Thermal Hazards Evaluation Based on Weight of Evidence Method in the Resource Area of Datong River in Qinghai-Tibetan Plateau
Abstract
:1. Introduction
2. Study Area
3. Research Methods
3.1. Spatial Correlation Calculation ( and )
3.2. Post-Probability Calculation
4. Research Data
4.1. Interpretation of Thermal Hazards Layer
4.2. Terrain and Environmental Factors
4.3. Climate Factors
4.4. Permafrost Factors
5. Calculation Results
5.1. Terrain and Environmental Factors
5.2. Climate Factors
5.3. Permafrost Factors
5.4. Multi-Factors Comprehensive Evaluation
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ajay, K.; Joginder, S.; Luiz, F. Microbiome Under Changing Climate. In Chapter 1—Microbes in Thawing Permafrost: Contributions to Climate Change; Ottoni, J., Vmd, O., Passarini, M., Eds.; Woodhead publishing: Sawston, UK, 2022; pp. 1–28. [Google Scholar]
- He, R.; Jin, H.; Luo, D.; Huang, Y.; Ma, F.; Li, X. Changes in the permafrost environment under dual impacts of climate change and human activities in the hola basin, northern da xing’anling mountains, northeast china. Land Degrad. Dev. 2022, 8, 33. [Google Scholar] [CrossRef]
- He, R.; Jin, H.; Ma, F.; Liu, C.; Xiao, D. Recent progress in studying permafrost and cold regions environment in the Hola basin of north Greater Khingan Mountains. J. Glaciol. Geocryol. 2015, 37, 109–117. [Google Scholar]
- Cao, W.; Sheng, Y.; Chou, Y.; Wu, J.; Li, J.; Wang, S. The status evaluation of the permafrost environment along the Chaida’er-Muli Railway in southern Qilian Mountains in northern Qinghai Province, China. J. Mt. Sci. 2016, 13, 2124–2134. [Google Scholar] [CrossRef]
- Cheng, G.; Jin, H. Groundwater in the permafrost regions on the Qinghai-Tibet Plateau and it changes. Hydrol. Eng. Geol. 2013, 40, 1–11. [Google Scholar] [CrossRef]
- Zsoter, E.; Arduini, G.; Prudhomme, C.; Stephens, E.; Cloke, H. Hydrological Impact of the New CMWF Multi-Layer Snow Scheme. Atmosphere 2022, 13, 727. [Google Scholar] [CrossRef]
- Melnikov, A.; Kuznetsov, P. The Influence of Hydrogeological Factors on the Railway Stability in the Areas of Island Permafrost Distribution (by the Example of the Trans-Baikal Railway, Russia). IOP Conf. Ser. Environ. Earth. 2021, 82, 012063. [Google Scholar] [CrossRef]
- Cao, W.; Wan, L.; Zhou, X. A study of the geological environmental of suprapermafrost water in the headwater area of the Yellow River. Hydrol. Eng. Geol. 2003, 6, 6–10. [Google Scholar]
- Wang, G.; Shen, Y.; Cheng, G. Eco-environmental changes and causal analysis in the source regions of the Yellow River. J. Glaciol. Geocryol. 2000, 20, 200–205. [Google Scholar]
- Zhang, S.; Wang, Y.; Zhao, Y. Permafrost degradation and its environmental sequent in the source regions of the Yellow River. J. Glaciol. Geocryol. 2004, 26, 1–6. [Google Scholar]
- Zhang, Y.; Chang, X.; Liang, J. Influence of frozen ground on hydrological process on alpine regions: A case study in an upper reach of the Heihe River. J. Glaciol. Geocryol. 2016, 38, 1362–1372. [Google Scholar] [CrossRef]
