Teleconnection between the Surface Wind of Western Patagonia and the SAM, ENSO, and PDO Modes of Variability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Area of Study
2.2. Available Data
2.3. Quantification of the Strong Wind Anomalies
2.4. SAM
2.5. ENSO and the Decadal Oscillations (IPO, PDO)
2.6. Quantification of the Correlation between the Wind Speed Anomalies and the Oscillations
3. Results
3.1. Time Series of Wind Speed, SAM, ENSO, and PDO at Different Temporal Resolutions
3.2. Correlation between Wind Speed Anomalies and the Oscillations
3.3. Modelling of the Wind Speed Anomalies
4. Discussion
5. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Le Quéré, C.; Rödenbeck, C.; Buitenhuis, E.T.; Conway, T.J.; Langenfelds, R.; Gomez, A.; Labuschagne, C.; Ramonet, M.; Nakazawa, T.; Metzl, N.; et al. Saturation of the Southern Ocean CO2 sink due to recent climate change. Science 2007, 316, 1735–1738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hodgson, D.; Sime, L. Southern westerlies and CO2. Nat. Geosci. 2010, 3, 666–667. [Google Scholar] [CrossRef]
- Sigman, D.M.; Hain, M.P.; Huag, G.H. The polar ocean and glacial cycles in atmospheric CO2 concentration. Nature 2010, 466, 47–55. [Google Scholar] [CrossRef]
- Garreaud, R.; Lopez, P.; Minvielle, M.; Rojas, M. Large-scale control on the Patagonian climate. J. Clim. 2013, 26, 215–230. [Google Scholar] [CrossRef]
- Garreaud, R.N.; Vuille, M.; Compagnucci, R.; Matengo, J. Present-day South American climate. Palaeogeogr. Palaeocl. 2009, 281, 180–195. [Google Scholar] [CrossRef]
- Sime, L.C.; Kohfeld, K.E.; Le Quere, C.; Wolff, E.; de Boer, A.M.; Graham, R.M.; Bopp, L. Southern Hemisphere westerly wind changes during the Last Glacial Maximum: Model-data comparison. Quat. Sci. Rev. 2013, 64, 104–120. [Google Scholar] [CrossRef] [Green Version]
- Thompson, D.W.; Wallace, J.M. Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Clim. 2000, 13, 1000–1016. [Google Scholar] [CrossRef]
- Thompson, D.W.J.; Solomon, S. Interpretation of recent Southern Hemisphere climate change. Science 2002, 296, 895–899. [Google Scholar] [CrossRef] [Green Version]
- Marshall, G.J.; Stott, P.A.; Turner, J.; Connolley, W.M.; King, J.C.; Lachlan-Cope, T.A. Causes of exceptional atmospheric circulation changes in the Southern Hemisphere. Geophys. Res. Lett. 2002, 31, L14205. [Google Scholar] [CrossRef]
- Gillet, N.; Thompson, D. Simulation of Recent Southern Hemisphere Climate Change. Science 2003, 302, 273–275. [Google Scholar] [CrossRef] [Green Version]
- Browne, I.M.; Moy, C.M.; Riesselman, C.R.; Neil, H.L.; Curtin, L.G.; Gorman, A.R.; Wilson, G.S. Late Holocene intensification of the westerly winds at the subantarctic Auckland Islands (51° S), New Zealand. Clim. Past 2017, 13, 1301–1322. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Fontealba, C.; Flores-Aqueveque, V.; Alfaro, S.C. Variability of the Southwestern Patagonia (51° S) winds in the recent (1980–2020) period. Implications for past wind reconstructions. Atmosphere 2017, 13, 206. [Google Scholar] [CrossRef]
