Physicochemical Analysis of Particle Matter from a Gasoline Direct Injection Engine Based on the China Light-Duty Vehicle Test Cycle
Abstract
:1. Introduction
2. Materials and Methods
2.1. Particulate Sampling
2.2. Characterization Method
2.2.1. High-Resolution Transmission Electron Microscopy (HRTEM)
2.2.2. Scanning Electron Microscopy with Energy Dispersive Spectroscopy (SEM+EDS)
2.2.3. X-ray Photoelectron Spectroscopy (XPS)
2.2.4. Fourier-Transform Infrared Spectrometer (FTIR)
2.2.5. Raman Spectroscopy
2.2.6. Thermo Gravimetric Analysis (TGA)
3. Results and Discussion
3.1. Aggregate Morphology
3.2. Carbon Nanostructure
3.3. Elemental Composition Analysis
3.4. Surface Chemical Composition
3.5. Surface Functional Groups
3.6. Degree of Disorder
3.7. Soot Oxidation Reactivity
4. Conclusions
- (1).
- It was found that CLTC working conditions produced more compact particle agglomerates, with a primary particle diameter of 23.26 nm, an agglomerate fractal dimension of around 1.84, a larger particle microcrystal size, an average carbon crystal fringe length of 0.841 nm, an average tortuosity of 1.282, and an average carbon crystal separation distance of 0.358 nm.
- (2).
- The graphite structure on the surface of the particles was more orderly and arranged. The main elements on the particle surface were C and O, with a ratio of 12.91. The sp2/sp3 ratio was 5.75, indicating a high degree of orderliness in the particles. The proportion of carbon–hydrogen functional groups to oxygen-containing functional groups in the particles was relatively low. The degree of branching and disorderliness was also low. This resulted in strong chemical stability and weaker oxidation activity.
- (3).
- At the same time, the surface functional group content increased, the particle ignition temperature (Ti), burnout temperature (Tb), and peak oxidation rate temperature (Tp) increased, and Tb reached 698.6 °C. The oxidation activity decreased, causing the regeneration temperature of GPF to increase, which makes GPF reduction more difficult.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Saliba, G.; Saleh, R.; Zhao, Y.; Presto, A.A.; Lambe, A.T.; Frodin, B.; Sardar, S.; Maldonado, H.; Maddox, C.; May, A.A.; et al. Comparison of Gasoline Direct-Injection (GDI) and Port Fuel Injection (PFI) Vehicle Emissions: Emission Certification Standards, Cold-Start, Secondary Organic Aerosol Formation Potential, and Potential Climate Impacts. Environ. Sci. Technol. 2017, 51, 6542–6552. [Google Scholar] [CrossRef] [PubMed]
- Tung, N.T.; Ho, K.-F.; Niu, X.; Sun, J.; Shen, Z.; Wu, F.; Cao, J.; Dung, H.B.; Thuy, T.P.C.; Hsiao, T.-C.; et al. Loss of E-Cadherin Due to Road Dust PM2.5 Activates the EGFR in Human Pharyngeal Epithelial Cells. Environ. Sci. Pollut. Res. 2021, 28, 53872–53887. [Google Scholar] [CrossRef] [PubMed]
- Xing, J.; Shao, L.; Zhang, W.; Peng, J.; Wang, W.; Hou, C.; Shuai, S.; Hu, M.; Zhang, D. Morphology and Composition of Particles Emitted from a Port Fuel Injection Gasoline Vehicle under Real-World Driving Test Cycles. J. Environ. Sci. 2019, 76, 339–348. [Google Scholar] [CrossRef] [PubMed]
- Michelsen, H.A. Probing Soot Formation, Chemical and Physical Evolution, and Oxidation: A Review of in Situ Diagnostic Techniques and Needs. Proc. Combust. Inst. 2017, 36, 717–735. [Google Scholar] [CrossRef] [Green Version]
- Ko, J.; Kim, K.; Chung, W.; Myung, C.-L.; Park, S. Characteristics of On-Road Particle Number (PN) Emissions from a GDI Vehicle Depending on a Catalytic Stripper (CS) and a Metal-Foam Gasoline Particulate Filter (GPF). Fuel 2019, 238, 363–374. [Google Scholar] [CrossRef]
- Zhu, R.; Hu, J.; Bao, X.; He, L.; Lai, Y.; Zu, L.; Li, Y.; Su, S. Tailpipe Emissions from Gasoline Direct Injection (GDI) and Port Fuel Injection (PFI) Vehicles at Both Low and High Ambient Temperatures. Environ. Pollut. 2016, 216, 223–234. [Google Scholar] [CrossRef]
