Analysis of the Outdoor Microclimate and the Effects on Greek Cultural Heritage Using the Heritage Microclimate Risk (HMR) and Predicted Risk of Damage (PRD) Indices: Present and Future Simulations
Abstract
:1. Introduction
- The database necessary for the calculation of the HMR value can be a monitoring campaign or a virtual simulation [42].
- The HMR index can be applied to any climate parameter, while the ideal climate conditions can be determined from time series data.
- In addition to the risk induced by the outdoor–indoor environmental parameters, it also includes the risk from the daily–hourly fluctuations of the microclimatic parameters.
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Heritage Outdoor MicroClimate Risk (HMRout) Index
2.4. Predicted Risk of Damage (PRD) Index
3. Results
3.1. Correlation of Model-Observational and Model-Reanalysis Data
3.2. Cultural Heritage’s Ideal Climate Conditions
3.2.1. The Ideal Climate Conditions during the Reference Period—Correlation between Model-Observed Data and Model-Reanalysis Data
3.2.2. Future Estimations of Ideal Temperature and RH Conditions
3.3. Seasonal Analysis of HMRout and PRD Index for the Two Future Periods 2039–2059 and 2079–2099
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AUTH | Aristotle University of Thessaloniki |
T | Temperature |
RH | Relative Humidity |
HMRout | Heritage Microclimate Risk for the outdoor environment |
HMRenv | HMR-environmental |
HMRfluc | HMR-fluctuations |
Menv.out.data | The sum of the data for the study period from each variable considered (e.g., temperature and relative humidity) |
N | The total of the time series data for each variable considered |
H_HMRenv.out | The maximum value from the time series data |
L_HMRenv.out | The minimum value from the time series data |
HMRfluc.data | HMR-fluctuation data |
ΔMfluc.data | ΔΜ fluctuation data. The sum of the hourly fluctuation data from the time series data |
Δfluc.high | Δ fluctuation high. The maximum value of hourly fluctuation from the time series |
Δfluc.low | Δ fluctuation low. The minimum value of hourly fluctuation from the time series |
X | The considered variable (e.g., temperature) |
K | The number of days of the monitoring campaign, from the first day to the last day n |
J | The daily hours, from 0:00 to 24:00 |
PRD | Predicted Risk of Damage |
Winter | December, January, February |
Spring | March, April, May |
Summer | June, July, August |
Autumn | September, October, November |
Hot days | The number of days where the maximum temperature is greater than 35 °C |
Tropical nights | The number of days where the minimum temperature is greater than 20 °C |
Dry days | The number of consecutive days where precipitation is lower than 1 mm |
Appendix A
References
- Nijkamp, P. Economic Valuation of Cultural Heritage. In The Economics of Uniqueness: Investing in Historic City Cores and Cultural Heritage Assets for Sustainable Development; Licciardi, G., Amirtahmasebi, R., Eds.; World Bank: Washington, DC, USA, 2012; pp. 75–103. ISBN 978-0-8213-9650-6. [Google Scholar]
- Scotti, R.; Cadoni, M. A Historical Analysis of Traditional Common Forest Planning and Management in Seneghe, Sardinia—Lessons for Sustainable Development. For. Ecol. Manag. 2007, 249, 116–124. [Google Scholar] [CrossRef]
