Relationship between South China Sea Summer Monsoon and Western North Pacific Tropical Cyclones Linkages with the Interaction of Indo-Pacific Pattern
Abstract
:1. Introduction
2. Data and Methods
2.1. Data
2.2. Methods
2.2.1. Indices for TCs Activity
2.2.2. Criteria for SCSSM Intensity and Anomalous Years
3. Characteristics of TCs activity in SCSSM Anomalous Years
3.1. General Indicators
3.2. Spatial Patterns of TCs Activity
4. Possible Mechanisms
4.1. Monsoon Trough
4.2. Subtropical High
4.3. Interaction of Tropical Indo-Pacific Ocean–Atmosphere System
5. Conclusions and Discussion
5.1. Conclusions
- Anomalously strong (weak) SCSSM years are associated with weak (strong) maximum intensities and short (long) lifetimes of WNPTC. SCSTC are more (less) frequent during strong (weak) SCSSM years.
- During strong years, TCs are more frequent and powerful along the coast of East Asia, especially in Southern China. In weak years, TCs tend to reach their lifetime maximum intensities in the Philippine Sea, but after moving to coastal areas, their intensities decay more rapidly, and the threat to the East Asian continent is not as significant as in strong years.
- A coupled status exists between the SCSSM and the tropical Indo-Pacific Ocean. During anomalously strong (weak) SCSSM years, the tropical Pacific Ocean SSTA tends to correspond to a La Niña-like (El Niño-like) distribution, whereas the tropical Indian Ocean shows an IOD-negative (positive) phase distribution, indicating a coupled relationship between the SCSSM and the tropical Indo-Pacific Ocean. Moreover, the Walker circulations in both the Indian and Pacific Oceans are coupled during these anomalous years.
- During weak SCSSM years (Figure 11b), the tropical anomalous wind field corresponding to the SSTA distribution leads to a latitudinal wind anomaly divergence zone over the Western Pacific Ocean. The Western Pacific Ocean is dominated by a strong subtropical high, and anomalous easterly winds in the eastern Indian Ocean weaken moisture transport and reduce convective activity over the SCS. These conditions are unfavorable for SCSTC genesis and activity. At the same time, the Pacific Ocean east of 150° E has a positive SSTA, and both dynamic and thermodynamic conditions are favorable for the generation and development of TCs, so a high PDI zone appears in this region.
- During strong SCSSM years (Figure 11a), the enhanced summer monsoon drives the enhanced SCS monsoon trough, which directly improves the convective environment over here. The positive vorticity anomaly in this region is favorable to TCs activity with high PDI. In contrast, the eastern part of the warm-pool region is covered by cold water and has worse conditions for TCs genesis, thus presenting a low PDI.
5.2. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kajikawa, Y.; Yasunari, T.; Wang, B. Decadal Change in Intraseasonal Variability over the South China Sea. Geophys. Res. Lett. 2009, 36, L06810. [Google Scholar] [CrossRef] [Green Version]
- Kajikawa, Y.; Wang, B. Interdecadal Change of the South China Sea Summer Monsoon Onset. J. Clim. 2012, 25, 3207–3218. [Google Scholar] [CrossRef]