- Dangsunthonchai, M.; Visuwan, P.; Komintarachat, C.; Theinnoi, K.; Chuepeng, S. Nanoparticle Components and Number–Size Distribution of Waste Cooking Oil-Based Biodiesel Exhaust Gas from a Diesel Particulate Filter-Equipped Engine. ACS Omega 2022, 7, 3384–3394. [Google Scholar] [CrossRef]
- Martínez-Munuera, J.C.; Zoccoli, M.; Giménez-Mañogil, J.; García-García, A. Lattice Oxygen Activity in Ceria-Praseodymia Mixed Oxides for Soot Oxidation in Catalysed Gasoline Particle Filters. Appl. Catal. B Environ. 2019, 245, 706–720. [Google Scholar] [CrossRef] [Green Version]
- Choi, S.; Seong, H. Oxidation Characteristics of Gasoline Direct-Injection (GDI) Engine Soot: Catalytic Effects of Ash and Modified Kinetic Correlation. Combust. Flame 2015, 162, 2371–2389. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Qiu, L.; Cheng, X.; Li, Y.; Wu, H. The Evolution of Soot Morphology and Nanostructure in Laminar Diffusion Flame of Surrogate Fuels for Diesel. Fuel 2018, 211, 517–528. [Google Scholar] [CrossRef]
- Yehliu, K.; Vander Wal, R.; Boehman, A. Development of an HRTEM Image Analysis Method to Quantify Carbon Nanostructure. Combust. Flame—COMBUST FLAME 2011, 158, 1837–1851. [Google Scholar] [CrossRef]
- Oo, H.M.; Karin, P.; Charoenphonphanich, C.; Chollacoop, N.; Hanamura, K. Physicochemical Characterization of Direct Injection Engines’s Soot Using TEM, EDS, X-Ray Diffraction and TGA. J. Energy Inst. 2021, 96, 181–191. [Google Scholar] [CrossRef]
- Sharma, N.; Agarwal, R.A.; Agarwal, A.K. Particulate Bound Trace Metals and Soot Morphology of Gasohol Fueled Gasoline Direct Injection Engine. J. Energy Resour. Technol. 2019, 141, 022201. [Google Scholar] [CrossRef]
- Liu, Y. Variations in Surface Functional Groups, Carbon Chemical State and Graphitization Degree during Thermal Deactivation of Diesel Soot Particles. J. Environ. Sci. 2023, 124, 678–687. [Google Scholar] [CrossRef] [PubMed]
- Jasiński, R.; Strzemiecka, B.; Koltsov, I.; Mizeracki, J.; Kurzawska, P. Physicochemical Analysis of the Particulate Matter Emitted from Road Vehicle Engines. Engines 2021, 18, 8556. [Google Scholar] [CrossRef]
- Zhang, X.; Song, C.; Lyu, G.; Li, Y.; Qiao, Y.; Li, Z. Physicochemical Analysis of the Exhaust Soot from a Gasoline Direct Injection (GDI) Engine and the Carbon Black. Fuel 2022, 322, 124262. [Google Scholar] [CrossRef]
- Shi, Y.; Zhou, Y.; Li, Z.; Cai, Y.; Li, X.; He, Y.; Fang, J. Effect of Temperature Control Conditions on DPF Regeneration by Nonthermal Plasma. Chemosphere 2022, 302, 134787. [Google Scholar] [CrossRef]
- Bogarra, M.; Herreros, J.M.; Tsolakis, A.; Rodríguez-Fernández, J.; York, A.P.E.; Millington, P.J. Gasoline Direct Injection Engine Soot Oxidation: Fundamentals and Determination of Kinetic Parameters. Combust. Flame 2018, 190, 177–187. [Google Scholar] [CrossRef]
- Pfau, S.A. Nanoscale Characterisation of Soot Particulates from Gasoline Direct Injection Engines. Available online: https://www.researchgate.net/publication/356493097_Nanoscale_characterisation_of_soot_particulates_from_gasoline_direct_injection_engines (accessed on 8 March 2023).
- Köylü, Ü.Ö.; Faeth, G.M.; Farias, T.L.; Carvalho, M.G. Fractal and Projected Structure Properties of Soot Aggregates. Combust. Flame 1995, 100, 621–633. [Google Scholar] [CrossRef]
- Swapna, M.S.; Devi, H.V.S.; Raj, V.; Sankararaman, S. Fractal and Spectroscopic Analysis of Soot from Internal Combustion Engines. Eur. Phys. J. Plus 2018, 133, 106. [Google Scholar] [CrossRef]
- MEGARIDIS, C.M.; DOBBINS, R.A. Morphological Description of Flame-Generated Materials. Combust. Sci. Technol. 1990, 71, 95–109. [Google Scholar] [CrossRef]
- Saffaripour, M.; Chan, T.W.; Liu, F.; Thomson, K.A.; Smallwood, G.J.; Kubsh, J.; Brezny, R. Effect of Drive Cycle and Gasoline Particulate Filter on the Size and Morphology of Soot Particles Emitted from a Gasoline-Direct-Injection Vehicle. Environ. Sci. Technol. 2015, 49, 11950–11958. [Google Scholar] [CrossRef] [PubMed]
