The Vertical Distributions of Aerosol Optical Characteristics Based on Lidar in Nanyang City from 2021 to 2022
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Lidar Equipment
2.3. Experimental Methodology
3. Results and Discussion
3.1. Lidar-Based Vertical Distribution of Pollution−Free Weather Aerosols in Nanyang
3.2. LIDAR-Based Vertical Distribution of Polluted Weather Aerosols
3.3. Synthesis of the Measurements
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kaufman, Y.J.; Tanré, D.; Boucher, O. A satellite view of aerosols in the climate system. Nature 2002, 419, 215–223. [Google Scholar] [CrossRef] [PubMed]
- Markku, K.; Jenni, K.; Heikki, J.; Katrianne, L.; Manninen, H.E.; Tuomo, N.; Tuukka, P.; Mikko, S.; Siegfried, S.; Pekka, R. Direct observations of atmospheric aerosol nucleation. Science 2013, 339, 943–946. [Google Scholar]
- Qiu, R.; Li, X.; Han, G.; Xiao, J.; Ma, X.; Gong, W. Monitoring drought impacts on crop productivity of the US Midwest with solar-induced fluorescence: GOSIF outperforms GOME-2 SIF and MODIS NDVI, EVI, and NIRv. Agric. For. Meteorol. 2022, 323, 109038. [Google Scholar] [CrossRef]
- Liu, B.; Ma, X.; Guo, J.; Li, H.; Jin, S.; Ma, Y.; Gong, W. Estimating hub-height wind speed based on a machine learning algorithm: Implications for wind energy assessment. Atmos. Chem. Phys. 2023, 23, 3181–3193. [Google Scholar] [CrossRef]
- Jacobson, M.Z. Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols. Nature 2001, 409, 695–697. [Google Scholar] [CrossRef] [PubMed]
- Cappa, C.D.; Onasch, T.B.; Massoli, P.; Worsnop, D.R.; Bates, T.S.; Cross, E.S.; Davidovits, P.; Hakala, J.; Hayden, K.L.; Jobson, B.T.; et al. Radiative Absorption Enhancements Due to the Mixing State of Atmospheric Black Carbon. Science 2012, 337, 1078. [Google Scholar] [CrossRef]
- Menon, S.; Hansen, J.; Nazarenko, L.; Luo, Y. Climate Effects of Black Carbon Aerosols in China and India. Science 2002, 297, 2250–2253. [Google Scholar] [CrossRef]
- Shi, T.; Han, G.; Ma, X.; Mao, H.; Chen, C.; Han, Z.; Pei, Z.; Zhang, H.; Li, S.; Gong, W. Quantifying factory-scale CO2/CH4 emission based on mobile measurements and EMISSION-PARTITION model: Cases in China. J. Environ. Res. Lett. 2023, 18, 034028. [Google Scholar] [CrossRef]
- Zhang, H.; Han, G.; Ma, X.; Chen, W.; Zhang, X.; Liu, J.; Gong, W. Spectral Energy Model-Driven Inversion of XCO2 in IPDA Lidar Remote Sensing. IEEE Trans. Geosci. Remote Sens. 2023, 61, 4100609. [Google Scholar] [CrossRef]
- Huang, R.J.; Zhang, Y.; Bozzetti, C.; Ho, K.F.; Cao, J.J.; Han, Y.; Daellenbach, K.R.; Slowik, J.G.; Platt, S.M.; Canonaco, F. High secondary aerosol contribution to particulate pollution during haze events in China. Nature 2014, 514, 218–222. [Google Scholar] [CrossRef]