- Brabec, E.; Chilton, E. Toward an Ecology of Cultural Heritage. Chang. Over Time 2015, 5, 266–285. [Google Scholar] [CrossRef] [Green Version]
- Fatorić, S.; Seekamp, E. Are Cultural Heritage and Resources Threatened by Climate Change? A Systematic Literature Review. Clim. Chang. 2017, 142, 227–254. [Google Scholar] [CrossRef]
- Hambrecht, G.; Rockman, M. International Approaches to Climate Change and Cultural Heritage. Am. Antiq. 2017, 82, 627–641. [Google Scholar] [CrossRef] [Green Version]
- Sesana, E.; Gagnon, A.S.; Ciantelli, C.; Cassar, J.; Hughes, J.J. Climate Change Impacts on Cultural Heritage: A Literature Review. WIREs Clim. Chang. 2021, 12, e710. [Google Scholar] [CrossRef]
- Bertolin, C. Preservation of Cultural Heritage and Resources Threatened by Climate Change. Geosciences 2019, 9, 250. [Google Scholar] [CrossRef] [Green Version]
- Daire, M.-Y.; Lopez-Romero, E.; Proust, J.-N.; Regnauld, H.; Pian, S.; Shi, B. Coastal Changes and Cultural Heritage (1): Assessment of the Vulnerability of the Coastal Heritage in Western France. J. Isl. Coast. Archaeol. 2012, 7, 168–182. [Google Scholar] [CrossRef] [Green Version]
- Gomez-Heras, M.; McCabe, S. Weathering of Stone-Built Heritage: A Lens through Which to Read the Anthropocene. Anthropocene 2015, 11, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Leissner, J.; Kilian, R.; Kotova, L.; Jacob, D.; Mikolajewicz, U.; Broström, T.; Ashley-Smith, J.; Schellen, H.L.; Martens, M.; van Schijndel, J.; et al. Climate for Culture: Assessing the Impact of Climate Change on the Future Indoor Climate in Historic Buildings Using Simulations. Herit. Sci. 2015, 3, 38. [Google Scholar] [CrossRef] [Green Version]
- Liu, F.; Zhang, Y.; Feng, Z.; Hou, G.; Zhou, Q.; Zhang, H. The Impacts of Climate Change on the Neolithic Cultures of Gansu-Qinghai Region during the Late Holocene Megathermal. J. Geogr. Sci. 2010, 20, 417–430. [Google Scholar] [CrossRef] [Green Version]
- Reeder-Myers, L.A. Cultural Heritage at Risk in the Twenty-First Century: A Vulnerability Assessment of Coastal Archaeological Sites in the United States. J. Isl. Coast. Archaeol. 2015, 10, 436–445. [Google Scholar] [CrossRef]
- Ronco, P.; Bullo, M.; Torresan, S.; Critto, A.; Olschewski, R.; Zappa, M.; Marcomini, A. KULTURisk Regional Risk Assessment Methodology for Water-Related Natural Hazards—Part 2: Application to the Zurich Case Study. Hydrol. Earth Syst. Sci. 2015, 19, 1561–1576. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.-J. Flood Risk Maps to Cultural Heritage: Measures and Process. J. Cult. Herit. 2015, 16, 210–220. [Google Scholar] [CrossRef]
- Elahi, E.; Khalid, Z.; Tauni, M.Z.; Zhang, H.; Lirong, X. Extreme Weather Events Risk to Crop-Production and the Adaptation of Innovative Management Strategies to Mitigate the Risk: A Retrospective Survey of Rural Punjab, Pakistan. Technovation 2022, 117, 102255. [Google Scholar] [CrossRef]
- Arora, N.K. Impact of Climate Change on Agriculture Production and Its Sustainable Solutions. Environ. Sustain. 2019, 2, 95–96. [Google Scholar] [CrossRef] [Green Version]
- UNESCO World Heritage Centre. Policy Document on the Impacts of Climate Change on World Heritage Properties; UNESCO: London, UK, 2008. [Google Scholar]
