frequency in Canada. J. Hydrol.-Reg. Stud. 2020, 28, 13. [Google Scholar] [CrossRef]
- Kemter, M.; Merz, B.; Marwan, N.; Vorogushyn, S.; Bloschl, G. Joint Trends in Flood Magnitudes and Spatial Extents Across Europe. Geophys. Res. Lett. 2020, 47, e2020GL087464. [Google Scholar] [CrossRef] [Green Version]
- Archfield, S.; Hirsch, R.; Viglione, A.; Blöschl, G. Using a peaks-over-threshold approach to assess changes in flood magnitude, volume, duration, and frequency across the United States. In Proceedings of the EGU General Assembly Conference, Vienna, Austria, 27 April–2 May 2014. [Google Scholar]
- Murray, V.; Ebi, K.L. IPCC Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (SREX). J. Epidemiol. Community Health 2012, 66, 759–760. [Google Scholar] [CrossRef]
- Yang, L.; Wang, L.C.; Li, X.; Gao, J. On the flood peak distributions over China. Hydrol. Earth Syst. Sci. 2019, 23, 5133–5149. [Google Scholar] [CrossRef] [Green Version]
- Xiong, B.; Xiong, L.H.; Guo, S.L.; Xu, C.Y.; Xia, J.; Zhong, Y.X.; Yang, H. Nonstationary Frequency Analysis of Censored Data: A Case Study of the Floods in the Yangtze River From 1470 to 2017. Water Resour. Res. 2020, 56, 20. [Google Scholar] [CrossRef]
- Gu, X.; Zhang, Q.; Wang, Z. Evaluation on Stationarity Assumption of Annual Maximum Peak Flows during 1951-2010 in the Pearl River Basin. J. Nat. Resour. 2015, 30, 824–835, (In Chinese with English Abstract). [Google Scholar]
- Zhang, Q.; Gu, X.H.; Singh, V.P.; Sun, P.; Chen, X.H.; Kong, D.D. Magnitude, frequency and timing of floods in the Tarim River basin, China: Changes, causes and implications. Glob. Planet. Chang. 2016, 139, 44–55. [Google Scholar] [CrossRef] [Green Version]
- Mao, W.; Fan, J.; Shen, Y.; Yang, Q.; Gao, Q.; Wang, G.; Wang, S.; Wu, S. Variations of Extreme Flood of the Rivers in Xinjiang Region and Some Typical Watersheds from Tianshan Mountains and Their Response to Climate Change in Recent 50 Years. J. Glaciol. Geocryol. 2012, 34, 1037–1046, (In Chinese with English Abstract). [Google Scholar]
- Jiang, J.X.; Cai, M.; Xu, Y.J.; Fang, G.H. The changing trend of flooding in the Aksu River basin. J. Glaciol. Geocryol. 2021, 43, 1200–1209, (In Chinese with English Abstract). [Google Scholar]
- Zhang, Y.Y.; Fu, G.B.; Sun, B.Y.; Zhang, S.F.; Men, B.H. Simulation and classification of the impacts of projected climate change on flow regimes in the arid Hexi Corridor of Northwest China. J. Geophys. Res.-Atmos. 2015, 120, 7429–7453. [Google Scholar] [CrossRef]
- Wang, X.L.; Chen, R.S.; Li, H.Y.; Li, K.L.; Liu, J.F.; Liu, G.H. Detection and attribution of trends in flood frequency under climate change in the Qilian Mountains, Northwest China. J. Hydrol.-Reg. Stud. 2022, 42, 101153. [Google Scholar] [CrossRef]
- Chen, Y.N.; Li, Z.; Fan, Y.T.; Wang, H.J.; Deng, H.J. Progress and prospects of climate change impacts on hydrology in the arid region of northwest China. Environ. Res. 2015, 139, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.F.; Shen, Y.; Li, D.L.; Zhang, G.W.; Ding, Y.; Hu, R.J.; Kang, E.S. Discussion on the present climate change from warm-dry to warm-wet in northwest china. Quatern. Sci. 2003, 23, 152–164, (In Chinese with English Abstract). [Google Scholar]