- Gaddam, C.K.; Vander Wal, R.L. Physical and Chemical Characterization of SIDI Engine Particulates. Combust. Flame 2013, 160, 2517–2528. [Google Scholar] [CrossRef]
- Liati, A.; Schreiber, D.; Dimopoulos Eggenschwiler, P.; Arroyo Rojas Dasilva, Y.; Spiteri, A.C. Electron Microscopic Characterization of Soot Particulate Matter Emitted by Modern Direct Injection Gasoline Engines. Combust. Flame 2016, 166, 307–315. [Google Scholar] [CrossRef]
- Pfau, S.A.; La Rocca, A.; Haffner-Staton, E.; Rance, G.A.; Fay, M.W.; Brough, R.J.; Malizia, S. Comparative Nanostructure Analysis of Gasoline Turbocharged Direct Injection and Diesel Soot-in-Oil with Carbon Black. Carbon 2018, 139, 342–352. [Google Scholar] [CrossRef]
- Yang, J.; Roth, P.; Ruehl, C.R.; Shafer, M.M.; Antkiewicz, D.S.; Durbin, T.D.; Cocker, D.; Asa-Awuku, A.; Karavalakis, G. Physical, Chemical, and Toxicological Characteristics of Particulate Emissions from Current Technology Gasoline Direct Injection Vehicles. Sci. Total Environ. 2019, 650, 1182–1194. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Zhang, Y.; Li, C.; Fang, Y.; Li, X. Physicochemical Characteristics of Particulate Matter Emitted from the Oxygenated Fuel/Diesel Blend Engine. Aerosol. Air Qual. Res. 2021, 21, 210175. [Google Scholar] [CrossRef]
- Chan, J.H.; Tsolakis, A.; Herreros, J.M.; Kallis, K.X.; Hergueta, C.; Sittichompoo, S.; Bogarra, M. Combustion, Gaseous Emissions and PM Characteristics of Di-Methyl Carbonate (DMC)-Gasoline Blend on Gasoline Direct Injection (GDI) Engine. Fuel 2020, 263, 116742. [Google Scholar] [CrossRef]
- Shi, Y.; Lu, Y.; Cai, Y.; He, Y.; Zhou, Y.; Fang, J. Evolution of Particulate Matter Deposited in the DPF Channel during Low-Temperature Regeneration by Non-Thermal Plasma. Fuel 2022, 318, 123552. [Google Scholar] [CrossRef]
Reference | Engine Type | Test | DP (nm) | Df |
---|---|---|---|---|
Present Study | GDI engine | CLTC | 23.8 | 1.84 |
Xuyuang Zhang [16] | GDI engine | WLTC | 27.63 | 1.72 |
Meghdad Saffaripour [23] | GDI engine | US06 | 24.6–26.6 | 1.77 |
FTP75 | 25 | 1.8 |
Reference | Engine Type | Lf (nm) | Tf | Ds (nm) |
---|---|---|---|---|
Present Study | GDI engine | 0.741 | 1.172 | 0.391 |
Xuyuang Zhang [16] | GDI engine | 0.836 | 1.263 | 0.362 |
SB4 | 0.822 | 1.281 | 0.366 | |
Chethan K. Gaddam [24] | SIDI engine | 0.8 | 1.175 | _ |
S.A. Pfau [26] | 1.0L GTDI | 0.97 | 1.13 | 0.414 |
1.4L GTDI | 0.99 | 1.13 | 0.427 |
Elemental | Percentage by Weight | Elemental | Percentage by Weight |
---|---|---|---|
C | 49.43 | S | 0.15 |
O | 25.54 | K | 0.14 |
Mg | 1.87 | Ca | 5.53 |
Al | 0.17 | Fe | 7.22 |
Si | 4.41 | Zn | 0.82 |
P | 3.19 | Zr | 1.20 |
Title 1 | ID1/IG | AD1/AG | ID3/IG | AD3/AG | ID4/IG | AD4/AG |
---|---|---|---|---|---|---|
Present study | 0.97 | 2.37 | 0.28 | 0.42 | 0.12 | 0.24 |
J.H Chan [29] | 0.94 | 2.01 | 0.35 | 0.49 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; He, C.; Yu, H.; Li, J.; Liu, X. Physicochemical Analysis of Particle Matter from a Gasoline Direct Injection Engine Based on the China Light-Duty Vehicle Test Cycle. Atmosphere 2023, 14, 710. https://doi.org/10.3390/atmos14040710
Wang H, He C, Yu H, Li J, Liu X. Physicochemical Analysis of Particle Matter from a Gasoline Direct Injection Engine Based on the China Light-Duty Vehicle Test Cycle. Atmosphere. 2023; 14(4):710. https://doi.org/10.3390/atmos14040710
Chicago/Turabian StyleWang, Hao, Chao He, Haisheng Yu, Jiaqiang Li, and Xueyuan Liu. 2023. "Physicochemical Analysis of Particle Matter from a Gasoline Direct Injection Engine Based on the China Light-Duty Vehicle Test Cycle" Atmosphere 14, no. 4: 710. https://doi.org/10.3390/atmos14040710
APA StyleWang, H., He, C., Yu, H., Li, J., & Liu, X. (2023). Physicochemical Analysis of Particle Matter from a Gasoline Direct Injection Engine Based on the China Light-Duty Vehicle Test Cycle. Atmosphere, 14(4), 710. https://doi.org/10.3390/atmos14040710