Physicochemical Assessment of the Road Vehicle Traffic Pollution Impact on the Urban Environment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Environmental Parameter Measuring and Sampling
- Zone 1: Point P1—Tudor Vladimirescu Street;
- Point P2—Calea Moţilor Street;
- Point P3—Tudor Vladimirescu Street;
- Zone 2: Point P4—Ferdinand Boulevard (Exit to Sebeș);
- Zone 3: Point P5—Railway Station Square and Bus Station;
- Zone 4: Point P6—Hotel Cetate;
- Point P7—Central Park;
- Zone 5: Point P8—Horea Boulevard;
- Point P9—Unirii Street;
- Point P10—Closca Street (Exit to Cluj);
- Point P11—Dedeman Market;
- Point P12—OMV Gas station.
2.2. Physicochemical Investigation Methods
3. Results and Discussion
3.1. Environmental Parameter Measurements
3.2. Mineral Compound Assesment
3.3. Organic Compound Assessment
3.4. Study Limitations and Future Prospective
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ferm, M.; Sjöberg, K. Concentrations and emission factors for PM2.5 and PM10 from road traffic in Sweden. Atmos. Environ. 2015, 119, 211–219. [Google Scholar] [CrossRef]
- Zhang, Q.; Sun, L.; Wei, N.; Wu, L.; Mao, H. The characteristics and source analysis of VOCs emissions at roadside: Assess the impact of ethanol-gasoline implementation. Atmos. Environ. 2021, 263, 118670. [Google Scholar] [CrossRef]
- Cachon, F.B.; Cazier, F.; Verdin, A.; Dewaele, D.; Genevray, P.; Delbende, A.; Ayi-Fanou, L.; Aïssi, F.; Sanni, A.; Courcot, D. Physicochemical Characterization of Air Pollution Particulate Matter (PM2.5 and PM>2.5) in an Urban Area of Cotonou, Benin. Atmosphere 2023, 14, 201. [Google Scholar] [CrossRef]
- Petean, I.; Mocanu, A.; Păltinean, G.A.; Ţărcan, R.; Muntean, D.F.; Mureşan, L.; Arghir, G.; Tomoaia-Cotişel, M. Physico-Chemical Study Concerning Atmospheric Particulate Matter Hazard. Stud. Univ. Babes-Bolyai Chem. 2017, 62, 33–46. [Google Scholar] [CrossRef]
- Păltinean, G.A.; Petean, I.; Arghir, G.; Muntean, D.F.; Boboş, L.D.; Tomoaia-Cotişel, M. Atmospheric Induced Nanoparticles Due to the Urban Street Dust. Particul. Sci. Technol. 2016, 34, 580–585. [Google Scholar] [CrossRef]
- Hosu-Prack, G.A.; Petean, I.; Arghir, G.; Boboş, L.D.; Tomoaia-Cotişel, M. Nano-Scale Particulate Matters Found in Urban Street Dust in Cluj-Napoca, Romania. Carpathian J. Earth Environ. Sci. 2016, 11, 539–546. [Google Scholar]
- Kupiainen, K.; Ritola, R.; Stojiljkovic, A.; Pirjola, L.; Malinen, A.; Niemi, J. Contribution of mineral dust sources to street side ambient and suspension PM10 samples. Atmos. Environ. 2016, 147, 178–189. [Google Scholar] [CrossRef]
- Švédová, B.; Matýsek, D.; Raclavská, H.; Kucbel, M.; Kantor, P.; Šafář, M.; Raclavský, K. Variation of the chemical composition of street dust in a highly industrialized city in the interval of ten years. J. Environ. Manag. 2020, 267, 110506. [Google Scholar] [CrossRef]
- Iwegbue, C.M.A.; Ehigbor, M.J.; Tesi, G.O.; Eguavoen, O.I.; Martincigh, B.S. Occurrence, Sources and Exposure Risk of Polycyclic Aromatic Hydrocarbons (PAHs) in Street Dusts from the Nigerian Megacity, Lagos. Polycycl. Aromat. Compd. 2022, 42, 49–69. [Google Scholar] [CrossRef]