- Zhong, Z.; Hu, Y. Impacts of Tropical Cyclones on the Regional Climate: An East Asian Summer Monsoon Case. Atmos. Sci. Lett. 2007, 8, 93–99. [Google Scholar] [CrossRef]
- Chan, J.C.L. Interannual and Interdecadal Variations of Tropical Cyclone Activity over the Western North Pacific. Meteorol. Atmos. Phys. 2005, 89, 143–152. [Google Scholar] [CrossRef]
- Matsuura, T.; Yumoto, M.; Iizuka, S. A Mechanism of Interdecadal Variability of Tropical Cyclone Activity over the Western North Pacific. Clim. Dyn. 2003, 21, 105–117. [Google Scholar] [CrossRef]
- Goh, A.Z.-C.; Chan, J.C.L. Interannual and Interdecadal Variations of Tropical Cyclone Activity in the South China Sea. Int. J. Climatol. 2010, 30, 827–843. [Google Scholar] [CrossRef]
- Molinari, J.; Vollaro, D. What Percentage of Western North Pacific Tropical Cyclones Form within the Monsoon Trough? Mon. Weather Rev. 2013, 141, 499–505. [Google Scholar] [CrossRef]
- Yoshida, R.; Ishikawa, H. Environmental Factors Contributing to Tropical Cyclone Genesis over the Western North Pacific. Mon. Weather Rev. 2013, 141, 451–467. [Google Scholar] [CrossRef]
- Choi, K.-S.; Cha, Y.; Kim, H.-D.; Kang, S.-D. Possible relationship between East Asian summer monsoon and western North Pacific tropical cyclone genesis frequency. Theor. Appl. Climatol. 2016, 124, 81–90. [Google Scholar] [CrossRef]
- Qian, H.; Yuping, G. Does the Asian Monsoon Modulate Tropical Cyclone Activity over the South China Sea? Chin. J. Oceanol. Limnol. 2012, 30, 960–965. [Google Scholar] [CrossRef]
- Chen, X.; Zhong, Z.; Hu, Y.; Zhong, S.; Lu, W.; Jiang, J. Role of Tropical Cyclones over the Western North Pacific in the East Asian Summer Monsoon System. Earth Planet. Phys. 2019, 3, 147–156. [Google Scholar] [CrossRef]
- Choi, J.-W.; Kim, B.-J.; Zhang, R.; Park, K.-J.; Kim, J.-Y.; Cha, Y.; Nam, J.-C. Possible Relation of the Western North Pacific Monsoon to the Tropical Cyclone Activity over Western North Pacific. Int. J. Climatol. 2016, 36, 3334–3345. [Google Scholar] [CrossRef] [Green Version]
- Weng, J.; Wang, L.; Luo, J.; Chen, B.; Peng, X.; Gan, Q. A Contrast of the Monsoon–Tropical Cyclone Relationship between the Western and Eastern North Pacific. Atmosphere 2022, 13, 1465. [Google Scholar] [CrossRef]
- Choi, J.-W.; Kim, H.-D. Relationship of the Southeast Asian Summer Monsoon and Mascarene High to the Tropical Cyclone Activity in the Western North Pacific. Int. J. Climatol. 2020, 40, 4067–4081. [Google Scholar] [CrossRef]
- Chen, T.-C.; Tsay, J.-D.; Matsumoto, J.; Alpert, J. Impact of the Summer Monsoon Westerlies on the South China Sea Tropical Cyclone Genesis in May. Weather Forecast 2017, 32, 23. [Google Scholar] [CrossRef]
- Gao, J.; Li, T. Factors Controlling Multiple Tropical Cyclone Events in the Western North Pacific. Mon. Weather Rev. 2011, 139, 885–894. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.; Huang, R. Influence of Monsoon over the Warm Pool on Interannual Variation on Tropical Cyclone Activity over the Western North Pacific. Adv. Atmos. Sci. 2008, 25, 319–328. [Google Scholar] [CrossRef]