- Yao, J.; Yang, Q.; Mao, W. Evaluation of the impacts of climate change and human activities on the hydrological environment in Central Asia. J. Glaciol. Geocryol. 2016, 38, 222–230. [Google Scholar] [CrossRef]
- Chen, L.; Lai, Y.; Fortier, D.; Harris, S.H. Impacts of Snow Cover on the Pattern and Velocity of Air Flow in Air Convection Embankments of Sub-Arctic Regions. Renew. Energy 2022, 199, 1033–1046. [Google Scholar] [CrossRef]
- Penck, W. Geomorphology Analysis; Jiang, M., Translator; Department of Geology and Geography: Beijing, China, 1964; pp. 4–65. [Google Scholar]
- Vieira, G.; López-Martínez, J.; Serrano, E. Geomorphological observations of permafrost and ground-ice degradation on Deception and Livingston Islands, Maritime Antarctica. In Proceedings of the 9th International Conference on Permafrost, Fairbanks, Alaska, 29 June 2008–3 July 2008; Volume 29, pp. 1839–1844. [Google Scholar]
- Wang, S.; Sheng, Y.; Cao, W. Estimation of permafrost ice reserves in the source area of the Yellow River using landform classification. Adv. Water Sci. 2017, 28, 801–810. [Google Scholar] [CrossRef]
- Chen, L.; Voss, C.; Fortier, D.; McKenzie, J. Surface Energy Balance of Sub-Arctic Roads with Varying Snow Regimes and Properties in Permafrost Regions. Permafr. Periglac. 2021, 32, 681–701. [Google Scholar] [CrossRef]
- Cao, W.; Sheng, Y.; Qin, Y.; Wu, L. An application of a new method in permafrost environment assessment of Muli mining area in Qinghai-Tibet Plateau, China. Environ. Earth. 2011, 63, 609–616. [Google Scholar] [CrossRef]
- Wei, M.; Niu, F.; Mu, Y. Basic Research on the Major Permafrost Projects in the QinghaiTibet Plateau. Adv. Earth Sci. 2012, 27, 1185–1191. [Google Scholar]
- Wang, G.; Yu, Q.; You, Y.; Zhang, Z.; Guo, L.; Wang, S. Problems and countermeasures in construction of transmission line projects in permafrost regions. Sci. Cold Arid. Reg. 2014, 6, 8. [Google Scholar] [CrossRef]
- Bouchard, F.; Francus, P.; Pienitz, R.; Laurion, I. Sedimentology and geochemistry of thermokarst ponds in discontinuous permafrost, subarctic Quebec, Canada. J. Geophys. Res. 2011, 116, 1–14. [Google Scholar] [CrossRef]
- Chen, X. Distribution of thermokarst lakers on the Qinghai-Tibet plateau and their regional changes of thermokarst lakers. Doctor’s Thesis, Lanzhou University, Lanzhou, China, 2021. [Google Scholar]
- Morino, C.; Conway, S.; Saemundsson, T.; Helgason, J.; Argles, T. Mobility of Landslides and Permafrost Degradation Revealed by Molards: Two Case Studies in Northern Iceland. In Proceedings of the 9th International Conference on Geomorphology, New Delhi, India, 6–11 November 2017. [Google Scholar]
- Wang, N.; Yao, Y. Characteristics and Mechanism of Landslides in Loess during Freezing and Thawing Periods in Seasonally Frozen Ground Regions. J. Disaster Prev. Mitig. Eng. 2008, 28, 163–166. [Google Scholar] [CrossRef]