- Pang, L.; Huang, Z.; Yang, H.; Pang, R.; Wu, M.; Jin, B. A scalable field study using leaves as a novel passive air sampler to evaluate the potential source of organophosphate esters in street dust. Chemosphere 2023, 312, 137248. [Google Scholar] [CrossRef]
- Muntean, D.F.; Ristoiu, D.; Arghir, G.; Campean, R.F.; Petean, I. Iron hydroxides occurrence in winter air particulate matters suspensions in Cluj-Napoca, Romania. Carpathian J. Earth Environ. Sci. 2012, 7, 175–182. [Google Scholar]
- Mandal, M.; Popek, R.; Przybysz, A.; Roy, A.; Das, S.; Sarkar, A. Breathing Fresh Air in the City: Implementing Avenue Trees as a Sustainable Solution to Reduce Particulate Pollution in Urban Agglomerations. Plants 2023, 12, 1545. [Google Scholar] [CrossRef] [PubMed]
- Kwak, M.J.; Lee, J.; Park, S.; Lim, Y.J.; Kim, H.; Jeong, S.G.; Son, J.-a.; Je, S.M.; Chang, H.; Oh, C.-Y.; et al. Understanding Particulate Matter Retention and Wash-Off during Rainfall in Relation to Leaf Traits of Urban Forest Tree Species. Horticulturae 2023, 9, 165. [Google Scholar] [CrossRef]
- Singh, S.K.; Chowdhary, G.R.; Purohit, G. Assessment of Impact of High Particulate Concentration on Peak Expiratory Flow Rate of Lungs of Sand Stone Quarry Workers. Int. J. Environ. Res. Public Health 2006, 3, 355–359. [Google Scholar] [CrossRef] [PubMed]
- Ramar, M.; Yano, N.; Fedulov, A.V. Intra-Airway Treatment with Synthetic Lipoxin A4 and Resolvin E2 Mitigates Neonatal Asthma Triggered by Maternal Exposure to Environmental Particles. Int. J. Mol. Sci. 2023, 24, 6145. [Google Scholar] [CrossRef]
- Dhong, K.-R.; Lee, J.-H.; Yoon, Y.-R.; Park, H.-J. Identification of TRPC6 as a Novel Diagnostic Biomarker of PM-Induced Chronic Obstructive Pulmonary Disease Using Machine Learning Models. Genes 2023, 14, 284. [Google Scholar] [CrossRef]
- Xia, S.-Y.; Huang, D.-S.; Jia, H.; Zhao, Y.; Li, N.; Mao, M.-Q.; Lin, H.; Li, Y.-X.; He, W.; Zhao, L. Relationship between atmospheric pollutants and risk of death caused by cardiovascular and respiratory diseases and malignant tumors in Shenyang, China, from 2013 to 2016: An ecological research. Chin. Med. J. 2019, 132, 2269–2277. [Google Scholar] [CrossRef]
- Nirmalkar, J.; Lee, K.; Ahn, J.; Lee, J.; Song, M. Comparisons of Spatial and Temporal Variations in PM2.5-Bound Trace Elements in Urban and Rural Areas of South Korea, and Associated Potential Health Risks. Atmosphere 2023, 14, 753. [Google Scholar] [CrossRef]
- Święczkowski, M.; Dobrzycki, S.; Kuźma, Ł. Multi-City Analysis of the Acute Effect of Polish Smog on Cause-Specific Mortality (EP-PARTICLES Study). Int. J. Environ. Res. Public Health 2023, 20, 5566. [Google Scholar] [CrossRef]
- Hosu-Prack, G.A.; Petean, I.; Arghir, G.; Bobos, L.D.; Iurcut, I.; Tomoaia-Cotisel, M. Marble nano erosion under acid rain evidenced by atomic force microscopy. Carpathian J. Earth Environ. Sci. 2013, 8, 75–82. [Google Scholar]