- Zhang, Q.; Jiang, X.; Tong, D.; Davis, S.J.; Zhao, H.; Geng, G.; Feng, T.; Zheng, B.; Lu, Z.; Streets, D.G. Transboundary health impacts of transported global air pollution and international trade. Nature 2017, 543, 705–709. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, J.; Granmar, M. Mounting Evidence Indicts Fine-Particle Pollution. Science 2005, 307, 1858–1861. [Google Scholar] [CrossRef] [PubMed]
- Fu, Q.; Zhuang, G.; Wang, J.; Xu, C.; Huang, K.; Li, J.; Hou, B.; Lu, T.; Streets, D.G. Mechanism of formation of the heaviest pollution episode ever recorded in the Yangtze River Delta, China. Atmos. Environ. 2008, 42, 2023–2036. [Google Scholar] [CrossRef]
- Tao, M.; Chen, L.; Wang, Z.; Wang, J.; Tao, J.; Wang, X. Did the widespread haze pollution over China increase during the last decade? A satellite view from space. Environ. Res. Lett. 2016, 11, 054019. [Google Scholar] [CrossRef]
- Qin, Y.; Oduyemi, K. Atmospheric aerosol source identification and estimates of source contributions to air pollution in Dundee, UK. Atmos. Environ. 2003, 37, 1799–1809. [Google Scholar] [CrossRef]
- Ma, X.; Zhang, H.; Han, G.; Mao, F.; Xu, H.; Shi, T.; Hu, H.; Sun, T.; Gong, W. A Regional Spatiotemporal Downscaling Method for CO2 Columns. IEEE Trans. Geosci. Remote Sens. 2021, 59, 8084–8093. [Google Scholar] [CrossRef]
- Che, H.; Xia, X.; Zhu, J.; Li, Z.; Dubovik, O.; Holben, B.; Goloub, P.; Chen, H.; Estelles, V.; Cuevasagulló, E. Column aerosol optical properties and aerosol radiative forcing during a serious haze-fog month over North China Plain in 2013 based on ground-based sunphotometer measurements. Atmos. Chem. Phys. 2014, 14, 2125–2138. [Google Scholar] [CrossRef]
- Shen, X.J.; Sun, J.Y.; Zhang, X.Y.; Zhang, Y.M.; Zhang, L.; Che, H.C.; Ma, Q.L.; Yu, X.M.; Yue, Y.; Zhang, Y.W. Characterization of submicron aerosols and effect on visibility during a severe haze-fog episode in Yangtze River Delta, China. Atmos. Environ. 2015, 120, 307–316. [Google Scholar] [CrossRef]
- Zhang, M.; Ma, Y.; Gong, W.; Zhu, Z. Aerosol Optical Properties of a Haze Episode in Wuhan Based on Ground-Based and Satellite Observations. Atmosphere 2014, 5, 699–719. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, J.; Bilal, M.; Zhang, C.; Gong, W. Aerosol Optical Properties and Contribution to Differentiate Haze and Haze-Free Weather in Wuhan City. Atmosphere 2020, 11, 322. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, Y.; Zhu, W.; Rao, R. Aerosol characteristics during summer haze episodes from different source regions over the coast city of North China Plain. J. Quant. Spectrosc. Radiat. Transf. 2013, 122, 180–193. [Google Scholar] [CrossRef]
- Bourgeois, Q.; Ekman, A.M.L.; Krejci, R. Aerosol transport over the Andes from the Amazon Basin to the remote Pacific Ocean: A multiyear CALIOP assessment. J. Geophys. Res. Atmos. 2015, 120, 8411–8425. [Google Scholar] [CrossRef]