- Jin, D.; Niu, F.; Chen, Z.; Ni, W. Landslide hazard from gelifluction in Qinghai-Tibet plateau and stability analysis method. Coal Geol. Explor. 2004, 3, 49–52. [Google Scholar]
- Matsuoka, N. Solifluction and mudflow on a limestone periglacial slope in the Swiss Alps: 14 years of monitoring. Permafr. Periglac. 2010, 21, 219–240. [Google Scholar] [CrossRef]
- Kanevskiy, M.; Shur, Y.; Krzewinski, T. Structure and properties of ice-rich permafrost near Anchorage, Alaska. Cold Reg. Sci. Technol. 2013, 93, 1–11. [Google Scholar] [CrossRef]
- Chen, D.; Wang, S. On the zonation of high-altitude permafrost in China. Glaciol. Geocryol. 1982, 4, 1–16. [Google Scholar]
- Leblanc, A.; Short, N.; Oldenborger, G.; Mathon-Dufour, V.; Allard, M. Geophysical investigation and in Sar mapping of permafrost and ground movement at the Iqaluit airport. In Cold Regions Engineering 2012, Sustainable Infrastructure Development in a Changing Cold Environment; Doré, G., Morse, B., Eds.; American Society of Civil Engineers: Reston, VA, USA, 2012; pp. 644–665. [Google Scholar]
- Leblanc, A.; Oldenborger, G.; Sladen, W.; Allard, M. Infrastructure and climate warming impacts on ground thermal regime, Iqaluit International Airport, southern Baffin Island, Nunavut. In Summary of Activities 2014; Canada-Nunavut Geoscience Office: Iqaluit, NU, Canada, 2015; pp. 119–132. [Google Scholar]
- Blais-Steven Kremer, M.; Bonnaventure, P.; Smith, S.; Lewkowicz, A. Active layer detachment slides and retrogressivethaw slumps susceptibility mapping for current and future permafrost distribution, Yukon Alaska Highway Corridor. In Proceedings of the International Association of Engineering Geology Congress, Torino, Italy, 13–19 September 2014; Springer: Berlin/Heidelberg, Germany, 2015; pp. 449–453. [Google Scholar]
- Stephani, E.; Fortier, D.; Shur, Y.; Fortier, R.; Dore, G. A geosystems approach to permafrost investigations for engineering applications, an example from a road stabilization experiment, Beaver Creek, Yukon, Canada. Cold Reg. Sci. Technol. 2014, 100, 20–35. [Google Scholar] [CrossRef]
- Streletskiy, D.; Nelson, F. Permafrost, infrastructure, and climate change: A GIS-based landscape approach to geotechnical modelling. Arct. Antarct. Alp. Res. 2012, 44, 368–380. [Google Scholar] [CrossRef]
- Liu, Z.; Yong, Q.; Nie, T.; Qi, Q. Quantitative risk assessment of pipelines in permafrost areas with uncertain analytic hierarchy process and triangular fuzzy number. J. Chongqing Univ. Technol. (Nat. Sci.) 2015, 9, 137–142. [Google Scholar] [CrossRef]
- Wang, L.; Wang, X.; Zhong, H.; Lai, D.; Li, Q. Using hybrid weight grey correlation analysis method to evaluate the environment safety grade of uranium waste rock heap. In Proceedings of the International Conference on Image Analysis & Signal Processing, Melbourne, Australia, 15–18 September 2013; IEEE: Piscataway, NJ, USA, 2013. [Google Scholar]