- Wei, Y.; Li, Z.; Zhang, Y.; Li, K.; Chen, J.; Peng, Z.; Hu, Q.; Goloub, P.; Ou, Y. The Effects of Local Pollution and Transport Dust on Aerosol Properties in Typical Arid Regions of Central Asia during DAO-K Measurement. Atmosphere 2022, 13, 729. [Google Scholar] [CrossRef]
- Fussell, J.C.; Franklin, M.; Green, D.C.; Gustafsson, M.; Harrison, R.M.; Hicks, W.; Kelly, F.J.; Kishta, F.; Miller, M.R.; Mudway, I.S.; et al. A Review of Road Traffic-Derived Non-Exhaust Particles: Emissions, Physicochemical Characteristics, Health Risks, and Mitigation Measures. Environ. Sci. Technol. 2022, 56, 6813–6835. [Google Scholar] [CrossRef]
- Montero-Montoya, R.; López-Vargas, R.; Arellano-Aguilar, O. Volatile Organic Compounds in Air: Sources, Distribution, Exposure and Associated Illnesses in Children. Ann. Glob. Health 2018, 84, 225–238. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Hu, H.; Zhang, J.; Liu, X. Characteristics of volatile organic compounds from vehicle emissions through on–road test in Wuhan, China. Environ. Res. 2020, 188, 109802. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.L.; Jing, S.A.; Lou, S.R.; Hu, Q.Y.; Li, L.; Tao, S.K.; Huang, C.; Qiao, L.P.; Chen, C.H. Volatile organic compounds (VOCs) source profiles of on-road vehicle emissions in China. Sci. Total Environ. 2017, 607–608, 253–261. [Google Scholar] [CrossRef]
- Fuller, R.; Landrigan, P.J.; Balakrishnan, K.; Bathan, G.; Bose-O’Reilly, S.; Brauer, M.; Caravanos, J.; Chiles, T.; Cohen, A.; Corra, L.; et al. Pollution and health: A progress update. Lancet Planet Health 2022, 6, e535–e547. [Google Scholar] [CrossRef]
- Council Directive 1999/30/EC of 22 April 1999 Relating to Limit Values for Sulphur Dioxide, Nitrogen Dioxide and Oxides of Nitrogen, Particulate Matter and Lead in Ambient Air. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A31999L0030&qid=1680678998848 (accessed on 5 April 2023).
- Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on Ambient Air Quality and Cleaner Air for Europe. Available online: http://eur-lex.europa.eu/legal-content/en/ALL/?uri=CELEX:32008L0050 (accessed on 5 April 2023).
- Law No. 104 of 15 June 2011 on Ambient Air Quality, Updated on 22 May 2015. Available online: https://www.global-regulation.com/translation/romania/3755838/law-no.-104-of-15-june-2011-on-ambient-air-quality.html (accessed on 5 April 2023).
- WHO. Global Air Quality Guidelines, Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide; Licence: CC BY-NC-SA 3.0 IGO; World Health Organization: Geneva, Swizterland, 2021; Available online: https://www.who.int/publications/i/item/9789240034228 (accessed on 4 April 2023).
- Ministry of the Environment. Air Quality, National Air Quality Monitoring Network, Quality Indices. Available online: https://www.calitateaer.ro/public/monitoring-page/quality-indices-page/?__locale=ro (accessed on 5 April 2023).
- Păltinean, G.A.; Petean, I.; Arghir, G.; Muntean, D.F.; Tomoaia-Cotişel, M. Silicates Fragmentation a Source of Atmosphere Dispersed Nano—Particulate Matter. Rev. Chim. 2016, 67, 1118–1123. [Google Scholar]