- Moreno, P.I.; Vilanova, I.; Villa-Martínez, R.; Dunbar, R.B.; Mucciarone, D.A.; Kaplan, M.R.; Garreaud, R.D.; Rojas, M.; Moy, C.M.; Pol-Holz, R.D.; et al. Onset and Evolution of Southern Annular Mode-Like Changes at Centennial Timescale. Sci. Rep. 2018, 8, 3458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flores-Aqueveque, V.; Alfaro, S.; Vargas, G.; Rutllant, J.A.; Caquineau, S. Aeolian particles in marine cores as a tool for quantitative high-resolution reconstruction of upwelling favorable winds along coastal Atacama Desert, Northern Chile. Prog. Oceanogr. 2015, 134, 244–255. [Google Scholar] [CrossRef]
- Moy, C.; Moreno, P.; Dunbar, R.; Kaplan, M.; Francois, J.-P.; Villalba, R.; Haberzettl, T. Climate change in Southern South America during the last two millennia. In Past Climate Variability in South America and Surrounding Regions, Developments in Paleoenvironmental Research; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2009; pp. 353–393. [Google Scholar]
- Jenny, B.; Valero-Garcés, B.; Villa-Martínez, T.; Urrutia, R.; Geyh, M. and Veit, H. Early to Mid-Holocene Aridity in Central Chile and the Southern Westerlies: The Laguna Aculeo Record (34° S). Quat. Res. 2002, 58, 160–170. [Google Scholar] [CrossRef]
- Lamy, F.; Kilian, R.; Arz, H.; Francois, J.P.; Kaiser, J.; Prange, M.; Steinke, T. Holocene changes in the position and intensity of the southern westerly wind belt. Nat. Geosci. 2010, 3, 695–699. [Google Scholar] [CrossRef] [Green Version]
- Bertrand, S.; Hughen, K.; Sepúlveda, J.; Pantoja, S. Late Holocene covariability of the southern westerlies and sea surface temperature in northern Chilean Patagonia. Quat. Sci. Rev. 2014, 105, 195–208. [Google Scholar] [CrossRef]
- Moy, C.M.; Dunbar, R.B.; Moreno, P.I.; François, J.P.; Villa-Martínez, R.; Mucciarone, D.M.; Guilderson, T.O.; Garreaud, R.D. Isotopic evidence for hydrologic change related to the westerlies in SW Patagonia, Chile, during the last millennium. Quat. Sci. Rev. 2008, 27, 1335–1349. [Google Scholar] [CrossRef]
- Moreno, P.I.; François, J.P.; Villa-Martínez, R.; Moy, C.M. Millennial-scale variability in Southern Hemisphere westerly wind activity over the last 5000 years in SW Patagonia. Quat. Sci. Rev. 2009, 28, 25–38. [Google Scholar] [CrossRef]
- Moreno, P.I.; Vilanova, I.; Villa-Martínez, R.; Garreaud, R.D.; Rojas, M.; De Pol-Holz, R. Southern Annular Mode-like changes in southwestern Patagonia at centennial timescales over the last three millennia. Nat. Commun. 2014, 5, 4375. [Google Scholar] [CrossRef] [Green Version]
- Saunders, K.; Roberts, S.; Perren, B.; Butz, C.; Sime, L.; Davies, S.; Van Nieuwenhuyze, W.; Grosjean, M.; Hodgson, D. Holocene dynamics of the Southern Hemisphere westerly winds and possible links to CO2 outgassing. Nat. Geosci. 2018, 11, 650–655. [Google Scholar] [CrossRef] [Green Version]
- Briceño-Zuluaga, F.J.; Sifeddine, A.; Caquineau, S.; Cardich, J.; Salvatteci, R.; Gutierrez, D.; Ortlieb, L.; Velazco, F.; Boucher, H.; Machado, C. Terrigenous material supply to the Peruvian central continental shelf (Pisco, 14° S) during the last 1000 years: Paleoclimatic implications. Clim. Past 2016, 12, 787–798. [Google Scholar] [CrossRef] [Green Version]