- Chi, Z.; Yang, K.; He, Y.; Yan, X.; Liang, M. Selective preference method of highway route scheme in permafrost regions of qinghai-tibet plateau based on ahp and fuzzy comprehensive evaluation. In Proceedings of the American Society for Composites-37th Technical Conference, Tucson, AZ, USA, 19–21 September 2022. [Google Scholar]
- Cao, W.; Sheng, Y.; Qi, J. Assessment of the permafrost environment in the muli mining area in qinghai province based on catastrophe progression method. J. China Coal Soc. 2008, 33, 881–886. [Google Scholar]
- Bonham-Carter, G.; Agterberg, F.; Wright, D. Weights of evidence modelling: A new approach to mapping mineral potential. Stat. Appl. Earth Sci. 1989, 89, 171–183. [Google Scholar]
- Agterberg, F.; Bonham-Carter, G.; Cheng, Q.; Wright, D. Weights of evidence modeling and weighted logistic regression for mineral potential mapping. In Computers in Geology-25 Years of Progress; Oxford University Press: Oxford, UK, 1993; pp. 13–32. [Google Scholar]
- Zhou, S.; Wang, W.; Chen, G. A combined weight of evidence and logistic regression method for susceptibility mapping of earthquake-induced landslides: A case study of the april 20, 2013 Lushan earthquake, China. Acta Geol. Sin. 2016, 90, 511–524. [Google Scholar] [CrossRef]
- Hong, H.; Ilia, I.; Tsangaratos, P.; Chen, W.; Xu, C. A hybrid fuzzy weight of evidence method in landslide susceptibility analysis on the wuyuan area, China. Geomorphology 2017, 290, 1–16. [Google Scholar] [CrossRef]
- Wang, S.; Sheng, Y.; Wu, J.; Li, J.; Chen, J. The characteristics and changing tendency of permafrost in the source regions of the Datong River, Qilian Mountains. J. Glaciol. Geocryol. 2015, 37, 27–37. [Google Scholar]
- Qi, Y.; Li, S.; Ran, Y.; Wang, H.; Luo, D. Mapping frozen ground in the qilian mountains in 2004–2019 using google earth engine cloud computing. Remote Sens. 2021, 13, 149. [Google Scholar] [CrossRef]
- Li, J.; Sheng, Y.; Chen, J.; Wu, J.; Wang, S. Variations in Permafrost Temperature and Stability of Alpine Meadows in the Source Area of the Datong River, Northeastern Qinghai-Tibet Plateau, China. Permafr. Periglac. 2014, 25, 307–319. [Google Scholar] [CrossRef]
- Wang, S.; Xu, T.; Sheng, Y.; Wang, Y.; Jia, S.; Huang, L. Analysis of Vegetation Coverage Evolution and Degradation under Coal Mine Construction in Permafrost Region. Atmosphere 2022, 13, 2035. [Google Scholar] [CrossRef]
- Wang, S. The Influence of Loose Sediments on the Developing Characteristics of Permafrost in the Source Region of Datong River. Master’s Thesis, University of Chinese Academy of Sciences, Beijing, China, 2018. [Google Scholar]
- Wang, S. The Spatial Pattern of Permafrost Environment and Engineering Influence Analysis in Source Area of Datong River. Doctor’s Thesis, University of Chinese Academy of Sciences, Beijing, China, 2018. [Google Scholar]
- Wang, S.; Sheng, Y.; Wu, J.; Li, J.; Huang, L. Based on geomorphic classification to estimate the permafrost ground ice reserves in the source area of the Datong River, Qilian Mountains. J. Glaciol. Geocryol. 2020, 42, 1186–1194. [Google Scholar] [CrossRef]
