Decadal Prediction of the Summer Extreme Precipitation over Southern China
Abstract
:1. Introduction
2. Data and Methods
2.1. Data
2.2. Definition of the Extreme Precipitation Index
2.3. Methods
3. Results
3.1. Decadal Variation
3.2. Predictors
3.3. Decadal Prediction Model
3.4. Real-Time Prediction
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhai, P.; Zhang, X.; Wan, H.; Pan, X. Trends in Total Precipitation and Frequency of Daily Precipitation Extremes over China. J. Clim. 2005, 18, 1096–1108. [Google Scholar] [CrossRef]
- Sun, J. The contribution of extreme precipitation to the total precipitation in China. Atmos. Ocean. Sci. Lett. 2012, 5, 499–503. [Google Scholar]
- Zheng, G.; Yang, L.; Chen, Q.; Zhou, X. The increasing predominance of extreme precipitation in Southwest China since the late 1970s. Atmos. Ocean. Sci. Lett. 2022, 15, 100227. [Google Scholar] [CrossRef]
- Cui, D.; Wang, C.; Santisirisomboon, J. Characteristics of extreme precipitation over eastern Asia and its possible connections with Asian summer monsoon activity. Int. J. Climatol. 2019, 39, 711–723. [Google Scholar] [CrossRef]
- Zhang, T.; Wei, F. Probability distribution of precipitation extremes during raining seasons in South China. Acta Meteorol. Sin. 2009, 67, 442–451. [Google Scholar]
- Lin, A.; Liang, J.; Li, C.; Gu, D. Monsoon circulation background of ‘0506’ continuous rainstorm in South China. Adv. Water Sci. 2007, 18, 424–434. [Google Scholar]
- Ning, L.; Qian, Y. Interdecadal change in extreme precipitation over South China and its mechanism. Adv. Atmos. Sci. 2009, 26, 109–118. [Google Scholar] [CrossRef]
- Li, H.; Chen, H.; Wang, H. Changes in clustered extreme precipitation events in South China and associated atmospheric circulations. Int. J. Climatol. 2016, 36, 3226–3236. [Google Scholar] [CrossRef]
- He, L.; Hao, X.; Han, T. How do extreme summer precipitation events over eastern China subregions change? Geophys. Res. Lett. 2021, 48, e2020GL091849. [Google Scholar] [CrossRef]
- Xiang, B.; Dong, X.; Li, Y. Climate change trend and causes of tropical cyclones affecting the South China Sea during the past 50 years. Atmos. Ocean. Sci. Lett. 2020, 13, 301–307. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Yuan, J.; Wen, Z.; Huang, S.; Chen, X.; Guo, Y.; Lin, Q. The impacts of the East Asian subtropical westerly jet on weather extremes over China in early and late summer. Atmos. Ocean. Sci. Lett. 2022, 15, 100212. [Google Scholar] [CrossRef]
- Qi, Q.; Cai, R.; Zhang, Q. Primarily analyses on variations of summer extreme precipitation in South China and its relation to the sea-air anomaly in Northwestern Pacific Ocean. Plateau Meteorol. 2013, 32, 110–121. [Google Scholar]
- Xie, S.-P.; Hu, K.; Hafner, J.; Tokinaga, H.; Du, Y.; Huang, G.; Sampe, T. Indian Ocean capacitor effect on Indo-western Pacific climate during the summer following El Niño. J. Clim. 2009, 22, 730–747. [Google Scholar] [CrossRef]
- Zhong, Y.; Yang, M.; Yuan, C. Temporal and spatial characteristics of summer extreme precipitation in Eastern China and possible causalities. J. Geosci. Environ. Prot. 2020, 8, 36–46. [Google Scholar] [CrossRef]
- Li, J.; Wang, B. Predictability of summer extreme precipitation days over eastern China. Clim. Dyn. 2018, 51, 4543–4554. [Google Scholar] [CrossRef]
- Chan, J.; Zhou, W. PDO, ENSO and the early summer monsoon rainfall over south China. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef]
- Xu, H.; Chen, H.; Wang, H. Interannual variation in summer extreme precipitation over Southwestern China and the possible associated mechanisms. Int. J. Climatol. 2021, 41, 3425–3438. [Google Scholar] [CrossRef]
- Chen, X.; Dai, A.; Wen, Z.; Song, Y. Contributions of Arctic sea-ice loss and East Siberian atmospheric blocking to 2020 rec-ord-breaking Meiyu-Baiu rainfall. Geophys. Res. Lett. 2021, 48, e2021GL092748. [Google Scholar]
- Zhang, K.; Li, L.; Cheng, S. Analysis of interdecadal variation of precipitation and impact factors during the pre-rainy season in South China. J. Arid. Meteorol. 2016, 34, 64–74. [Google Scholar]