- Spinoni, J.; Vogt, J.V.; Naumann, G.; Barbosa, P.; Dosio, A. Will Drought Events Become More Frequent and Severe in Europe? Future Drought Events on Europe. Int. J. Clim. 2018, 38, 1718–1736. [Google Scholar] [CrossRef] [Green Version]
- Petrie, M.D.; Bradford, J.B.; Lauenroth, W.K.; Schlaepfer, D.R.; Andrews, C.M.; Bell, D.M. Non-Analog Increases to Air, Surface, and Belowground Temperature Extreme Events Due to Climate Change. Clim. Chang. 2020, 163, 2233–2256. [Google Scholar] [CrossRef]
- Vogel, J.; Paton, E.; Aich, V.; Bronstert, A. Increasing Compound Warm Spells and Droughts in the Mediterranean Basin. Weather Clim. Extrem. 2021, 32, 100312. [Google Scholar] [CrossRef]
- IPCC. IPCC Sixth Assessment Report: Climate Change 2022: Impacts, Adaptation and Vulnerability, Working Group II Contribution; IPCC: Geneva, Switzerland, 2022. [Google Scholar]
- Georgoulias, A.K.; Akritidis, D.; Kalisoras, A.; Kapsomenakis, J.; Melas, D.; Zerefos, C.S.; Zanis, P. Climate Change Projections for Greece in the 21st Century from High-Resolution EURO-CORDEX RCM Simulations. Atmos. Res. 2022, 271, 106049. [Google Scholar] [CrossRef]
- Tolika, K.; Anagnostopoulou, C.; Maheras, P.; Vafiadis, M. Simulation of Future Changes in Extreme Rainfall and Temperature Conditions over the Greek Area: A Comparison of Two Statistical Downscaling Approaches. Glob. Planet. Chang. 2008, 63, 132–151. [Google Scholar] [CrossRef]
- Barcikowska, M.J.; Kapnick, S.B.; Krishnamurty, L.; Russo, S.; Cherchi, A.; Folland, C.K. Changes in the Future Summer Mediterranean Climate: Contribution of Teleconnections and Local Factors. Earth Syst. Dynam. 2020, 11, 161–181. [Google Scholar] [CrossRef] [Green Version]
- Giannakopoulos, C.; Kostopoulou, E.; Varotsos, K.V.; Tziotziou, K.; Plitharas, A. An Integrated Assessment of Climate Change Impacts for Greece in the near Future. Reg. Env. Chang. 2011, 11, 829–843. [Google Scholar] [CrossRef] [Green Version]
- Tolika, K.; Zanis, P.; Anagnostopoulou, C. Regional Climate Change Scenarios for Greece: Future Temperature and Precipitation Projections Form Ensembles of RCMs. Glob. NEST J. 2012, 14, 407–421. [Google Scholar] [CrossRef]
- Zanis, P.; Katragkou, E.; Ntogras, C.; Marougianni, G.; Tsikerdekis, A.; Feidas, H.; Anadranistakis, E.; Melas, D. Transient High-Resolution Regional Climate Simulation for Greece over the Period 1960-2100: Evaluation and Future Projections. Clim. Res. 2015, 64, 123–140. [Google Scholar] [CrossRef] [Green Version]
- Velikou, K.; Tolika, K.; Anagnostopoulou, C.; Zanis, P. Sensitivity Analysis of RegCM4 Model: Present Time Simulations over the Mediterranean. Appl. Clim. 2019, 136, 1185–1208. [Google Scholar] [CrossRef]
- Holden, L.D.; Silcock, D.M.; Arrowsmith, C.A.; Al Hassani, M. Laser Scanning for the Documentation and Management of Heritage Sites within the Emirate of Fujairah, United Arab Emirates. Arab. Arch. Epig. 2015, 26, 55–67. [Google Scholar] [CrossRef]
- Wu, P.-S.; Hsieh, C.-M.; Hsu, M.-F. Using Heritage Risk Maps as an Approach for Estimating the Climate Impact to Cultural Heritage Materials in the Island of Taiwan. In Digital Heritage. Progress in Cultural Heritage: Documentation, Preservation, and Protection; Ioannides, M., Magnenat-Thalmann, N., Fink, E., Žarnić, R., Yen, A.-Y., Quak, E., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2014; Volume 8740, pp. 300–309. ISBN 978-3-319-13694-3. [Google Scholar]