- Wang, X.; Chen, R.; Han, C.; Yang, Y.; Liu, J.; Liu, Z.; Song, Y. Changes in river discharge in typical mountain permafrost catchments, northwestern China. Quatern. Int. 2019, 519, 32–41. [Google Scholar] [CrossRef]
- Zhang, Q.; Yu, Y.X.; Zhang, J. Characteristics of Water Cycle in the Qilian Mountains and the Oases in Hexi Inland River Basins. J. Glaciol. Geocryol. 2008, 30, 907–913, (In Chinese with English Abstract). [Google Scholar]
- Wang, L.; Chen, R.S.; Han, C.T.; Wang, X.Q.; Liu, G.H.; Song, Y.X.; Yang, Y.; Liu, J.F.; Liu, Z.W.; Liu, X.J.; et al. Change characteristics of precipitation and temperature in the Qilian Mountains and Hexi Oasis, Northwestern China. Environ. Earth Sci. 2019, 78, 13. [Google Scholar] [CrossRef]
- Guan, Y.H.; Zheng, F.L.; Zhang, X.C.; Wang, B. Trends and variability of daily precipitation and extremes during 1960–2012 in the Yangtze River Basin, China. Int. J. Climatol. 2017, 37, 1282–1298. [Google Scholar] [CrossRef]
- Hussain, A.; Cao, J.H.; Ali, S.; Muhammad, S.; Ullah, W.; Hussain, I.; Akhtar, M.; Wu, X.Q.; Guan, Y.H.; Zhou, J.X. Observed trends and variability of seasonal and annual precipitation in Pakistan during 1960-2016. Int. J. Climatol. 2022, 42, 8313–8332. [Google Scholar] [CrossRef]
- Hussain, A.; Cao, J.H.; Hussain, I.; Begum, S.; Akhtar, M.; Wu, X.Q.; Guan, Y.H.; Zhou, J.X. Observed Trends and Variability of Temperature and Precipitation and Their Global Teleconnections in the Upper Indus Basin, Hindukush-Karakoram-Himalaya. Atmosphere 2021, 12, 973. [Google Scholar] [CrossRef]
- Zhang, Q.; Singh, V.P.; Li, J.F.; Chen, X.H. Analysis of the periods of maximum consecutive wet days in China. J. Geophys. Res.-Atmos. 2011, 116, D23106. [Google Scholar] [CrossRef]
- Lang, M.; Ouarda, T.; Bobee, B. Towards operational guidelines for over-threshold modeling. J. Hydrol. 1999, 225, 103–117. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric test against trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods. Brit. J. Psychol. 1975, 25, 86–91. [Google Scholar] [CrossRef]
- Sang, Y.F.; Wang, Z.; Liu, C. Comparison of the MK test and EMD method for trend identification in hydrological time series. J. Hydrol. 2014, 510, 293–298. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, R.S.; Liu, G.H.; Liu, Z.W.; Wang, X.Q. Trends and variability in snowmelt in China under climate change. Hydrol. Earth Syst. Sci. 2022, 26, 305–329. [Google Scholar] [CrossRef]
- Gocic, M.; Trajkovic, S. Analysis of changes in meteorological variables using Mann-Kendall and Sen’s slope estimator statistical tests in Serbia. Glob. Planet. Chang. 2013, 100, 172–182. [Google Scholar] [CrossRef]
- Li, Z.L.; Xu, Z.X.; Li, J.Y.; Li, Z.J. Shift trend and step changes for runoff time series in the Shiyang River basin, northwest China. Hydro. Process 2008, 22, 4639–4646. [Google Scholar] [CrossRef]
- Mosmann, V.; Castro, A.; Fraile, R.; Dessens, J.; Sanchez, J.L. Detection of statistically significant trends in the summer precipitation of mainland Spain. Atmos. Res. 2004, 70, 43–53. [Google Scholar] [CrossRef]
- Bari, S.H.; Rahman, M.T.U.; Hoque, M.A.; Hussain, M.M. Analysis of seasonal and annual rainfall trends in the northern region of Bangladesh. Atmos. Res. 2016, 176, 148–158. [Google Scholar] [CrossRef]