- Wu, L.; Wen, Z.; Huang, R.; Wu, R. Possible Linkage between the Monsoon Trough Variability and the Tropical Cyclone Activity over the Western North Pacific. Mon. Weather Rev. 2012, 140, 140–150. [Google Scholar] [CrossRef]
- Qi, L. Decadal Shift of the Interannual Relationship between Western North Pacific Tropical Cyclone Genesis Frequency and South China Sea Monsoon Trough around 1980s. Int. J. Climatol. 2022, 42, 4289–4299. [Google Scholar] [CrossRef]
- Huangfu, J.; Huang, R.; Chen, W.; Feng, T.; Wu, L. Interdecadal Variation of Tropical Cyclone Genesis and Its Relationship to the Monsoon Trough over the Western North Pacific. Int. J. Climatol. 2017, 37, 3587–3596. [Google Scholar] [CrossRef]
- Huangfu, J.; Huang, R.; Chen, W. Relationship between the South China Sea Summer Monsoon Onset and Tropical Cyclone Genesis over the Western North Pacific. Int. J. Climatol. 2017, 37, 5206–5210. [Google Scholar] [CrossRef]
- Hu, P.; Huangfu, J.; Chen, W.; Huang, R. Impacts of Early/Late South China Sea Summer Monsoon Withdrawal on Tropical Cyclone Genesis over the Western North Pacific. Clim. Dyn. 2020, 55, 1507–1520. [Google Scholar] [CrossRef]
- Wang, G.; Su, J.; Ding, Y.; Chen, D. Tropical Cyclone Genesis over the South China Sea. J. Mar. Syst. 2007, 68, 318–326. [Google Scholar] [CrossRef]
- Wang, L.; Chen, G. Relationship between South China Sea Summer Monsoon Onset and Landfalling Tropical Cyclone Frequency in China. Int. J. Climatol. 2018, 38, 3209–3214. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 Global Reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Rayner, N.A. Global Analyses of Sea Surface Temperature, Sea Ice, and Night Marine Air Temperature since the Late Nineteenth Century. J. Geophys. Res. 2003, 108, 4407. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.-T.; Gruber, A.; Ellingson, R.G.; Laszlo, I. Development of the HIRS Outgoing Longwave Radiation Climate Dataset. J. Atmos. Ocean. Technol. 2007, 24, 2029–2047. [Google Scholar] [CrossRef] [Green Version]
- Ellingson, R.G.; Yanuk, D.J.; Lee, H.-T.; Gruber, A. A Technique for Estimating Outgoing Longwave Radiation from HIRS Radiance Observations. J. Atmos. Ocean. Technol. 1989, 6, 706–711. [Google Scholar] [CrossRef]
- Ellingson, R.G.; Lee, H.-T.; Yanuk, D.; Gruber, A. Validation of a Technique for Estimating Outgoing Longwave Radiation from HIRS Radiance Observations. J. Atmos. Ocean. Technol. 1994, 11, 357–365. [Google Scholar] [CrossRef]
- Knapp, K.R.; Kruk, M.C.; Levinson, D.H.; Diamond, H.J.; Neumann, C.J. The International Best Track Archive for Climate Stewardship (IBTrACS): Unifying Tropical Cyclone Data. Bull. Am. Meteorol. Soc. 2010, 91, 363–376. [Google Scholar] [CrossRef] [Green Version]
- Emanuel, K. Increasing Destructiveness of Tropical Cyclones over the Past 30 Years. Nature 2005, 436, 686–688. [Google Scholar] [CrossRef]
- Atkinson, G.D.; Holliday, C.R. Tropical Cyclone Minimum Sea Level Pressure/Maximum Sustained Wind Relationship for the Western North Pacific. Mon. Weather Rev. 1977, 105, 421–427. [Google Scholar] [CrossRef]