T (Contrast) | 0.253 | 0.542 | 0.842 | 1.282 | 1.645 | 1.96 | 2.326 | 2.576 |
Significance level | 60% | 70% | 80% | 90% | 95% | 97.5% | 99% | 99.5% |
Total Area (km2) | Disaster Points | Priori Probability | Average Area (km2) | Grid Precision (m) | Grid Cell Area (km2) |
---|---|---|---|---|---|
4344 | 399 | 0.00316 | 0.03 | 90 × 90 | 0.081 |
Factor | Category | Zone Area (km2) | Hazard Area (km2) | C | T (C) | ||
---|---|---|---|---|---|---|---|
DEM (m) | 3442–3702 | 618.32 | 0.42 | −1.49 | 0.11 | −1.61 | −0.67 |
3702–3851 | 1068.13 | 2.36 | −0.31 | 0.08 | −0.39 | −0.89 | |
3851–3989 | 980.91 | 3.53 | 0.18 | −0.06 | 0.23 | 0.78 | |
3989–4139 | 1021.91 | 6.88 | 0.81 | −0.44 | 1.25 | 6.05 | |
4139–4325 | 632.07 | 0.57 | −1.21 | 0.11 | −1.32 | −0.75 | |
4325–5044 | 248.50 | 0.00 | |||||
Slope (°) | 0–2 | 1211.38 | 11.27 | 1.14 | −1.41 | 2.54 | 6.15 |
2–7 | 1657.78 | 1.49 | 1.21 | 0.34 | −1.55 | −2.29 | |
7–15 | 947.55 | 0.71 | 1.39 | 0.18 | −1.57 | −1.11 | |
15–25 | 563.89 | 0.21 | 2.09 | 0.12 | −2.21 | −0.46 | |
25–35 | 183.96 | 0.07 | 2.01 | 0.04 | −2.05 | −0.15 | |
>35 | 5.18 | 0 | |||||
Slope aspect (°) | −1 | 4.93 | 0.58 | 3.78 | −0.04 | 3.83 | 1.95 |
337.5–22.5 | 598.67 | 2.35 | 0.27 | −0.05 | 0.31 | 0.72 | |
22.5–67.5 | 660.26 | 2.32 | 0.15 | −0.03 | 0.18 | 0.41 | |
67.5–112.5 | 605.07 | 1.67 | −0.09 | 0.01 | −0.10 | −0.17 | |
112.5–157.5 | 552.03 | 1.30 | −0.25 | 0.03 | −0.27 | −0.35 | |
157.5–202.5 | 694.36 | 1.26 | −0.51 | 0.07 | −0.58 | −0.72 | |
202.5–247.5 | 563.73 | 1.05 | −0.48 | 0.05 | −0.53 | −0.56 | |
247.5–292.5 | 407.44 | 1.33 | 0.08 | −0.01 | 0.09 | 0.12 | |
292.5–337.5 | 482.75 | 1.89 | 0.27 | −0.04 | 0.30 | 0.56 | |
Relief amplitude (m) | 0–52 | 1727.08 | 12.20 | 0.91 | −1.74 | 2.64 | 4.07 |
52–108 | 1077.02 | 0.52 | −1.79 | 0.22 | −2.01 | −1.04 | |
108–172 | 694.26 | 0.41 | −1.58 | 0.13 | −1.71 | −0.70 | |
172–241 | 603.32 | 0.38 | −1.53 | 0.11 | −1.63 | −0.62 | |
241–321 | 484.40 | 0.25 | −1.73 | 0.09 | −1.82 | −0.45 | |
321–571 | 209.19 | 0 | |||||
Soil type | litho soil | 60.37 | 0 | ||||
limestone soil | 88.20 | 0 | |||||
litho medow soil | 133.71 | 0.17 | −0.86 | 0.02 | −0.87 | −0.15 | |
bog soil | 391.34 | 5.67 | 1.58 | −0.44 | 2.02 | 9.29 | |
sapropel bog soil | 612.12 | 4.07 | 0.79 | −0.21 | 1.00 | 3.73 | |
peat bog soil | 546.99 | 0.73 | −0.82 | 0.07 | −0.90 | −0.65 | |
medow soil | 635.80 | 1.34 | −0.36 | 0.05 | −0.41 | −0.55 | |
peat soil | 381.86 | 0.70 | −0.51 | 0.04 | −0.54 | −0.38 | |
felty soil | 1245.50 | 0.69 | −1.70 | 0.27 | −1.97 | −1.36 | |
thin felty soil | 122.63 | 0.29 | −0.25 | 0.01 | −0.26 | −0.07 | |
moist felty soil | 3.04 | 0 | |||||
dark fety soil | 190.86 | 0.10 | −1.75 | 0.04 | −1.78 | −0.18 | |
frigid calcic soil | 74.06 | 0 | |||||
frigid frozen soil | 57.96 | 0 | |||||
catchment area | 3.04 | 0 |
Factor | Category | Zone Area (km2) | Hazard Area (km2) | C | T (C) | ||
---|---|---|---|---|---|---|---|
MAAT (°C) | <−5.51 | 239.03 | 0 | ||||
−5.51 to −4.3 | 538.55 | 0.56 | −1.07 | 0.08 | −1.16 | −0.64 | |