- Wang, Y.; Qin, D. Influence of Climate Change and Human Activity on Water Resources in Arid Region of Northwest China: An Overview. Clim. Chang. Res. 2017, 13, 483–493, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Cao, B.; Pan, B.; Wang, J.; Shangguan, D.; Wen, Z.; Qi, W.; Cui, H.; Lu, Y. Changes in the glacier extent and surface elevation along the Ningchan and Shuiguan river source, eastern Qilian Mountains, China. Quatern. Res. 2014, 81, 531–537. [Google Scholar] [CrossRef]
- Tian, H.; Yang, T.; Liu, Q. Climate change and glacier area shrinkage in the Qilian mountains, China, from 1956 to 2010. Ann. Glaciol. 2014, 55, 187–197. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Liu, S.; Shangguan, D.; Li, J.; Zhao, J. Thinning and shrinkage of Laohugou No. 12 glacier in the Western Qilian Mountains, China, from 1957 to 2007. J. Mt. Sci. 2012, 9, 343–350. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, L.; She, D.; Wang, G.; Zhang, Q. Future projections of flooding characteristics in the Lancang-Mekong River Basin under climate change. J. Hydrol. 2021, 602, 126778. [Google Scholar] [CrossRef]
- Reyer, C.P.O.; Otto, I.M.; Adams, S.; Albrecht, T.; Baarsch, F.; Cartsburg, M.; Coumou, D.; Eden, A.; Ludi, E.; Marcus, R.; et al. Climate change impacts in Central Asia and their implications for development. Reg. Environ. Chang. 2017, 17, 1639–1650. [Google Scholar] [CrossRef]
- Chen, R.S.; Han, C.T.; Liu, J.F.; Yang, Y.; Liu, Z.W.; Wang, L.; Kang, E.S. Maximum precipitation altitude on the northern flank of the Qilian Mountains, northwest China. Hydrol. Res. 2018, 49, 1696–1710. [Google Scholar] [CrossRef]
- Wang, P.; Li, Z.Q.; Gao, W.Y. Rapid Shrinking of Glaciers in the Middle Qilian Mountain Region of Northwest China during the Last similar to 50 Years. J. Earth Sci. 2011, 22, 539–548. [Google Scholar] [CrossRef]
- Sun, M.P.; Liu, S.Y.; Yao, X.J.; Guo, W.Q.; Xu, J.L. Glacier changes in the Qilian Mountains in the past half-century: Based on the revised First and Second Chinese Glacier Inventory. J. Geogr. Sci. 2018, 28, 206–220. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.H.; Chen, R.S.; Li, K.L. Glacial Change and Its Hydrological Response in Three Inland River Basins in the Qilian Mountains, Western China. Water 2021, 13, 2213. [Google Scholar] [CrossRef]
River Basin | Code | River Name | Discharge Station | Longitude | Latitude | Altitude (m) | Data Series |
---|---|---|---|---|---|---|---|
SYRB | a | Gulang | Gulang | 102°52′ | 37°27′ | 2072 | 1970–2021 |
b | Zamu | Zamusi | 102°34′ | 37°42′ | 2010 | 1970–2021 | |
c | Xiying | Jiutiaoling | 102°03′ | 37°52′ | 2270 | 1970–2021 | |
HRB | d | Babao | Qilian | 100°14′ | 38°12′ | 2710 | 1970–2021 |
e | Hei | Zhamashike | 99°59′ | 38°14′ | 2810 | 1970–2021 | |
f | Dazhuma | Wafangcheng | 100°31′ | 38°29′ | 2440 | 1970–2021 | |
g | Liyuan | Sunan | 99°38′ | 38°51′ | 2264 | 1970–2021 | |
h | Hongshui | Xindi | 98°25′ | 39°34′ | 1880 | 1970–2021 | |
i | Taolai | Jiayuguan | 98°16′ | 39°45′ | 1695 | 1970–2021 | |
SLRB | j | Shiyou | Yumen | 97°33′ | 39°47′ | 2300 | 1970–2021 |