- Tu, S.; Xu, J.; Xu, F.; Liang, M.; Ji, Q.; Chen, S. Differences in the Destructiveness of Tropical Cyclones over the Western North Pacific between Slow- and Rapid-Transforming El Niño Years. Environ. Res. Lett. 2020, 15, 024014. [Google Scholar] [CrossRef]
- Song, J.; Klotzbach, P.J.; Tang, J.; Wang, Y. The Increasing Variability of Tropical Cyclone Lifetime Maximum Intensity. Sci. Rep. 2018, 8, 16641. [Google Scholar] [CrossRef] [Green Version]
- Murakami, T.; Matsumoto, J. Summer Monsoon over the Asian Continent and Western North Pacific. J. Meteorol. Soc. Jpn. Ser. II 1994, 72, 719–745. [Google Scholar] [CrossRef] [Green Version]
- Webster, P.J.; Yang, S. Monsoon and Enso: Selectively Interactive Systems. Q. J. R. Meteorol. Soc. 1992, 118, 877–926. [Google Scholar] [CrossRef]
- Li, C.; Liping, Z. Summer Monsoon Activities in the South China Sea and Its Impacts. Chin. J. Atmos. Sci. 1999, 23, 257–266. (In Chinese) [Google Scholar] [CrossRef]
- Wang, B. Definition of South China Sea Monsoon Onset and Commencement of the East Asia Summer Monsoon. J. Clim. 2004, 17, 699–710. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Huang, F.; Wu, Z.; Yang, J.; Fu, X.; Kikuchi, K. Multi-Scale Climate Variability of the South China Sea Monsoon: A Review. Dyn. Atmos. Ocean. 2009, 47, 15–37. [Google Scholar] [CrossRef]
- Wu, S.; Liang, J. Intensity Index of South China Sea Monsoon and Its Variation Characteristics. J. Trop. Meteorol. 2002, 8, 1–9. [Google Scholar]
- Chen, W.; Hu, P.; Huangfu, J. Multi-scale climate variations and mechanisms of the onset and withdrawal of the South China Sea summer monsoon. Sci. China Earth Sci. 2022, 65, 1030–1046. [Google Scholar] [CrossRef]
- Molinari, J.; Vollaro, D. A Subtropical Cyclonic Gyre Associated with Interactions of the MJO and the Midlatitude Jet. Mon. Weather Rev. 2012, 140, 343–357. [Google Scholar] [CrossRef] [Green Version]
- Feng, T.; Chen, G.-H.; Huang, R.-H.; Shen, X.-Y. Large-Scale Circulation Patterns Favourable to Tropical Cyclogenesis over the Western North Pacific and Associated Barotropic Energy Conversions. Int. J. Climatol. 2014, 34, 216–227. [Google Scholar] [CrossRef]
- Lander, M.A. An Exploratory Analysis of the Relationship between Tropical Storm Formation in the Western North Pacific and ENSO. Mon. Weather Rev. 1994, 122, 636–651. [Google Scholar] [CrossRef]
- Lau, K.-M.; Li, M.-T. The Monsoon of East Asia and Its Global Associations—A Survey. Bull. Am. Meteorol. Soc. 1984, 65, 114–125. [Google Scholar] [CrossRef]
- Wang, B.; Wu, R. Peculiar Temporal Structure of the South China Sea Summer Monsoon. Adv. Atmos. Sci. 1997, 14, 177–194. [Google Scholar] [CrossRef]
- Wang, B.; Wu, R.; Fu, X. Pacific–East Asian Teleconnection: How Does ENSO Affect East Asian Climate? J. Clim. 2000, 13, 1517–1536. [Google Scholar] [CrossRef]
- He, C.; Zhou, T.; Wu, B. The Key Oceanic Regions Responsible for the Interannual Variability of the Western North Pacific Subtropical High and Associated Mechanisms. J. Meteorol. Res. 2015, 29, 562–575. [Google Scholar] [CrossRef]
- Xu, J.; Chan, J.C.L. The Role of the Asian–Australian Monsoon System in the Onset Time of El Niño Events. J. Clim. 2001, 14, 418–433. [Google Scholar] [CrossRef]