- Zhang, M.; Sun, H.; Song, C.; Li, Y.; Hou, M. Pores Evolution of Soft Clay under Loading/Unloading Process. Appl. Sci. 2020, 10, 8468. [Google Scholar] [CrossRef]
- Pérez-Sansalvador, J.C.; Lakouari, N.; Garcia-Diaz, J.; Hernández, S.E.P. The Effect of Speed Humps on Instantaneous Traffic Emissions. Appl. Sci. 2020, 10, 1592. [Google Scholar] [CrossRef]
- Jeong, N.-R.; Han, S.-W.; Ko, B. Effects of Green Network Management of Urban Street Trees on Airborne Particulate Matter (PM2.5) Concentration. Int. J. Environ. Res. Public Health 2023, 20, 2507. [Google Scholar] [CrossRef]
- Penkała, M.; Rogula-Kozłowska, W.; Ogrodnik, P.; Bihałowicz, J.S.; Iwanicka, N. Exploring the Relationship between Particulate Matter Emission and the Construction Material of Road Surface: Case Study of Highways and Motorways in Poland. Materials 2023, 16, 1200. [Google Scholar] [CrossRef]
- Ma, Y.; Zhao, H.; Liu, Q. Characteristics of PM2.5 and PM10 pollution in the urbanagglomeration of Central Liaoning. Urban Clim. 2022, 43, 101170. [Google Scholar] [CrossRef]
- Groma, V.; Alfoldy, B.; Borcsok, E.; Czompoly, O.; Füri, P.; Keri, A.H.; Kovacs, G.; Torok, S.; Osan, J. Sources and health effects of fine and ultrafine aerosol particles in an urban environment. Atmos. Pollut. Res. 2022, 13, 101302. [Google Scholar] [CrossRef]
- Dai, H.; Huang, G.; Zeng, H.; Yu, R. Haze Risk Assessment Based on Improved PCA-MEE and ISPO-LightGBM Model. Systems 2022, 10, 263. [Google Scholar] [CrossRef]
- Dai, H.; Huang, G.; Wang, J.; Zeng, H. VAR-tree model based spatio-temporal characterization and prediction of O3 concentration in China. Ecotoxicol. Environ. Saf. 2023, 257, 114960. [Google Scholar] [CrossRef]
- Coelho, M.S.; Zacharias, D.C.; de Paulo, T.S.; Ynoue, R.Y.; Fornaro, A. Air Quality Impact Estimation Due to Uncontrolled Emissions from Capuava Petrochemical Complex in the Metropolitan Area of São Paulo (MASP), Brazil. Atmosphere 2023, 14, 577. [Google Scholar] [CrossRef]
- Molden, N.; Hemming, C.; Leach, F.; Levine, J.G.; Ropkins, K.; Bloss, W. Exposures to Particles and Volatile Organic Compounds across Multiple Transportation Modes. Sustainability 2023, 15, 4005. [Google Scholar] [CrossRef]
- Arole, K.; Velhal, M.; Tajedini, M.; Xavier, P.G.; Bardasz, E.; Green, M.J.; Liang, H. Impacts of particles released from vehicles on environment and health. TribolInt 2023, 184, 108417. [Google Scholar] [CrossRef]
- Cho, M.C.; Jo, Y.G.; Son, J.A.; Kim, I.; Oh, K.; Yook, S.J. Deposition characteristics of soot and tire-wear particles on urbantree leaves. J. Aerosol. Sci. 2021, 155, 105768. [Google Scholar] [CrossRef]
- Jiaqiang, E.; Xu, W.; Ma, Y.; Tan, D.; Peng, Q.; Tan, Y.; Chen, L. Soot formation mechanism of modern automobile engines and methods of reducing soot emissions: A review. Fuel Process Technol 2022, 235, 107373. [Google Scholar] [CrossRef]
- Arora, P.; Verma, P.; Lodi, F.; Jafari, M.; Zare, A.; Stevanovic, S.; Bodisco, T.A.; Brown, R.J.; Ristovski, Z. Particulate emissions and soot characterisation of diesel engine exhaust forsteady-state operating condition using dioctyl phthalate blends with diesel. Fuel 2023, 340, 127527. [Google Scholar] [CrossRef]