- Mishra, A.K.; Koren, I.; Rudich, Y. Effect of aerosol vertical distribution on aerosol-radiation interaction: A theoretical prospect. Heliyon 2015, 1, e00036. [Google Scholar] [CrossRef]
- Reddy, K.; Ahammed, Y.N.; Kumar, D.V.P. Effect of cloud reflection on direct aerosol radiative forcing: A modelling study based on lidar observations. Remote Sens. Lett. 2014, 5, 277–285. [Google Scholar] [CrossRef]
- Chen, C.; Song, X.; Wang, Z.; Chen, Y.; Wang, X.; Bu, Z.; Zhang, X.; Zhuang, Q.; Pan, X.; Li, H.; et al. Calibration Methods of Atmospheric Aerosol Lidar and a Case Study of Haze Process. Front. Phys. 2022, 10, 942926. [Google Scholar] [CrossRef]
- Winker, D.M.; Pelon, J.R.; Mccormick, M.P. The CALIPSO mission: Spaceborne lidar for observation of aerosols and clouds. Bull. Am. Meteorol. Soc. 2010, 91, 1211–1229. [Google Scholar] [CrossRef]
- Bangia, T.; Kumar, A.; Sagar, R.; Agarwal, P.K.; Singh, S.K. Development of Mie LIDAR system and initial cloud observations over Central Himalayan region. Sci. Res. Essays 2011, 6, 896–907. [Google Scholar]
- Mcgrath-Spangler, E.L.; Scott, D.A. Global seasonal variations of midday planetary boundary layer depth from CALIPSO space-borne LIDAR. J. Geophys. Res. Atmos. 2013, 118, 1226–1233. [Google Scholar] [CrossRef]
- Zhang, M.; Han, G.; Sun, J.; Gong, W. Two-wavelength depolarization Mie Lidar for tropospheric aerosol measurements. In Proceedings of the IGARSS 2016—2016 IEEE International Geoscience and Remote Sensing Symposium, Beijing, China, 10–15 July 2016; pp. 4051–4054. [Google Scholar]
- Huang, J.; Guo, J.; Wang, F.; Liu, Z.; Jeong, M.J.; Yu, H.; Zhang, Z. CALIPSO inferred most probable heights of global dust and smoke layers. J. Geophys. Res. Atmos. 2015, 120, 5085–5100. [Google Scholar] [CrossRef]
- Mishra, M.K.; Rajeev, K.; Thampi, B.V.; Parameswaran, K.; Nair, A. Micro pulse lidar observations of mineral dust layer in the lower troposphere over the southwest coast of Peninsular India during the Asian summer monsoon season. J. Atmos. Sol.-Terr. Phys. 2010, 72, 1251–1259. [Google Scholar] [CrossRef]
- Mishra, A.K.; Shibata, T. Climatological aspects of seasonal variation of aerosol vertical distribution over central Indo-Gangetic belt (IGB) inferred by the space-borne lidar CALIOP. Atmos. Environ. 2012, 46, 365–375. [Google Scholar] [CrossRef]
- Niranjan, K.; Madhavan, B.L.; Sreekanth, V. Micro pulse lidar observation of high altitude aerosol layers at Visakhapatnam located on the east coast of India. Geophys. Res. Lett. 2007, 34, 340–354. [Google Scholar] [CrossRef]
- Solanki, R.; Singh, N. LiDAR observations of the vertical distribution of aerosols in free troposphere: Comparison with CALIPSO level-2 data over the central Himalayas. Atmos. Environ. 2014, 99, 227–238. [Google Scholar] [CrossRef]
- Ramanathan, V.; Chung, C.; Kim, D.; Bettge, T.; Buja, L.; Kiehl, J.T.; Washington, W.M.; Fu, Q.; Sikka, D.R.; Wild, M. Atmospheric Brown Clouds: Impacts on South Asian Climate and Hydrological Cycle. Proc. Natl. Acad. Sci. USA 2005, 102, 5326–5333. [Google Scholar] [CrossRef]