- Warrier, A.; Pednekar, H.; Mahesh, B.S.; Mohan, R.; Gazi, S. Sediment grain size and surface textural observations of quartz grains in late quaternary lacustrine sediments from Schirmacher Oasis, East Antarctica: Paleoenvironmental significance. Polar Sci. 2016, 10, 89–100. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Bagnold, R.A. The Physics of Blown Sand and Desert Dunes, 1st ed.; Methuen & Co.: London, UK, 1941. [Google Scholar]
- Marticorena, B.; Bergametti, G. Modelling the atmospheric dust cycle. J. Geophys. Res. 1995, 100, 16415–16430. [Google Scholar] [CrossRef] [Green Version]
- Rogers, J.C.; Van Loon, H. Spatial variability of sea level pressure and 500 mb height anomalies over the Southern Hemisphere. Mon. Weather. Rev. 1982, 110, 1375–1392. [Google Scholar] [CrossRef]
- Gong, D.; Wang, S. Definition of Antarctic oscillation index. Geophys. Res. Lett. 1999, 26, 459–462. [Google Scholar] [CrossRef] [Green Version]
- Limpasuvan, V.; Hartmann, D.L. Eddies and the annular modes of climate variability. Geophys. Res. Lett. 1999, 26, 3133–3136. [Google Scholar] [CrossRef] [Green Version]
- Fogt, R.L.; Marshall, G.J. The Southern Annular Mode: Variability, trends, and climate impacts across the Southern Hemisphere. Wiley Interdiscip. Rev. Clim. Chang. 2020, 11, e652. [Google Scholar] [CrossRef]
- Thompson, D.W.J.; Solomon, S.; Kushner, P.J.; England, M.H.; Grise, K.M.; Karoly, D.J. Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change. Nat. Geosci. 2011, 4, 741–749. [Google Scholar] [CrossRef]
- Marshall, G.J. Trends in the Southern Annular Mode from observations and reanalyses. J. Clim. 2003, 16, 4134–4143. [Google Scholar] [CrossRef]
- Fan, K.; Wang, H.J. Antarctic oscillation and the dust weather frequency in North China. Geophys. Res. Lett. 2004, 31, L10201. [Google Scholar] [CrossRef] [Green Version]
- Visbeck, M. A station-based southern annular mode index from 1884 to 2005. J. Clim. 2009, 22, 940–950. [Google Scholar] [CrossRef] [Green Version]
- Ho, M.; Kiem, A.S.; Verdon-Kidd, D.C. The Southern Annular Mode: A comparison of indices. Hydrol. Earth Syst. Sci. 2012, 16, 967–982. [Google Scholar] [CrossRef] [Green Version]
- Jones, J.M.; Fogt, R.L.; Widmann, M.; Marshall, G.J.; Jones, P.D.; Visbeck, M. Historical SAM Variability. Part I: Century-Length Seasonal Reconstructions. J. Clim. 2009, 22, 5319–5345. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Picaut, J. Understanding ENSO physics—A review. Earth’s Climate: The Ocean–Atmosphere Interaction. Geophys. Monogr. 2004, 147, 21–48. [Google Scholar]
- Lau, K.M.; Weng, H. Interannual, decadal–interdecadal, and global warming signals in sea surface temperature during 1955–97. J. Clim. 1999, 12, 1257–1267. [Google Scholar] [CrossRef]
- Cai, W.; Whetton, P.H.; Pittock, A.B. Fluctuations of the relationship between ENSO and northeast Australian rainfall. Clim. Dyn. 2001, 17, 421. [Google Scholar] [CrossRef]
- Philander, S.G.; Fedorov, A. Is El Niño sporadic or cyclic? Annu. Rev. Earth Planet. Sci. 2003, 31, 579–594. [Google Scholar] [CrossRef] [Green Version]
- Smith, C.A.; Sardeshmukh, P. The Effect of ENSO on the Intraseasonal Variance of Surface Temperature in Winter. Int. J. Climatol. 2000, 20, 1543–1557. [Google Scholar] [CrossRef]