- Sharma, A.; Mukut, K.M.; Roy, S.P.; Goudeli, E. The coalescence of incipient soot clusters. Carbon 2021, 180, 215–225. [Google Scholar] [CrossRef]
- La Rocca, A.; Di Liberto, G.; Shayler, P.J.; Fay, M.W. The nanostructure of soot-in-oil particles and agglomerates from an automotive diesel engine. Tribol. Int. 2013, 61, 80–87. [Google Scholar] [CrossRef]
- Bora, J.; Deka, P.; Bhuyan, P.; Sarma, K.P.; Hoque, R.R. Morphology and mineralogy of ambient particulate matter over mid-Brahmaputra Valley: Application of SEM–EDX, XRD, and FTIR techniques. SN Appl. Sci. 2021, 3, 137. [Google Scholar] [CrossRef]
- Usman, F.; Zeb, B.; Alam, K.; Huang, Z.; Shah, A.; Ahmad, I.; Ullah, S. In-Depth Analysis of Physicochemical Properties of Particulate Matter (PM10, PM2.5 and PM1) and Its Characterization through FTIR, XRD and SEM–EDX Techniques in the Foothills of the Hindu Kush Region of Northern Pakistan. Atmosphere 2022, 13, 124. [Google Scholar] [CrossRef]
- Kiefer, J.; Stärk, A.; Kiefer, A.L.; Glade, H. Infrared Spectroscopic Analysis of the Inorganic Deposits from Water in Domestic and Technical Heat Exchangers. Energies 2018, 11, 798. [Google Scholar] [CrossRef]
- Varrica, D.; Tamburo, E.; Vultaggio, M.; Di Carlo, I. ATR–FTIR Spectral Analysis and Soluble Components of PM10 And PM2.5 Particulate Matter over the Urban Area of Palermo (Italy) during Normal Days and Saharan Events. Int. J. Environ. Res. Public Health 2019, 16, 2507. [Google Scholar] [CrossRef]
- Zeb, B.; Alam, K.; Sorooshian, A.; Blaschke, T.; Ahmad, I.; Shahid, I. On the morphology and composition of particulate matter in an urban environment. Aerosol Air Qual. Res. 2018, 18, 1431–1447. [Google Scholar] [CrossRef]
- Koupadi, K.; Boyatzis, S.C.; Roumpou, M.; Kalogeropoulos, N.; Kotzamani, D. Organic Remains in Early Christian Egyptian Metal Vessels: Investigation with Fourier Transform Infrared Spectroscopy and Gas Chromatography–Mass Spectrometry. Heritage 2021, 4, 3611–3629. [Google Scholar] [CrossRef]
- Kim, E.A.; Koh, B. Utilization of road dust chemical profiles for source identification and human health impact assessment. Sci. Rep. 2020, 10, 14259. [Google Scholar] [CrossRef]
- Formenton, G.; Bassetto, A.; De Lorenzo, R. Determination of Volatile Organic Compounds in Air byGC/MS: Italian Proficiency Tests. J. AOAC Int. 2013, 96, 178–185. [Google Scholar] [CrossRef] [PubMed]
- Orecchio, S.; Fiore, M.; Barreca, S.; Vara, G. Volatile Profiles of Emissions from DifferentActivities Analyzed Using Canister Samplersand Gas Chromatography-Mass Spectrometry(GC/MS) Analysis: A Case Study. Int. J. Environ. Res. Public Health 2017, 14, 195. [Google Scholar] [CrossRef] [PubMed]
- Navazo, M.; Durana, N.; Alonso, L.; García, J.A.; Ilardia, J.L.; Gómez, M.C.; Gangoiti, G. Volatile organic compounds in urban and industrial atmospheres: Measurement techniques and data analysis. Int. J. Environ. Anal. Chem. 2003, 83, 199–217. [Google Scholar] [CrossRef]