- Ferdyn-Grygierek, J. Indoor Environment Quality in the Museum Building and Its Effect on Heating and Cooling Demand. Energy Build. 2014, 85, 32–44. [Google Scholar] [CrossRef]
- Christensen, J.E.; Kollias, C.G. Hygrothermal Evaluation of a Museum Storage Building Based on Actual Measurements and Simulations. Energy Procedia 2015, 78, 651–656. [Google Scholar] [CrossRef] [Green Version]
- Bonora, A.; Fabbri, K.; Pretelli, M. Widespread Difficulties and Applications in the Monitoring of Historical Buildings: The Case of the Realm of Venaria Reale. Heritage 2020, 3, 128–139. [Google Scholar] [CrossRef] [Green Version]
- Michalak, P. The Simple Hourly Method of EN ISO 13790 Standard in Matlab/Simulink: A Comparative Study for the Climatic Conditions of Poland. Energy 2014, 75, 568–578. [Google Scholar] [CrossRef]
- Coelho, G.B.A.; Entradas Silva, H.; Henriques, F.M.A. Impact of Climate Change in Cultural Heritage: From Energy Consumption to Artefacts’ Conservation and Building Rehabilitation. Energy Build. 2020, 224, 110250. [Google Scholar] [CrossRef]
- Alexandrakis, G.; Manasakis, C.; Kampanis, N.A. Economic and Societal Impacts on Cultural Heritage Sites, Resulting from Natural Effects and Climate Change. Heritage 2019, 2, 279–305. [Google Scholar] [CrossRef] [Green Version]
- Pigliautile, I.; Pisello, A.L. A New Wearable Monitoring System for Investigating Pedestrians’ Environmental Conditions: Development of the Experimental Tool and Start-up Findings. Sci. Total Environ. 2018, 630, 690–706. [Google Scholar] [CrossRef] [PubMed]
- Pioppi, B.; Pigliautile, I.; Piselli, C.; Pisello, A.L. Cultural Heritage Microclimate Change: Human-Centric Approach to Experimentally Investigate Intra-Urban Overheating and Numerically Assess Foreseen Future Scenarios Impact. Sci. Total Environ. 2020, 703, 134448. [Google Scholar] [CrossRef] [PubMed]
- Corgnati, S.P.; Fabi, V.; Filippi, M. A Methodology for Microclimatic Quality Evaluation in Museums: Application to a Temporary Exhibit. Build. Environ. 2009, 44, 1253–1260. [Google Scholar] [CrossRef]
- Andretta, M.; Coppola, F.; Modelli, A.; Santopuoli, N.; Seccia, L. Proposal for a New Environmental Risk Assessment Methodology in Cultural Heritage Protection. J. Cult. Herit. 2017, 23, 22–32. [Google Scholar] [CrossRef]
- Silva, H.E.; Henriques, F.M.A.; Henriques, T.A.S.; Coelho, G. A Sequential Process to Assess and Optimize the Indoor Climate in Museums. Build. Environ. 2016, 104, 21–34. [Google Scholar] [CrossRef]
- Fabbri, K.; Bonora, A. Two New Indices for Preventive Conservation of the Cultural Heritage: Predicted Risk of Damage and Heritage Microclimate Risk. J. Cult. Herit. 2021, 47, 208–217. [Google Scholar] [CrossRef]
- Boeri, A.; Longo, D.; Fabbri, K.; Pretelli, M.; Bonora, A.; Boulanger, S. Library Indoor Microclimate Monitoring with and without Heating System. A Bologna University Library Case Study. J. Cult. Herit. 2022, 53, 143–153. [Google Scholar] [CrossRef]
- Vyzantiadou, M.M.; Selevista, M. Protection of Cultural Heritage in Thessaloniki: A Review of Designation Actions. Heritage 2019, 2, 717–731. [Google Scholar] [CrossRef] [Green Version]