- Yang, H.; Gong, Z.; Wang, X.; Feng, G. Analysis of the characteristics and causes of interdecadal changes in the summer extreme precipitation over Eastern China. Chin. J. Atmos. Sci. 2021, 45, 683–696. [Google Scholar]
- Meehl, G.A.; Goddard, L.; Murphy, J.; Stouffer, R.; Boer, G. Decadal prediction: Can it be skillful? Bull. Amer. Meteorol. Soc. 2009, 90, 1467–1486. [Google Scholar] [CrossRef]
- Monerie, P.A.; Robson, J.; Dong, B.; Dunstone, N. A role of the Atlantic Ocean in predicting summer surface air temperature over North East Asia? Clim. Dyn. 2018, 51, 473–491. [Google Scholar] [CrossRef] [Green Version]
- Smith, D.M.; Eade, R.; Scaife, A.A.; Caron, L. Robust skill of decadal climate predictions. Npj Clim. Atmos. Sci. 2019, 2, 13. [Google Scholar] [CrossRef] [Green Version]
- Dunstone, N.; Smith, D.; Yeager, S. Skilful interannual climate prediction from two large initialised model ensembles. Environ. Res. Lett. 2020, 15, 094083. [Google Scholar] [CrossRef]
- Doblas-Reyes, F.J.; Andreu-Burillo, L.; Chikamoto, Y.; García-Serrano, J. Initialized near-term regional climate change prediction. Nat. Commun. 2013, 4, 1715. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Wang, H.; Fan, K. Improving the prediction of the summer Asian-Pacific Oscillation using the interannual increment approach. J. Clim. 2014, 27, 8126–8134. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, H. Is the Regional Precipitation Predictable in Decadal Scale? A Possible Approach for the Decadal Prediction of the Summer Precipitation Over North China. Earth Space Sci. 2020, 7, e2019EA000986. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, H. A possible approach for the decadal prediction of PDO. Acta Meteorol. Sin. 2020, 78, 177–186. [Google Scholar] [CrossRef]
- Qian, D.; Huang, Y.; Wang, H. A preliminary attempt on decadal prediction of the East Asian summer monsoon. Theor. Appl. Climatol. 2022, 148, 1499–1511. [Google Scholar] [CrossRef]
- Wu, J.; Gao, X. A gridded daily observation dataset over China region and comparison with the other datasets. Chin. J. Geophys. 2013, 56, 1102–1111. [Google Scholar]
- Huang, B.; Thorne, P.W.; Banzon, V.F.; Boyer, T. Extended Reconstructed Sea Surface Temperature, Version 5 (ERSSTv5): Upgrades, Validations, and Intercomparisons. J. Clim. 2017, 30, 8179–8205. [Google Scholar] [CrossRef]
- Rayner, N.A.; Parker, D.; Horton, E.B.; Folland, C. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. 2003, 108, 4407. [Google Scholar] [CrossRef] [Green Version]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S. The ERA5 global reanalysis. Quart. J. Roy. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Wilks, D.S. Principal component (EOF) analysis. Int. Geophys. 2011, 100, 519–562. [Google Scholar]
- Bretherton, C.S.; Widmann, M.; Dymnikov, V.P.; Wallace, J. The effective number of spatial degrees of freedom of a time-varying field. J. Clim. 1999, 12, 1990–2009. [Google Scholar] [CrossRef]
- Murphy, A.H. Skill scores based on the mean square error and their relationships to the correlation coefficient. Mon. Weather Rev. 1988, 116, 2417–2424. [Google Scholar] [CrossRef]
- Chen, J.; Wen, Z.; Wu, R.; Wang, X.; He, C.; Chen, Z. An interdecadal change in the intensity of interannual variability in summer rainfall over southern China around early 1990s. Clim. Dyn. 2017, 48, 191–207. [Google Scholar] [CrossRef]
- Lü, J.; Li, Y.; Zhai, P.; Chen, J. Teleconnection patterns impacting on the summer consecutive extreme rainfall in Central-Eastern China. Int. J. Climatol. 2017, 37, 3367–3380. [Google Scholar] [CrossRef]
- Sun, X.; Li, S.; Hong, X.; Lu, R. Simulated Influence of the Atlantic Multidecadal Oscillation on Summer Eurasian Nonuniform Warming since the Mid-1990s. Adv. Atmos. Sci. 2019, 36, 811–822. [Google Scholar] [CrossRef]
- Chen, L.; Li, G.; Lu, B.; Li, Y.; Gao, C.; Long, S.-M.; Li, X.; Wang, Z. Two approaches of the spring North Atlantic sea surface temperature affecting the following July precipitation over central China: The tropical and extratropical pathways. J. Clim. 2022, 35, 2969–2986. [Google Scholar] [CrossRef]
- Mcgregor, S.; Timmermann, A.; Stuecker, M.F.; England, M. Recent Walker circulation strengthening and Pacific cooling amplified by Atlantic warming. Nat. Clim. Chang. 2014, 4, 888–892. [Google Scholar] [CrossRef] [Green Version]