- Jin, H.; Yuan, W.; Li, W.; Yang, J.; Zhou, Z.; Zhao, L.; Li, Y.; Qi, F. Combustion chemistry of aromatic hydrocarbons. Prog. Energy Combust. Sci. 2023, 96, 101076. [Google Scholar] [CrossRef]
- Saarikoski, S.; Hellén, H.; Praplan, A.P.; Schallhart, S.; Clusius, P.; Niemi, J.V.; Kousa, A.; Tykkä, T.; Kouznetsov, R.; Aurela, M.; et al. Characterization of volatile organic compounds and submicron organic aerosol in a traffic environment. Atmos. Chem. Phys. 2023, 23, 2963–2982. [Google Scholar] [CrossRef]
Pollutants | Period | Concentration | Refs. |
---|---|---|---|
PM10 | 24 h | 50 µg/m3 | [27,28,29] |
Annual | 40 µg/m3 | ||
PM2.5 | 24 h | 25 µg/m3 | [27,28,29] |
Annual | 20 µg/m3 | ||
NO2 | Annual | 40 µg/m3 | [27,28,29] |
SO2 | 24 h | 125 µg/m3 | [27,28,29] |
CO | 8 h | 10 mg/m3 | [27,28,29] |
C6H6 | Annual | 5 µg/m3 | [27,28,29] |
Pb | Annual | 0.5 µg/m3 | [27,28,29] |
M.P. | PM2.5, µg/m3 | PM10, µg/m3 | VOC, µg/m3 | CO2, ppm | Vehicles/10 min., Counts | Air Temp., °C | Wind Speed, m/s |
---|---|---|---|---|---|---|---|
1 | 38 ± 1.2 | 36 ± 0.5 | 6.8 ± 1.6 | 608 ± 13.22 | 59 | 23.2 | 0.18–0.85 |
2 | 28 ± 1.1 | 38 ± 1.1 | 0.5 ± 0.0 | 556 ± 5.03 | 48 | 23.2 | 0.18–0.85 |
3 * | 49 ± 0.5 | 55 ± 1.2 | 1.2 ± 0.5 | 558 ± 25.05 | 65 | 21.2 | 1.4 |
4 | 36 ± 1.8 | 48 ± 1.7 | 1.6 ± 0.0 | 556 ± 10.26 | 46 | 23.6 | 0.85–1.45 |
5 | 32 ± 0.6 | 33 ± 0.3 | 0.2 ± 0.1 | 550 ± 0.09 | 57 | 23.6 | 0.85–1.45 |
6 | 36 ± 1.4 | 31 ± 0.8 | 0.4 ± 25 | 580 ± 22.81 | 55 | 23.6 | 0.85–1.45 |
7 | 38 ± 0.3 | 41 ± 1.8 | 0.2 ± 0.0 | 539 ± 15.69 | 44 | 24.1 | 0.85–1.45 |
8 | 36 ± 1.7 | 40 ± 0.5 | 0.4 ± 0.0 | 560 ± 3.05 | 57 | 24.7 | 0.85–1.45 |
9 | 42 ± 1.9 | 45 ± 1.7 | 0.2 ± 0.0 | 552 ± 25.32 | 48 | 24.7 | 0.85–1.45 |
10 * | 46 ± 1.4 | 30 ± 1.4 | 0.4 ± 0.0 | 638 ± 15.09 | 50 | 24.7 | 0.85–1.45 |
11 | 34 ± 2 | 32 ± 1.4 | 0.2 ± 0.0 | 525 ± 20.20 | 44 | 24.7 | 0.85–1.45 |
12 | 38 ± 0.6 | 36 ± 1.3 | 0.2 ± 0.1 | 506 ± 5.04 | 44 | 24.7 | 0.85–1.45 |
Mean | 37.75 | 38.75 | 1.025 | 560.64 | 51.41 | - | - |
p | 9.89 × 10−16 | 1.77 × 10−12 | 4.81 × 10−13 | 4.30 × 10−8 | - | - | - |
M.P. | PM2.5, µg/m3 | PM10, µg/m3 | VOC, µg/m3 | CO2, ppm | Vehicles/10 min., Counts | Temperature, °C | Wind Speed, m/s |
---|---|---|---|---|---|---|---|
1 * | 70 ± 3.7 | 95 ± 5.3 | 6.4 ± 1.5 | 608 ± 10.4 | 74 | 15.1 | 0.1–0.45 |
2 * | 70 ± 1 | 93 ± 3 | 9.0 ± 3.0 | 686 ± 11 | 73 | 12 | 0.2–0.4 |
3 * | 68 ± 2.6 | 90 ± 5.5 | 4.1 ± 0.3 | 448 ± 5.3 | 68 | 14.7 | 0.15–0.35 |
4 * | 63 ± 3.2 | 72 ± 3.2 | 3.1 ± 0.3 | 448 ± 0.6 | 64 | 17.1 | 0.15–0.3 |
5 | 35 ± 3.7 | 42 ± 0.5 | 0.2 ± 0.1 | 445 ± 10.4 | 48 | 15.2 | 0.18–0.35 |
6 | 30 ± 2 | 36 ± 2.5 | 0.2 ± 0.2 | 597 ± 18.6 | - | 20.1 | 0.2 |
7 | 35 ± 0.6 | 41 ± 3 | 0.2 ± 0 | 399 ± 21.5 | - | 23 | 0.15 |
8 | 40 ± 4 | 44 ± 1 | 1.6 ± 0.3 | 415 ± 10.4 | 48 | 23 | 0.2–0.3 |
9 | 35 ± 1.7 | 40 ± 3.2 | 0.2 ± 0.1 | 405 ± 25.8 | - | 23 | 0.2–0.3 |
10 * | 68 ± 3.2 | 87 ± 1.1 | 1.4 ± 0.5 | 562 ± 22.1 | 74 | 23 | 0.2–0.5 |
11 | 49 ± 1.1 | 64 ± 1.5 | 1.1 ± 0.1 | 439 ± 18.9 | - | 23 | 0.25 |
12 | 46 ± 5 | 56 ± 5.6 | 2.5 ± 0.4 | 429 ± 21.1 | 63 | 23 | 0.25 |