- Nishizawa, T.; Sugimoto, N.; Matsui, I.; Shimizu, A.; Higurashi, A.; Jin, Y. Asian Dust and Aerosol Lidar Observation Network (AD-Net): Strategy and Progress. Presented at the International Laser Radar Conference 2015, New York, NY, USA, 5–10 July 2015. [Google Scholar]
- Wang, L.; Gong, W.; Ma, Y.; Hu, B.; Wang, W.; Zhang, M. Analysis of ultraviolet radiation in Central China from observation andestimation. Energy 2013, 59, 764–774. [Google Scholar] [CrossRef]
- Bucci, S.; Cagnazzo, C.; Cairo, F.; Liberto, L.D.; Fierli, F. Aerosol variability and atmospheric transport in the Himalayan region from CALIOP 2007-2010 observations. Atmos. Chem. Phys. Discuss. 2013, 13, 15271–15299. [Google Scholar] [CrossRef]
- Sicard, M.; Molero, F.; Guerrero-Rascado, J.L.; Pedros, R.; Exposito, F.J.; Cordoba-Jabonero, C.; Bolarin, J.M.; Comeron, A.; Rocadenbosch, F.; Pujadas, M. Aerosol Lidar Intercomparison in the Framework of SPALINET—The Spanish Lidar Network: Methodology and Results. IEEE Trans. Geosci. Remote Sens. 2009, 47, 3547–3559. [Google Scholar] [CrossRef]
- Gasmi, K. Measurements of profiles of aerosol/cloud in the lower atmosphere using a lidar system. Presented at the SPIE Remote Sensing 2016, Scotland, UK, 26–29 September 2016. [Google Scholar]
- Liu, C.; Chen, Z.; Lv, L.; Liu, W.; Fan, G.; Zhang, T.; Liu, Y.; Dong, Y. Atmospheric Aerosols Detection Research with a Dual Field of View Lidar. J. Spectrosc. 2015, 5, 459460. [Google Scholar]
- Li, B.; Chen, S.; Zhang, Y.; Chen, H.; Guo, P. Fluorescent aerosol observation in the lower atmosphere with an integrated fluorescence-Mie lidar. J. Quant. Spectrosc. Radiat. Transf. 2019, 227, 211–218. [Google Scholar] [CrossRef]
- Shukla, K.K.; Phanikumar, D.V.; Kumar, K.N.; Kumar, A.; Naja, M.; Sharma, S.; Attada, R. Micro-Pulse Lidar observations of elevated aerosol layers over the Himalayan region—ScienceDirect. J. Atmos. Sol.-Terr. Phys. 2021, 213, 105526. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, S.; Xu, D.; Liu, D.; Wang, J.; Zhang, S.; Xue, R.; Tang, G.; Zhou, B. Comparative observation of aerosol vertical profiles in urban and suburban areas: Impacts of local and regional transport. Sci. Total Environ. 2022, 805, 150363. [Google Scholar] [CrossRef]
- Sugimoto, N.; Shimizu, A.; Nishizawa, T.; Matsui, I.; Jin, Y.; Khatri, P.; Irie, H.; Takamura, T.; Aoki, K.; Thana, B. Aerosol characteristics in Phimai, Thailand determined by continuous observation with a polarization sensitive Mie–Raman lidar and a sky radiometer. Environ. Res. Lett. 2015, 10, 065003. [Google Scholar] [CrossRef]
- Rosati, B.; Herrmann, E.; Bucci, S.; Fierli, F.; Cairo, F.; Gysel, M.; Tillmann, R.; Gr, J.; Gobbi, G.P.; Di Liberto, L.; et al. Studying the vertical aerosol extinction coefficient by comparing in situ airborne data and elastic backscatter lidar. Atmos. Chem. Phys. 2016, 16, 4539–4554. [Google Scholar] [CrossRef]