- Cai, W.; Wu, L.; Lengaigne, M.; Li, T.; McGregor, S.; Kug, J.-S.; Yu, J.-Y.; Stuecker, M.F.; Santoso, A.; Li, X.; et al. Pantropical climate interactions. Science 2019, 363, eaav4236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ham, Y.; Kug, J.; Park, J.; Jin, F. Sea surface temperature in the north tropical Atlantic as a trigger for El Nino/Southern Oscillation events. Nat. Geosci. 2013, 6, 112–116. [Google Scholar] [CrossRef]
- Zhang, W.; Jiang, F.; Stuecker, M.F.; Jin, F.-F.; Timmermann, A. Spurious North Tropical Atlantic precursors to El Niño. Nat. Commun. 2021, 12. [Google Scholar] [CrossRef] [PubMed]
- Sample, T.; Xie, S. Large-Scale Dynamics of the Meiyu-Baiu Rainband: Environmental Forcing by the Westerly Jet. J. Clim. 2010, 23, 113–134. [Google Scholar] [CrossRef] [Green Version]
- Kong, W.; Chiang, J.G.H. Interaction of the Westerlies with the Tibetan Plateau in Determining the Mei-Yu Termination. J. Clim. 2020, 33, 339–363. [Google Scholar] [CrossRef] [Green Version]
- He, C.; Zhou, T.; Zhang, L.; Chen, X.; Zhang, W. Extremely hot East Asia and flooding western South Asia in the summer of 2022 tied to reversed flow over Tibetan Plateau. Clim. Dynam. 2023. [Google Scholar] [CrossRef]
- Huang, P.; Xie, S. Mechanisms of change in ENSO-induced tropical Pacific rainfall variability in a warming climate. Nat. Geosci. 2015, 8, 922–926. [Google Scholar] [CrossRef]
- Dai, P.; Nie, J. What Controls the Interannual Variability of Extreme Precipitation? Geophys. Res. Lett. 2021, 48, e2021GL095503. [Google Scholar] [CrossRef]
- Zhao, P.; Zhang, X.; Zhou, X.; Ikeda, M. The sea ice extent anomaly in the North Pacific and its impact on the East Asian summer monsoon rainfall. J. Clim. 2004, 17, 3434–3447. [Google Scholar] [CrossRef]
- Alexander, M.A.; Bhatt, U.S.; Walsh, J.E.; Timlin, M. The atmospheric response to realistic Arctic sea ice anomalies in an AGCM during winter. J. Clim. 2004, 17, 890–905. [Google Scholar] [CrossRef]
- Vihma, T. Effects of Arctic sea ice decline on weather and climate: A review. Surv. Geophys. 2014, 35, 1175–1214. [Google Scholar] [CrossRef] [Green Version]
- Gong, D.-Y.; Yang, J.; Kim, S.-J.; Gao, Y.; Guo, D.; Zhou, T.; Hu, M. Spring Arctic Oscillation-East Asian summer monsoon connection through circulation changes over the western North Pacific. Clim. Dyn. 2011, 37, 2199–2216. [Google Scholar] [CrossRef]
- He, S.; Gao, Y.; Li, F.; Wang, H.; He, Y. Impact of Arctic Oscillation on the East Asian climate: A review. Earth-Sci. Rev. 2017, 164, 48–62. [Google Scholar] [CrossRef] [Green Version]
- Sheng, B.; Wang, H.; Li, H.; Li, Q. Thermodynamic and Dynamic Effects of Anomalous Dragon Boat Water over South China in 2022. 2022. Available online: https://ssrn.com/abstract=4264758 (accessed on 15 February 2023).
- Zhu, Y.; Wang, T.; Ma, J. Influence of internal decadal variability on the summer rainfall in eastern China as simulated by CCSM4. Adv. Atmos. Sci. 2016, 33, 706–714. [Google Scholar] [CrossRef]
Leading 3 Years | Leading 4 Years | Leading 5 Years | Leading 6 Years | Leading 7 Years | |
---|---|---|---|---|---|
PDO | 0.23 (0.39) | 0.21 (0.24) | 0.16 (−0.06) | 0.15 (−0.26) | 0.19 (−0.39) |
AMO | 0.30 (−0.33) | 0.30 (−0.29) | 0.31 (−0.22) | 0.33 (−0.09) | 0.36 (−0.05) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Huang, Y.; Zhang, D.; Wang, H. Decadal Prediction of the Summer Extreme Precipitation over Southern China. Atmosphere 2023, 14, 595. https://doi.org/10.3390/atmos14030595
Wang H, Huang Y, Zhang D, Wang H. Decadal Prediction of the Summer Extreme Precipitation over Southern China. Atmosphere. 2023; 14(3):595. https://doi.org/10.3390/atmos14030595
Chicago/Turabian StyleWang, Huijie, Yanyan Huang, Dapeng Zhang, and Huijun Wang. 2023. "Decadal Prediction of the Summer Extreme Precipitation over Southern China" Atmosphere 14, no. 3: 595. https://doi.org/10.3390/atmos14030595
APA StyleWang, H., Huang, Y., Zhang, D., & Wang, H. (2023). Decadal Prediction of the Summer Extreme Precipitation over Southern China. Atmosphere, 14(3), 595. https://doi.org/10.3390/atmos14030595