Mean | 50.75 | 63.33 | 2.500 | 490.08 | 42.66 | - | - |
p | 1.71 × 10−16 | 8.08 × 10−19 | 3.09 × 10−10 | 3.24 × 10−16 | - | - | - |
Component | Quartz | Kaolinite | Muscovite | Calcite | Lepidocrocite |
---|---|---|---|---|---|
Formula | SiO2 | Al2Si2O5(OH)4 | KAl2(AlSi3O10)(F,OH)2 | CaCO3 | γFeO(OH) |
Color nuances | Green–gray | White–blue | Pink | Yellow–brown | Reddish–brown |
SD1 | |||||
Amount, wt. % | 36 | 24 | 19 | 15 | 6 |
Particle size, μm | 2–160 | 1–55 | 1–30 | 5–80 | 3–15 |
SD2 | |||||
Amount, wt. % | 29 | 18 | 27 | 16 | 10 |
Particle size, μm | 2–180 | 1–60 | 1–40 | 3–75 | 3–15 |
ASP1 | |||||
Amount, wt. % | 39 | 19 | 16 | 21 | 5 |
Particle size, μm | 1.5–45 | 1–30 | 1–25 | 2–35 | 3–15 |
ASP2 | |||||
Amount, wt. % | 32 | 21 | 24 | 11 | 12 |
Particle size, μm | 1.5–50 | 1–20 | 1–25 | 1.8–15 | 3–15 |
Species | Measured Peak Wavenumber (cm−1) | Vibrations Assignment | References | |||
---|---|---|---|---|---|---|
ASP1 | ASP2 | PS1 | PS2 | |||
Water (OH) | 3431 | 3431 | 3446 | 3421 | H-O-H stretching | [49,50] |
1626 | 1620 | H-O-H bending | ||||
C-H (alkanes) | 2923 | 2923 | 2923 | 2923 | -CH2 asymmetric stretching | [50] |
2852 | 2852 | 2854 | 2854 | -CH2 Symmetric stretching | ||
C=O (organic compounds) | 1873 | 1870 | Saturated symmetric C=O stretch | [49] | ||
1647 | 1676 | C=O stretch | ||||
CO32− (calcium carbonate) | 1795 | 1797 | CO32− ions | [51] | ||
NH4+ | 1421 | 1425 | 1419 | 1421 | NH4+ ions | [52] |
NO3− | 1320 | 1320 | NO−3 ions | [50,53] | ||
SO42− | 1081 | 1080 | S-O stretch | [52,53] | ||
638 | 646 | S-O bend | ||||
Silicates | 1035 | 1035 | 1039 | 1029 | in-plane Si-O stretching | [50] |
777 | 777 | 779 | 777 | Si-O-Si vibration | ||
694 | 694 | 694 | 692 | Si-O symmetrical bending | ||
582 | O-Si-O bending deformation | [54] | ||||
511 | 512 | 526 | 526 | |||
460 | 461 | 470 | 468 | O-Si-O bending deformation |
No | Compound | RT, min. | VOC, % | No | Compound | RT, min. | VOC, % | ||
---|---|---|---|---|---|---|---|---|---|
ASP1 | ASP2 | ASP1 | ASP2 | ||||||
1 | Toluene | 7.747 | 0.56 | 0.52 | 28. | Undecanoic acid, ethyl ester | 29.913 | 0.50 | - |
2. | 2-Hexanone | 8.223 | 1.31 | 1.05 | 29. | Cyclohexane,1,1,3,5-tetramethyl | 32.165 | 2.42 | 1.14 |
3. | 2-Hexene-1-methoxy | 8.349 | 0.49 | 0.57 | 30. | Cyclohexane,1,2-diethyl-3-methyl | 32.577 | 1.52 | 1.01 |
4. | Ethane1,1,2,2-tetrachloro | 12.168 | 2.73 | - | 31. | Cyclooctane,1-methyl-3-propyl | 32.815 | 3.67 | 2.57 |
5. | Butyl angelate, 3-methyl | 13.399 | 2.05 | 1.05 | 32. | Octacosylheptafluorobutyrate | 33.271 | 1.29 | 1.12 |
6. | D-Limonene | 14.966 | 0.69 | 0.66 | 33. | Tetradecanoic acid | 33.885 | 5.93 | - |
7. | Pentanoic acid, 2-propenyl ester | 15.217 | 1.00 | - | 34. | Octadecane | 33.919 | - | 0.63 |
8. | Pentanoic acid, ethylhexyl ester | 15.816 | 1.91 | - | 35. | Tetradecanoic acid, ethyl ester | 34.264 | 1.53 | - |
9. | 2-methyl-6-methyleneocta-2,4-dienone | 17.255 | 1.76 | - | 36. | Nonadecane | 35.956 | 0.34 | - |