k | Shule | Changmabao | 96°51′ | 39°49′ | 2080 | 1970–2021 | |
l | Danghe | Dangchengwan | 94°53′ | 39°30′ | 2176 | 1970–2021 |
Code | Meteorological Station | Longitude | Latitude | Altitude (m) | Data Series |
---|---|---|---|---|---|
1 | Wushaoling | 102°52′ | 37°12′ | 3045 | 1970–2021 |
2 | Menyuan | 101°37′ | 37°23′ | 2850 | 1970–2021 |
3 | Qilian | 100°15′ | 38°11′ | 2787 | 1970–2021 |
4 | Yeniugou | 99°35′ | 38°25′ | 3320 | 1970–2021 |
5 | Tuole | 98°25′ | 38°48′ | 3367 | 1970–2021 |
Abbreviations | Meteorological Indices | Unit |
---|---|---|
AMT | Annual mean temperature | °C |
TXX | Annual maximum value of daily maximum temperature | °C |
TXN | Annual minimum value of daily maximum temperature | °C |
P1 | Maximum daily precipitation in 1 year | mm |
P3 | 3-day mean maximum precipitation in 1 year | mm |
P7 | 7-day mean maximum precipitation in 1 year | mm |
River Basin | Code | AMPD Series | Mean Value (m3/s) | POT3M Series | Threshold Value (m3/s) |
---|---|---|---|---|---|
SYRB | a | Z(−3.71) S(0.01)↓ | 27 | Z(−2.59) S(0.01)↓ | 5 |
b | Z(−2.04) S(0.05)↓ | 101 | Z(−1.04) NS | 55 | |
c | Z(−2.28) S(0.05)↓ | 129 | Z(−2.35) S(0.05)↓ | 79 | |
HRB | d | Z(0.11) NS | 143 | Z(−0.14) NS | 75 |
e | Z(0.54) NS | 314 | Z(0.61) NS | 158 | |
f | Z(−2.37) S(0.01)↓ | 43 | Z(−0.17) NS | 16 | |
g | Z(0.49) NS | 99 | Z(−0.49) NS | 56 | |
h | Z(0.58) NS | 145 | Z(−0.01) NS | 69 | |
i | Z(0.72) NS | 171 | Z(0.25) NS | 121 | |
SLRB | j | Z(−1.33) S(0.1)↓ | 34 | Z(−1.61) S(0.1)↓ | 13 |
k | Z(3.44) S(0.01)↑ | 338 | Z(3.14) S(0.01)↑ | 251 | |
l | Z(0.73) NS | 90 | Z(0.77) NS | 39 |
River Basin | River Name | Glacier Area (km2) | Glacial Meltwater Ratio (%) | Periods |
---|---|---|---|---|
SYRB | Gulang | – | – | 1960s–2010s |
Zamu | 3.75 | 1.3 | 1960s–2010s | |
Xiying | 19.77 | 5.3 | 1960s–2010s | |
HRB | Babao | – | – | 1960s–2010s |
Hei | 58.90 | 2.7 | 1960s–2010s | |
Dazhuma | 5.94 | 11.4 | 1960s–2010s | |
Liyuan | 16.28 | 7.1 | 1960s–2010s | |
Hongshui | 125.62 | 44.0 | 1960s–2010s | |
Taolai | 137.89 | 17.2 | 1960s–2010s | |
SLRB | Shiyou | 6.38 | 19.3 | 1960s–2010s |
Shule | 469.52 | 42.2 | 1960s–2010s | |
Danghe | 233.83 | 46.8 | 1960s–2010s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Chen, R.; Li, K.; Yang, Y.; Liu, J.; Liu, Z.; Han, C. Trends and Variability in Flood Magnitude: A Case Study of the Floods in the Qilian Mountains, Northwest China. Atmosphere 2023, 14, 557. https://doi.org/10.3390/atmos14030557
Wang X, Chen R, Li K, Yang Y, Liu J, Liu Z, Han C. Trends and Variability in Flood Magnitude: A Case Study of the Floods in the Qilian Mountains, Northwest China. Atmosphere. 2023; 14(3):557. https://doi.org/10.3390/atmos14030557
Chicago/Turabian StyleWang, Xueliang, Rensheng Chen, Kailu Li, Yong Yang, Junfeng Liu, Zhangwen Liu, and Chuntan Han. 2023. "Trends and Variability in Flood Magnitude: A Case Study of the Floods in the Qilian Mountains, Northwest China" Atmosphere 14, no. 3: 557. https://doi.org/10.3390/atmos14030557
APA StyleWang, X., Chen, R., Li, K., Yang, Y., Liu, J., Liu, Z., & Han, C. (2023). Trends and Variability in Flood Magnitude: A Case Study of the Floods in the Qilian Mountains, Northwest China. Atmosphere, 14(3), 557. https://doi.org/10.3390/atmos14030557