- Chang, C.-P.; Zhang, Y.; Li, T. Interannual and Interdecadal Variations of the East Asian Summer Monsoon and Tropical Pacific SSTs. Part II: Meridional Structure of the Monsoon. J. Clim. 2000, 13, 4326–4340. [Google Scholar] [CrossRef]
- Zhan, R.; Wang, Y.; Tao, L. Intensified Impact of East Indian Ocean SST Anomaly on Tropical Cyclone Genesis Frequency over the Western North Pacific. J. Clim. 2014, 27, 8724–8739. [Google Scholar] [CrossRef]
- Zhou, W.; Chan, J.C.L. ENSO and the South China Sea Summer Monsoon Onset. Int. J. Climatol. 2007, 27, 157–167. [Google Scholar] [CrossRef]
- Fan, Y.; Fan, K.; Xu, Z.; Li, S. ENSO–South China Sea Summer Monsoon Interaction Modulated by the Atlantic Multidecadal Oscillation. J. Clim. 2018, 31, 3061–3076. [Google Scholar] [CrossRef]
- Camargo, S.J.; Sobel, A.H. Western North Pacific Tropical Cyclone Intensity and ENSO. J. Clim. 2005, 18, 2996–3006. [Google Scholar] [CrossRef]
- Hu, F.; Li, T.; Liu, J.; Bi, M.; Peng, M. Decrease of Tropical Cyclone Genesis Frequency in the Western North Pacific since 1960s. Dyn. Atmos. Ocean. 2018, 81, 42–50. [Google Scholar] [CrossRef]
- Chen, T.-C.; Weng, S.-P.; Yamazaki, N.; Kiehne, S. Interannual Variation in the Tropical Cyclone Formation over the Western North Pacific. Mon. Weather Rev. 1998, 126, 1080–1090. [Google Scholar] [CrossRef]
- Camargo, S.J.; Emanuel, K.A.; Sobel, A.H. Use of a Genesis Potential Index to Diagnose ENSO Effects on Tropical Cyclone Genesis. J. Clim. 2007, 20, 4819–4834. [Google Scholar] [CrossRef]
- Wang, X.; Zhou, W.; Li, C.; Wang, D. Comparison of the Impact of Two Types of El Niño on Tropical Cyclone Genesis over the South China Sea. Int. J. Climatol. 2013, 34, 2651–2660. [Google Scholar] [CrossRef]
- Tao, L.; Lan, Y. Inter-Decadal Change of the Inter-Annual Relationship between the Frequency of Intense Tropical Cyclone over the Western North Pacific and ENSO. Int. J. Climatol. 2017, 37, 4880–4895. [Google Scholar] [CrossRef]
- Chan, J.C.L. Tropical Cyclone Activity over the Western North Pacific Associated with El Niño and La Niña Events. J. Clim. 2000, 13, 2960–2972. [Google Scholar] [CrossRef]
- Zhou, Q.; Wei, L.; Zhang, R. Influence of Indian Ocean Dipole on Tropical Cyclone Activity over Western North Pacific in Boreal Autumn. J. Ocean Univ. China 2019, 18, 795–802. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, P.; Chen, G. Impacts of the Combined Modes of the Tropical Indo-Pacific Sea Surface Temperature Anomalies on the Tropical Cyclone Genesis over the Western North Pacific. Int. J. Climatol. 2019, 39, 2108–2119. [Google Scholar] [CrossRef]
- Wu, B.; Zhou, T. Oceanic Origin of the Interannual and Interdecadal Variability of the Summertime Western Pacific Subtropical High. Geophys. Res. Lett. 2008, 35, L13701. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Wang, B.; Wu, B.; Zhou, T.; Chang, C.-P.; Zhang, R. Theories on Formation of an Anomalous Anticyclone in Western North Pacific during El Niño: A Review. J. Meteorol. Res. 2017, 31, 987–1006. [Google Scholar] [CrossRef]