- Giorgi, F.; Coppola, E.; Solmon, F.; Mariotti, L.; Sylla, M.; Bi, X.; Elguindi, N.; Diro, G.; Nair, V.; Giuliani, G.; et al. RegCM4: Model Description and Preliminary Tests over Multiple CORDEX Domains. Clim. Res. 2012, 52, 7–29. [Google Scholar] [CrossRef] [Green Version]
- Giorgi, F.; Marinucci, M.R.; Bates, G.T. Development of a Second-Generation Regional Climate Model (RegCM2). Part I: Boundary-Layer and Radiative Transfer Processes. Mon. Weather Rev. 1993, 121, 2794–2813. [Google Scholar] [CrossRef]
- Grell, G.; Dudhia, J.; Stauffer, D. A Description of the Fifth-Generation Penn State/NCAR Mesoscale Model (MM5); UCAR/NCAR: Boulder, CO, USA, 1994; p. 5124. [Google Scholar]
- Tolika, K.; Anagnostopoulou, C.; Velikou, K.; Vagenas, C. A Comparison of the Updated Very High Resolution Model RegCM3_10km with the Previous Version RegCM3_25km over the Complex Terrain of Greece: Present and Future Projections. Appl. Clim. 2016, 126, 715–726. [Google Scholar] [CrossRef]
- Grell, G.A. Prognostic Evaluation of Assumptions Used by Cumulus Parameterizations. Mon. Weather Rev. 1993, 121, 764–787. [Google Scholar] [CrossRef]
- Frich, P.; Alexander, L.; Della-Marta, P.; Gleason, B.; Haylock, M.; Klein Tank, A.; Peterson, T. Observed Coherent Changes in Climatic Extremes during the Second Half of the Twentieth Century. Clim. Res. 2002, 19, 193–212. [Google Scholar] [CrossRef] [Green Version]
- Grenier, H.; Bretherton, C.S. A Moist PBL Parameterization for Large-Scale Models and Its Application to Subtropical Cloud-Topped Marine Boundary Layers. Mon. Weather Rev. 2001, 129, 357–377. [Google Scholar] [CrossRef]
- Zeng, X.; Zhao, M.; Dickinson, R.E. Intercomparison of Bulk Aerodynamic Algorithms for the Computation of Sea Surface Fluxes Using TOGA COARE and TAO Data. J. Clim. 1998, 11, 2628–2644. [Google Scholar] [CrossRef]
- Komkoua Mbienda, A.J.; Tchawoua, C.; Vondou, D.A.; Choumbou, P.; Kenfack Sadem, C.; Dey, S. Sensitivity Experiments of RegCM4 Simulations to Different Convective Schemes over Central Africa: Sensitivity Experiments Of RegCM4 Over Central Africa. Int. J. Climatol. 2017, 37, 328–342. [Google Scholar] [CrossRef]
- Carroll, P.; Aarrevaara, E. Review of Potential Risk Factors of Cultural Heritage Sites and Initial Modelling for Adaptation to Climate Change. Geosciences 2018, 8, 322. [Google Scholar] [CrossRef]
- UNI 10829; Works of Art of Historical Importance. Ambient Conditions for the Conservation. Measurement and Analysis. Ente Nazionale Italiano di Unificazione (UNI): Milano, Italy, 1999.
- EN 15757 Standard; Conservation of Cultural Heritage—Specifications for Temperature and Relative Humidity to Limit Climate-Induced Mechanical Damage. iTeh Standards: Newark, DE, USA, 2010.
- Anagnostidis, K.; Economou-Amilli, A.; Roussomoustakaki, M. Epilithic and chasmolithic microflora (Cyanophyta, Bacillariophyta) from marbles of the Parthenon (Acropolis-Athens, Greece). Nova Hedwigia 1983, 38, 227–287. [Google Scholar]
- de Vals, M.; Gastineau, R.; Perrier, A.; Rubi, R.; Moretti, I. The Stones of the Sanctuary of Delphi—Northern Shore of the Corinth Gulf—Greece. BSGF Earth Sci. Bull. 2020, 191, 11. [Google Scholar] [CrossRef]
- UNESCO World Heritage Centre. Climate Change and World Heritage. Report on Predicting and Managing the Impacts of Climate Change on World Heritage and Strategy to Assist States Parties to Implement Appropriate Management Responses; UNESCO: London, UK, 2007. [Google Scholar]