−4.30 to −3.51 | 785.10 | 1.28 | −0.62 | 0.09 | −0.71 | −0.90 | |
−3.51 to −2.74 | 1035.03 | 9.00 | 1.06 | − 0.81 | 1.87 | 7.83 | |
−2.74 to −1.94 | 1157.40 | 2.41 | −0.37 | 0.10 | −0.47 | −1.11 | |
>−1.94 | 796.59 | 0.51 | −1.56 | 0.16 | −1.72 | −0.87 | |
MAVT (°C) | <8.5 | 214.08 | 0.00 | ||||
8.5–9.5 | 514.61 | 0.19 | −2.10 | 0.11 | −2.21 | −0.42 | |
9.5–10.4 | 938.43 | 1.63 | −0.56 | 0.11 | −0.66 | −1.07 | |
10.4–11.2 | 1089.57 | 8.80 | 0.99 | −0.75 | 1.74 | 7.48 | |
11.2–12.1 | 1139.38 | 2.65 | −0.26 | 0.07 | −0.34 | −0.86 | |
>12.1 | 655.68 | 0.48 | −1.42 | 0.12 | −1.54 | −0.74 |
Factor | Category | Zone Area (km2) | Hazard Area (km2) | C | T (C) | ||
---|---|---|---|---|---|---|---|
MAGT (°C) | >0.5 | 52.59 | 0 | ||||
0.5 to −0.5 | 560.04 | 0.18 | −2.22 | 0.12 | −2.33 | −0.43 | |
−0.5 to −1.5 | 1382.55 | 7.53 | 0.59 | −0.43 | 1.02 | 4.89 | |
−1.5 to −3.0 | 1602.95 | 5.33 | 0.10 | −0.06 | 0.15 | 0.69 | |
−3.0 to −5.0 | 736.84 | 0.63 | −1.27 | 0.13 | −1.40 | −0.88 | |
<−5.0 | 216.61 | 0.08 | −2.08 | 0.04 | −2.12 | −0.17 | |
ALT (m) | <1.0 | 71.38 | 0.07 | −1.15 | 0.01 | −1.16 | −0.08 |
1.0–1.5 | 784.43 | 3.55 | 0.40 | −0.11 | 0.51 | 1.71 | |
1.5–2.5 | 913.32 | 5.88 | 0.75 | −0.33 | 1.09 | 5.10 | |
2.5–3.0 | 308.67 | 0.52 | −0.60 | 0.03 | −0.63 | −0.32 | |
3.0–3.5 | 1308.72 | 2.81 | −0.35 | 0.11 | −0.46 | −1.25 | |
>3.5 | 1021.38 | 0.87 | −1.28 | 0.19 | −1.47 | −1.27 | |
Ground ice | I | 1726.80 | 9.13 | 0.55 | −0.61 | 1.15 | 4.74 |
II | 1151.49 | 3.70 | 0.05 | −0.02 | 0.06 | 0.22 | |
III | 135.11 | 0.18 | −0.81 | 0.02 | −0.83 | −0.15 | |
IV | 157.94 | 0.20 | −0.88 | 0.02 | −0.90 | −0.18 | |
V | 77.97 | 0.17 | −0.37 | 0.01 | −0.38 | −0.06 | |
VI | 505.14 | 0.25 | −1.82 | 0.10 | −1.92 | −0.48 | |
VII | 729.56 | 0.11 | −3.01 | 0.17 | −3.18 | −0.35 |
Factor Classification | Infulence Factors |
---|---|
Evaluation factors | IC, MAGT, ST, EL, ALT, MAAT, SL, UN |
Non-participating factors | SA, MAVT |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Sheng, Y.; Jia, S.; Ren, Y. Thermal Hazards Evaluation Based on Weight of Evidence Method in the Resource Area of Datong River in Qinghai-Tibetan Plateau. Atmosphere 2023, 14, 885. https://doi.org/10.3390/atmos14050885
Wang S, Sheng Y, Jia S, Ren Y. Thermal Hazards Evaluation Based on Weight of Evidence Method in the Resource Area of Datong River in Qinghai-Tibetan Plateau. Atmosphere. 2023; 14(5):885. https://doi.org/10.3390/atmos14050885
Chicago/Turabian StyleWang, Shengting, Yu Sheng, Shuming Jia, and Yongzhong Ren. 2023. "Thermal Hazards Evaluation Based on Weight of Evidence Method in the Resource Area of Datong River in Qinghai-Tibetan Plateau" Atmosphere 14, no. 5: 885. https://doi.org/10.3390/atmos14050885
APA StyleWang, S., Sheng, Y., Jia, S., & Ren, Y. (2023). Thermal Hazards Evaluation Based on Weight of Evidence Method in the Resource Area of Datong River in Qinghai-Tibetan Plateau. Atmosphere, 14(5), 885. https://doi.org/10.3390/atmos14050885