10. | 10-chloro-1-decanol | 18.642 | 0.84 | - | 37. | Hexadecanoic acid, methyl ester | 36.983 | 1.13 | 3.71 |
11. | Undecane | 19.247 | 2.00 | 1.27 | 38. | Hexadecanoic acid | 37.958 | 19.86 | 9.21 |
12. | Undecane,4,6-dimethyl | 20.234 | 0.56 | 0.21 | 39. | Hexadecanoic acid, ethyl ester | 38.229 | 3.28 | - |
13. | Decane,2,3,5,8-tetramethyl | 20.438 | 0.76 | - | 40. | Z,Z-3,13-Octadien-1-ol | 40.347 | - | 1.87 |
14. | 1.3-Di-tert-butylbenzene | 21.205 | 3.91 | 1.81 | 41. | Methyl stearate | 40.738 | - | 2.41 |
15. | Undecane-3,7-dimethyl | 22.003 | 3.04 | 1.57 | 42. | Z-9-octadecenoic acid | 41.306 | 6.34 | 44.51 |
16. | Cyclohexane, 1,2,4-trimethyl | 22.244 | 2.81 | 1.30 | 43. | Octadecanoic acid | 41.627 | 4.20 | 5.66 |
17. | Cyclopentane, 2-methylbutyl | 22.476 | 2.11 | 1.12 | 44. | Ethyl tridecanoate | 41.859 | 0.51 | - |
18. | n-decanoic acid | 24.569 | 0.53 | - | 45. | Tricosan | 43.274 | 0.44 | - |
19. | Tetradecane | 24.670 | 1.63 | 1.48 | 46. | Pentadecane, 2,6,10,14-tetramethyl | 45.012 | 1.06 | 1.78 |
20. | Dodecane,2,6,10-trimethyl | 25.587 | 0.71 | - | 47. | Z-9- octadecenoic acid, pentyl ester | 45.678 | 0.50 | - |
21. | 2,6,10-trimethyltridecane | 26.060 | 0.89 | 0.71 | 48. | Bis(2-ethylhexyl)phtalate | 47.719 | 0.29 | 0.70 |
22. | Pentadecane | 27.166 | 0.66 | 0.38 | 49. | Decyloleate | 47.796 | 0.98 | - |
23. | Cyclopentane (2-methylbutyl) | 27.655 | - | 1.14 | 50. | Pentadecene | 47.930 | 1.83 | 1.18 |
24. | Cyclohexane,1-ethyl-2-propyl | 28.098 | 1.52 | 0.95 | 51. | Heptacosan | 49.491 | 0.66 | 0.4 |
25. | 2,4-Di-tert-butylphenol | 28.312 | 4.16 | 2.98 | 52. | Squalene | 51.398 | 0.93 | - |
26. | Dodecanoic acid | 29.445 | 1.00 | - | 53. | E-9-octadecenoic acid, pentyl ester | 51.483 | - | 1.96 |
27. | Hexadecane | 29.531 | 0.70 | 1.18 | Total | 99.54 | 99.81 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rusca, M.; Rusu, T.; Avram, S.E.; Prodan, D.; Paltinean, G.A.; Filip, M.R.; Ciotlaus, I.; Pascuta, P.; Rusu, T.A.; Petean, I. Physicochemical Assessment of the Road Vehicle Traffic Pollution Impact on the Urban Environment. Atmosphere 2023, 14, 862. https://doi.org/10.3390/atmos14050862
Rusca M, Rusu T, Avram SE, Prodan D, Paltinean GA, Filip MR, Ciotlaus I, Pascuta P, Rusu TA, Petean I. Physicochemical Assessment of the Road Vehicle Traffic Pollution Impact on the Urban Environment. Atmosphere. 2023; 14(5):862. https://doi.org/10.3390/atmos14050862
Chicago/Turabian StyleRusca, Marcel, Tiberiu Rusu, Simona Elena Avram, Doina Prodan, Gertrud Alexandra Paltinean, Miuta Rafila Filip, Irina Ciotlaus, Petru Pascuta, Tudor Andrei Rusu, and Ioan Petean. 2023. "Physicochemical Assessment of the Road Vehicle Traffic Pollution Impact on the Urban Environment" Atmosphere 14, no. 5: 862. https://doi.org/10.3390/atmos14050862
APA StyleRusca, M., Rusu, T., Avram, S. E., Prodan, D., Paltinean, G. A., Filip, M. R., Ciotlaus, I., Pascuta, P., Rusu, T. A., & Petean, I. (2023). Physicochemical Assessment of the Road Vehicle Traffic Pollution Impact on the Urban Environment. Atmosphere, 14(5), 862. https://doi.org/10.3390/atmos14050862