- Folland, C.K.; Parker, D.E.; Colman, A.W.; Washington, R. Large Scale Modes of Ocean Surface Temperature Since the Late Nineteenth Century; Springer: Berlin/Heidelberg, Germany, 1999; pp. 73–102. [Google Scholar]
- Power, S.; Casey, T.; Folland, C.; Colman, A.; Mehta, V. Inter-decadal modulation of the impact of ENSO on Australia. Clim. Dyn. 1999, 15, 319–324. [Google Scholar] [CrossRef]
- Henley, B.J.; Gergis, J.; Karoly, D.J.; Power, S.; Kennedy, J.; Folland, C.K. A tripole index for the interdecadal Pacific oscillation. Clim. Dyn. 2015, 45, 3077–3090. [Google Scholar] [CrossRef]
- Folland, C.K.; Renwick, J.A.; Salinger, M.J.; Mullan, A.B. Relative influences of the interdecadal Pacific oscillation and ENSO on the South Pacific convergence zone. Geophys. Res. Lett. 2002, 29, 21-1–21-4. [Google Scholar] [CrossRef]
- Garreaud, R.D.; Battisti, D.S. Interannual (ENSO) and interdecadal (ENSO-like) variability in the Southern Hemisphere tropospheric circulation. J. Clim. 1999, 2, 2113–2123. [Google Scholar] [CrossRef]
- Mantua, N.J.; Hare, S.R.; Zhang, Y.; Wallace, J.M.; Francis, R.C. A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Am. Meteorol. Soc. 1997, 78, 1069–1079. [Google Scholar] [CrossRef]
- Mantua, N.J.; Hare, S.R. The Pacific Decadal Oscillation. J. Oceanogr. 2002, 58, 35–44. [Google Scholar] [CrossRef]
- Duffy, P.A.; Walsh, J.E.; Graham, J.M.; Mann, D.H.; Rupp, T.S. Impacts of large-scale atmospheric–ocean variability on Alaskan fire season severity. Ecol. Appl. 2005, 15, 1317–1330. [Google Scholar] [CrossRef] [Green Version]
- Di Lorenzo, E.; Cobb, K.M.; Furtado, J.C.; Schneider, N.; Anderson, B.T.; Bracco, A.; Alexander, M.A.; Vimont, D.J. Central pacific El Nino and decadal climate change in the North Pacific Ocean. Nat. Geosci. 2010, 3, 762–765. [Google Scholar] [CrossRef]
- Da Silva, G.A.M.D.; Drumond, A.; Ambrizzi, T. The impact of El Niño on South American summer climate during different phases of the Pacific Decadal Oscillation. Theor. Appl. Climatol. 2011, 106, 307–319. [Google Scholar] [CrossRef]
- Vuille, M.; Franquist, E.; Garreaud, R.; Lavado Casimiro, W.S.; Cáceres, B. Impact of the global warming hiatus on Andean temperature. J. Geophys. Res. Atmos. 2015, 120, 3745–3757. [Google Scholar] [CrossRef] [Green Version]
- Valdés-Pineda, R.; Cañón, J.; Valdés, J.B. Multi-decadal 40-to 60-year cycles of precipitation variability in Chile (South America) and their relationship to the AMO and PDO signals. J. Hydrol. 2018, 556, 1153–1170. [Google Scholar] [CrossRef]
- Wold, S.; Esbensen, K.; Geladi, P. Principal component analysis. Chemom. Intell. Lab. Syst. 1987, 2, 37–52. [Google Scholar] [CrossRef]
- England, M.H.; McGregor, S.; Spence, P.; Meehl, G.A.; Timmermann, A.; Cai, W.; Gupta, A.S.; McPhaden, M.J.; Purich, A.; Santoso, A. Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat. Clim. Chang. 2014, 4, 222–227. [Google Scholar] [CrossRef] [Green Version]
- Jones, J.M.; Gille, S.T.; Goosse, H.; Abram, N.J.; Canziani, P.O.; Charman, D.J.; Clem, K.R.; Crosta, X.; de Lavergne, C.; Eisenman, I.; et al. Assessing recent trends in high-latitude Southern Hemispheresurface climate. Nat. Clim. Chang. 2016, 6, 917–926. [Google Scholar] [CrossRef]