- Navas-Guzmán, F.; Martucci, G.; Coen, M.C.; Granados-Muoz, M.J.; Haefele, A. Characterization of aerosol hygroscopicity using Raman lidar measurements at the EARLINET station of Payerne. Atmos. Chem. Phys. 2019, 19, 11651–11668. [Google Scholar] [CrossRef]
- Volker, M.; Volker, F.; Aldo, A.; Ioan, B.; Dimitris, B.; Jens, B.S.; Anatoly, C.; Georgius, C.; Adolfo, C.; Arnaud, D. Aerosol lidar intercomparison in the framework of the EARLINET project. 1. Instruments. Appl. Opt. 2004, 43, 961–976. [Google Scholar]
- Zhang, M.; Wu, D.; Su, B.; Bilal, M.; Li, B.L. Spatio-Temporal Characteristics of PM 2.5, PM 10, and AOD over Canal Head Taocha Station, Henan Province. Remote Sens. 2020, 12, 3432. [Google Scholar] [CrossRef]
- Collis, R.T.H. Lidar: A new atmospheric probe. Q. J. R. Meteorol. Soc. 1966, 92, 220–230. [Google Scholar] [CrossRef]
- Klett, J.D. Stable analytical inversion solution for processing lidar returns. Appl. Opt. 1981, 20, 211–220. [Google Scholar] [CrossRef]
- Fernald, F.G. Analysis of atmospheric lidar observations: Some comments. Appl. Opt. 1984, 23, 652–653. [Google Scholar] [CrossRef]
- Omar, A.H.; Winker, D.M.; Kittaka, C.; Vaughan, M.A.; Liu, Z.; Hu, Y.; Trepte, C.R.; Rogers, R.R.; Ferrare, R.A.; Lee, K.P. The CALIPSO Automated Aerosol Classification and Lidar Ratio Selection Algorithm. J. Atmos. Ocean. Technol. 2009, 26, 1994–2014. [Google Scholar] [CrossRef]
- Kim, M.H.; Omar, A.H.; Tackett, J.L.; Vaughan, M.A.; Magill, B.E. The CALIPSO Version 4 Automated Aerosol Classification and Lidar Ratio Selection Algorithm. Atmos. Meas. Tech. 2018, 11, 6107–6135. [Google Scholar] [CrossRef] [PubMed]
- Tao, Z.; Liu, Z.; Dong, W.; Mccormick, M.P.; Jia, S. Determination of aerosol extinction-to-backscatter ratios from simultaneous ground-based and spaceborne lidar measurements. Opt. Lett. 2008, 33, 2986–2988. [Google Scholar] [CrossRef] [PubMed]
- Müller, D.; Ansmann, A.; Mattis, I.; Tesche, M.; Wandinger, U.; Althausen, D.; Pisani, G. Aerosol-type-dependent lidar ratios observed with Raman lidar. J. Geophys. Res. 2007, 112, D16202. [Google Scholar] [CrossRef]
- Chen, Y.; Schleicher, N.; Fricker, M.; Cen, K.; Liu, X.L.; Kaminski, U.; Yu, Y.; Wu, X.F.; Norra, S.J.E.P. Long-term variation of black carbon and PM2.5 in Beijing, China with respect to meteorological conditions and governmental measures. Environ. Pollut. 2016, 212, 269–278. [Google Scholar] [CrossRef]
Laser emission systems | |
Lasers | Quantel CFR BIG SKY Q-switched Nd: YAG |
Wavelength | 532 nm, 355 nm |
Pulse energy | 130 mJ@532 nm, 60 mJ@355 nm |
Maximum heavy frequency | 20 Hz |
Pulse width | 10 ns@532 nm, 9 ns@355 nm |
angle of divergence | 0.25 mrad |
Optical reception systems | |