- Xie, S.-P.; Hu, K.; Hafner, J.; Tokinaga, H.; Du, Y.; Huang, G.; Sampe, T. Indian Ocean Capacitor Effect on Indo–Western Pacific Climate during the Summer Following El Niño. J. Clim. 2009, 22, 730–747. [Google Scholar] [CrossRef]
- Sui, C.-H.; Chung, P.-H.; Li, T. Interannual and Interdecadal Variability of the Summertime Western North Pacific Subtropical High. Geophys. Res. Lett. 2007, 34, L11701. [Google Scholar] [CrossRef] [Green Version]
- Terao, T.; Takuji, K. East-West SST Contrast over the Tropical Oceans and the Post El Niño Western North Pacific Summer Monsoon. Geophys. Res. Lett. 2005, 32, L15706. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.; Yu, J.; Wang, X.; Jiang, W. The Changing Impact Mechanisms of a Diverse El Niño on the Western Pacific Subtropical High. Geophys. Res. Lett. 2019, 46, 953–962. [Google Scholar] [CrossRef] [Green Version]
- Lau, K.-M.; Yang, S. Walker Circulation. In Encyclopedia of Atmospheric Sciences; Elsevier Science Ltd.: Amsterdam, The Netherlands, 2003; pp. 2505–2510. [Google Scholar]
- Fosu, B.; He, J.; Liguori, G. Equatorial Pacific Warming Attenuated by SST Warming Patterns in the Tropical Atlantic and Indian Oceans. Geophys. Res. Lett. 2020, 47, e2020GL088231. [Google Scholar] [CrossRef]
- Wang, S.; Toumi, R. Recent Migration of Tropical Cyclones toward Coasts. Science 2021, 371, 514–517. [Google Scholar] [CrossRef]
Type | Index | Neutral SCSSM | Strong SCSSM | Weak SCSSM | Difference Percent (%) | p-Values |
---|---|---|---|---|---|---|
WNPTC | Count (N) | 27.50 | 28.88 | 26.50 | 8.2 | 0.16 |
LMI (m/s) | 39.22 | 37.92 | 43.99 | −16.0 * | 0.02 | |
Lifetime (d) | 6.37 | 5.57 | 7.31 | −31.3 * | <0.01 | |
PDI (1011 m3/s2) | 7.48 | 6.71 | 9.28 | −38.4 * | 0.05 | |
SCSTC | Count (N) | 10.96 | 11.50 | 8.75 | 23.9 * | 0.04 |
LMI (m/s) | 35.31 | 35.30 | 40.46 | −14.6 * | 0.08 | |
Lifetime (d) | 5.51 | 5.11 | 6.71 | −31.4 * | 0.02 | |
PDI in WNP (1011 m3/s2) | 1.91 | 1.99 | 1.76 | 11.2 | 0.67 | |
PDI in SCS (1011 m3/s2) | 0.71 | 0.75 | 0.61 | 19.3 | 0.32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Xu, J.; Tu, S.; Zheng, M.; Chen, Z. Relationship between South China Sea Summer Monsoon and Western North Pacific Tropical Cyclones Linkages with the Interaction of Indo-Pacific Pattern. Atmosphere 2023, 14, 645. https://doi.org/10.3390/atmos14040645
Liu S, Xu J, Tu S, Zheng M, Chen Z. Relationship between South China Sea Summer Monsoon and Western North Pacific Tropical Cyclones Linkages with the Interaction of Indo-Pacific Pattern. Atmosphere. 2023; 14(4):645. https://doi.org/10.3390/atmos14040645
Chicago/Turabian StyleLiu, Shengyuan, Jianjun Xu, Shifei Tu, Meiying Zheng, and Zhiqiang Chen. 2023. "Relationship between South China Sea Summer Monsoon and Western North Pacific Tropical Cyclones Linkages with the Interaction of Indo-Pacific Pattern" Atmosphere 14, no. 4: 645. https://doi.org/10.3390/atmos14040645
APA StyleLiu, S., Xu, J., Tu, S., Zheng, M., & Chen, Z. (2023). Relationship between South China Sea Summer Monsoon and Western North Pacific Tropical Cyclones Linkages with the Interaction of Indo-Pacific Pattern. Atmosphere, 14(4), 645. https://doi.org/10.3390/atmos14040645