- Fogt, R.L.; Goergens, C.A.; Jones, J.M.; Schneider, D.P.; Nicolas, J.P.; Bromwich, D.H.; Dusselier, H.E. A twentieth century perspective on summer Antarctic pressure change and variability and contributions from tropical SSTs and ozone depletion. Geophys. Res. Lett. 2017, 44, 9918–9927. [Google Scholar] [CrossRef]
- Cai, W.; Collier, M.A.; Gordon, H.B.; Waterman, L.J. Strong ENSO variability and a Super-ENSO pair in the CSIRO Mark 3 coupled climate model. Mon. Weather. Rev. 2003, 131, 1189–1210. [Google Scholar] [CrossRef]
- Arblaster, J.M.; et Meehl, G.A. Contributions of external forcings to southern annular mode trends. J. Clim. 2006, 19, 2896–2905. [Google Scholar] [CrossRef]
Averaging | 3 Years | 5 Years | ||||||
PDO | ENSO | SAM | Anomalies | PDO | ENSO | SAM | Anomalies | |
PDO | 1 | 0.709 | 0.221 | 0.368 | 1 | 0.712 | 0.282 | 0.469 |
ENSO | 1 | −0.038 | −0.001 | 1 | −0.009 | 0.034 | ||
SAM | 1 | 0.672 | 1 | 0.810 | ||||
Anomalies | 1 | 1 | ||||||
Averaging | 7 years | 9 years | ||||||
PDO | ENSO | SAM | Anomalies | PDO | ENSO | SAM | Anomalies | |
PDO | 1 | 0.708 | 0.285 | 0.505 | 1 | 0.725 | 0.291 | 0.553 |
ENSO | 1 | −0.021 | 0.070 | 1 | −0.005 | 0.167 | ||
SAM | 1 | 0.857 | 1 | 0.870 | ||||
Anomalies | 1 | 1 |
SAM | Yes | Yes | Yes | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
PDO | Yes | Yes | No | |||||||||
ENSO | Yes | No | No | |||||||||
Years | 3 | 5 | 7 | 9 | 3 | 5 | 7 | 9 | 3 | 5 | 7 | 9 |
N0 | −0.71 | −0.71 | −0.71 | −0.75 | −0.84 | −0.86 | −0.83 | −0.85 | −0.83 | −0.83 | −0.81 | −0.80 |
a | 2.45 | 2.98 | 3.27 | 3.38 | 2.75 | 3.31 | 3.56 | 3.56 | 2.99 | 3.65 | 3.93 | 4.00 |
b | 1.55 | 1.67 | 1.70 | 1.76 | 0.74 | 0.84 | 1.00 | 1.24 | 0 | 0 | 0 | 0 |
c | −1.56 | −1.77 | −1.66 | −1.36 | 0 | 0 | 0 | 0.00 | 0 | 0 | 0 | 0 |
Slope | 0.57 | 0.77 | 0.84 | 0.87 | 0.51 | 0.72 | 0.81 | 0.86 | 0.45 | 0.66 | 0.73 | 0.76 |
sd | 0.02 | 0.02 | 0.01 | 0.01 | 0.02 | 0.02 | 0.02 | 0.01 | 0.02 | 0.02 | 0.02 | 0.02 |
Intercept | −0.27 | −0.14 | −0.09 | −0.07 | −0.31 | −0.17 | −0.11 | −0.08 | −0.34 | −0.20 | −0.15 | −0.13 |
sd | 0.04 | 0.03 | 0.03 | 0.02 | 0.04 | 0.03 | 0.03 | 0.03 | 0.04 | 0.04 | 0.03 | 0.03 |
R2 | 0.57 | 0.77 | 0.84 | 0.87 | 0.51 | 0.72 | 0.81 | 0.86 | 0.45 | 0.66 | 0.73 | 0.76 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gómez-Fontealba, C.; Flores-Aqueveque, V.; Alfaro, S.C. Teleconnection between the Surface Wind of Western Patagonia and the SAM, ENSO, and PDO Modes of Variability. Atmosphere 2023, 14, 608. https://doi.org/10.3390/atmos14040608
Gómez-Fontealba C, Flores-Aqueveque V, Alfaro SC. Teleconnection between the Surface Wind of Western Patagonia and the SAM, ENSO, and PDO Modes of Variability. Atmosphere. 2023; 14(4):608. https://doi.org/10.3390/atmos14040608
Chicago/Turabian StyleGómez-Fontealba, Carolina, Valentina Flores-Aqueveque, and Stephane Christophe Alfaro. 2023. "Teleconnection between the Surface Wind of Western Patagonia and the SAM, ENSO, and PDO Modes of Variability" Atmosphere 14, no. 4: 608. https://doi.org/10.3390/atmos14040608
APA StyleGómez-Fontealba, C., Flores-Aqueveque, V., & Alfaro, S. C. (2023). Teleconnection between the Surface Wind of Western Patagonia and the SAM, ENSO, and PDO Modes of Variability. Atmosphere, 14(4), 608. https://doi.org/10.3390/atmos14040608