- Sesana, E.; Gagnon, A.; Bertolin, C.; Hughes, J. Adapting Cultural Heritage to Climate Change Risks: Perspectives of Cultural Heritage Experts in Europe. Geosciences 2018, 8, 305. [Google Scholar] [CrossRef] [Green Version]
- Kapsomenakis, J.; Douvis, C.; Poupkou, A.; Zerefos, S.; Solomos, S.; Stavraka, T.; Melis, N.S.; Kyriakidis, E.; Kremlis, G.; Zerefos, C. Climate Change Threats to Cultural and Natural Heritage UNESCO Sites in the Mediterranean. Env. Dev. Sustain. 2022. [Google Scholar] [CrossRef]
- Ravankhah, M.; de Wit, R.; Argyriou, A.V.; Chliaoutakis, A.; Revez, M.J.; Birkmann, J.; Žuvela-Aloise, M.; Sarris, A.; Tzigounaki, A.; Giapitsoglou, K. Integrated Assessment of Natural Hazards, Including Climate Change’s Influences, for Cultural Heritage Sites: The Case of the Historic Centre of Rethymno in Greece. Int. J. Disaster Risk Sci. 2019, 10, 343–361. [Google Scholar] [CrossRef] [Green Version]
- Nastou, M.P.; Zerefos, S. Impacts of Climate Change on Cultural Heritage; The Case of the Greek Theatre of Dionysus. IOP Conf. Ser. Earth Environ. Sci. 2021, 899, 012020. [Google Scholar] [CrossRef]
- Sabbioni, C.; Brimblecombe, P.; Cassar, M. The Atlas of Climate Change Impact on European Cultural Heritage: Scientific Analysis and Management Strategies; Anthem Press: London, UK, 2010. [Google Scholar]
- Asprogerakas, E.; Gourgiotis, A.; Pantazis, P.; Samarina, A.; Konsoula, P.; Stavridou, K. The Gap of Cultural Heritage Protection with Climate Change Adaptation in the Context of Spatial Planning. The Case of Greece. IOP Conf. Ser. Earth Environ. Sci. 2021, 899, 012022. [Google Scholar] [CrossRef]
- Anwar, S.A.; Zakey, A.S.; Robaa, S.M.; Abdel Wahab, M.M. The Influence of Two Land-Surface Hydrology Schemes on the Regional Climate of Africa Using the RegCM4 Model. Appl. Clim. 2019, 136, 1535–1548. [Google Scholar] [CrossRef]
- Camuffo, D. Microclimate for Cultural Heritage: Measurement, Risk Assessment, Conservation, Restoration, and Maintenance of Indoor and Outdoor Monuments, 3rd ed.; Elsevier: Amsterdam, The Netherlands; Cambridge, MA, USA, 2019; ISBN 978-0-444-64106-9. [Google Scholar]
- Brimblecombe, P.; Grossi, C.M.; Harris, I. Climate Change Critical to Cultural Heritage. In Survival and Sustainability; Gökçekus, H., Türker, U., LaMoreaux, J.W., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 195–205. ISBN 978-3-540-95990-8. [Google Scholar]
- Radulescu, C.; Stihi, C.; Ion, R.M.; Dulama, I.D.; Stanescu, S.G.; Stirbescu, R.M.; Teodorescu, S.; Gurgu, I.V.; Let, D.D.; Olteanu, L.; et al. Seasonal Variability in the Composition of Particulate Matter and the Microclimate in Cultural Heritage Areas. Atmosphere 2019, 10, 595. [Google Scholar] [CrossRef] [Green Version]
- Yaldiz, E. Climate Effects on Monumental Buildings. In Proceedings of the Balwois Conference, Ohrid, Republic of Macedonia, 25–29 May 2010. [Google Scholar]
- Sabbioni, C.; Cassar, M.; Brimblecombe, P.; Vulnerability of Cultural Heritage to Climate Change. Pollut. Atmos. 2009. Available online: https://www.coe.int/t/dg4/majorhazards/activites/2009/ravello15-16may09/Ravello_APCAT2008_44_Sabbioni-Jan09_EN.pdf (accessed on 21 February 2023).
- Viles, H.A. Implications of Future Climate Change for Stone Deterioration. SP 2002, 205, 407–418. [Google Scholar] [CrossRef]
Physics Parameterizations |
---|
Cumulus Convection Scheme [49] |
Convective Closure Scheme [50] |
Planetary Boundary Layer Scheme [51] |
Ocean Flux Scheme [52] |
Land Surface Model [53] |
HMR | −1.00 | −0.80 | −0.60 | −0.40 | −0.20 | 0.00 | +0.20 | +0.40 | +0.60 | +0.80 | +1.00 |
Risk Level | Maximum | High | Medium | Moderate | Low | Minimum | Low | Moderate | Medium | High | Maximum |
Thessaloniki | Delphi | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Winter | Spring | Summer | Autumn | Winter | Spring | Summer | Autumn | |||||||||
Diff. | 0.7 | −2.5 | −2.2 | −0.6 | 0.7 | −1.3 | −1.0 | −1.7 | ||||||||
Stdev Diff. | 0.2 | −0.2 | 0.1 | −0.1 | 0.1 | −0.2 | 0.0 | −0.1 | ||||||||
RegCM | AUTH | RegCM | AUTH | RegCM | AUTH | RegCM | AUTH | RegCM | ERA5 | RegCM | ERA5 | RegCM | ERA5 | RegCM | ERA5 | |
25th | 5.1 | 7.3 | 9.5 | 11.0 | 20.4 | 23.5 | 12.9 | 12.7 | 5.6 | 4.2 | 8.5 | 8.6 | 19.0 | 19.6 | 12.8 | 11.9 |
Median | 7.9 | 6.9 | 12.1 | 14.4 | 23.1 | 25.3 | 16.0 | 16.8 | 7.9 | 6.8 | 10.8 | 11.9 | 21.4 | 22.1 | 15.3 | 15.6 |
75th | 10.3 | 9.0 | 14.6 | 17.8 | 25.2 | 26.9 | 18.8 | 20.9 | 9.7 | 9.2 | 13.2 | 15.4 | 23.3 | 24.8 | 17.6 | 19.1 |
Thessaloniki | Delphi | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Winter | Spring | Summer | Autumn | Winter | Spring | Summer | Autumn | |||||||||
Diff. | 16.0 | 16.0 | 8.0 | 14.0 | 10.0 | 16.0 | 11.0 | 16.0 | ||||||||
Stdev Diff. | −4.0 | −4.8 | −0.7 | −1.0 | −0.6 | −1.7 | −0.3 | −0.7 | ||||||||
RegCM | AUTH | RegCM | AUTH | RegCM | AUTH | RegCM | AUTH | RegCM | ERA5 | RegCM | ERA5 | RegCM | ERA5 | RegCM | ERA5 | |
25th | 80.7 | 62.3 | 75.6 | 58.2 | 56.4 | 54.3 | 77.0 | 61.4 | 84.4 | 70.7 | 78.1 | 54.9 | 59.2 | 44.2 | 80.9 | 59.2 |
Median | 89.9 | 74.5 | 84.0 | 68.0 | 67.9 | 61.5 | 86.4 | 71.6 | 93.9 | 82.6 | 86.5 | 71.1 | 68.9 | 55.9 | 89.1 | 74.9 |
75th | 98.7 | 83.8 | 91.4 | 77.8 | 79.7 | 68.2 | 94.7 | 81.3 | 96.8 | 90.2 | 94.5 | 84.9 | 79.3 | 70.9 | 90.1 | 86.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tringa, E.; Tolika, K. Analysis of the Outdoor Microclimate and the Effects on Greek Cultural Heritage Using the Heritage Microclimate Risk (HMR) and Predicted Risk of Damage (PRD) Indices: Present and Future Simulations. Atmosphere 2023, 14, 663. https://doi.org/10.3390/atmos14040663
Tringa E, Tolika K. Analysis of the Outdoor Microclimate and the Effects on Greek Cultural Heritage Using the Heritage Microclimate Risk (HMR) and Predicted Risk of Damage (PRD) Indices: Present and Future Simulations. Atmosphere. 2023; 14(4):663. https://doi.org/10.3390/atmos14040663
Chicago/Turabian StyleTringa, Efstathia, and Konstantia Tolika. 2023. "Analysis of the Outdoor Microclimate and the Effects on Greek Cultural Heritage Using the Heritage Microclimate Risk (HMR) and Predicted Risk of Damage (PRD) Indices: Present and Future Simulations" Atmosphere 14, no. 4: 663. https://doi.org/10.3390/atmos14040663
APA StyleTringa, E., & Tolika, K. (2023). Analysis of the Outdoor Microclimate and the Effects on Greek Cultural Heritage Using the Heritage Microclimate Risk (HMR) and Predicted Risk of Damage (PRD) Indices: Present and Future Simulations. Atmosphere, 14(4), 663. https://doi.org/10.3390/atmos14040663