Model | MEADE Schmidt-Cassegrain (MEADE LX200/MEADE LX850) |
Focal length | 2000 mm/4064 mm |
Calibre | 203 mm (8 in)/355 mm (14 in) |
Field of view | 1.5 mrad (Adjustable) |
Filter bandwidth | 3 nm |
Signal acquisition systems | |
High resolution | 7.68 m |
Time resolution | Adjustable (common 60 s) |
Data processing | Automated, Manual |
Sampling rate | 50 ns |
R (km) | Mean (km−1) | S.D. | P (km−1) | ||||
---|---|---|---|---|---|---|---|
10% | 25% | 50% | 75% | 90% | |||
0 | 0.0001 | 0.0001 | 0.0000 | 0.0001 | 0.0001 | 0.0001 | 0.0001 |
1 | 0.0221 | 0.0068 | 0.0138 | 0.0177 | 0.0222 | 0.0264 | 0.0307 |
2 | 0.0234 | 0.0052 | 0.0175 | 0.0198 | 0.0225 | 0.0268 | 0.0302 |
3 | 0.0114 | 0.0033 | 0.0083 | 0.0093 | 0.0107 | 0.0126 | 0.0147 |
4 | 0.0064 | 0.0021 | 0.0045 | 0.0051 | 0.0060 | 0.0072 | 0.0085 |
5 | 0.0043 | 0.0018 | 0.0028 | 0.0033 | 0.0040 | 0.0049 | 0.0058 |
Time | Mean | SD | P | ||||
---|---|---|---|---|---|---|---|
10% | 25% | 50% | 75% | 90% | |||
19:00 | 0.076 | 0.023 | 0.063 | 0.063 | 0.064 | 0.084 | 0.095 |
20:00 | 0.072 | 0.013 | 0.056 | 0.063 | 0.074 | 0.081 | 0.086 |
21:00 | 0.071 | 0.025 | 0.044 | 0.055 | 0.067 | 0.086 | 0.105 |
22:00 | 0.061 | 0.015 | 0.048 | 0.051 | 0.059 | 0.062 | 0.075 |
23:00 | 0.051 | 0.015 | 0.032 | 0.044 | 0.049 | 0.062 | 0.069 |
00:00 | 0.052 | 0.015 | 0.034 | 0.043 | 0.056 | 0.062 | 0.065 |
01:00 | 0.054 | 0.016 | 0.039 | 0.047 | 0.056 | 0.064 | 0.069 |
02:00 | 0.054 | 0.019 | 0.035 | 0.050 | 0.054 | 0.064 | 0.073 |
03:00 | 0.057 | 0.023 | 0.030 | 0.046 | 0.059 | 0.073 | 0.082 |
04:00 | 0.055 | 0.023 | 0.025 | 0.040 | 0.059 | 0.067 | 0.079 |
05:00 | 0.062 | 0.015 | 0.050 | 0.055 | 0.063 | 0.070 | 0.074 |
R (km) | Mean | SD | P | ||||
---|---|---|---|---|---|---|---|
10% | 25% | 50% | 75% | 90% | |||
0 | 0.0330 | 0.0208 | 0.0215 | 0.0257 | 0.0325 | 0.0381 | 0.0438 |
1 | 0.1911 | 0.0422 | 0.1607 | 0.1755 | 0.1923 | 0.2122 | 0.2281 |
2 | 0.1349 | 0.0413 | 0.1040 | 0.1177 | 0.1335 | 0.1551 | 0.1723 |
3 | 0.0955 | 0.0352 | 0.0663 | 0.0784 | 0.0941 | 0.1114 | 0.1317 |
4 | 0.0622 | 0.0285 | 0.0374 | 0.0451 | 0.0592 | 0.0755 | 0.0908 |
5 | 0.0427 | 0.0202 | 0.0244 | 0.0302 | 0.0401 | 0.0529 | 0.0643 |
Time | Mean | SD | P | ||||
---|---|---|---|---|---|---|---|
10% | 25% | 50% | 75% | 90% | |||
19:00 | 0.503 | 0.188 | 0.275 | 0.382 | 0.581 | 0.628 | 0.679 |
20:00 | 0.499 | 0.132 | 0.337 | 0.437 | 0.518 | 0.580 | 0.640 |
21:00 | 0.471 | 0.134 | 0.306 | 0.401 | 0.449 | 0.566 | 0.637 |
22:00 | 0.446 | 0.133 | 0.266 | 0.356 | 0.470 | 0.530 | 0.609 |
23:00 | 0.452 | 0.117 | 0.312 | 0.401 | 0.457 | 0.520 | 0.580 |
00:00 | 0.463 | 0.102 | 0.353 | 0.402 | 0.472 | 0.532 | 0.578 |
01:00 | 0.471 | 0.089 | 0.369 | 0.398 | 0.454 | 0.523 | 0.591 |
02:00 | 0.439 | 0.109 | 0.335 | 0.378 | 0.453 | 0.482 | 0.573 |
03:00 | 0.431 | 0.125 | 0.260 | 0.379 | 0.450 | 0.500 | 0.606 |
04:00 | 0.449 | 0.134 | 0.246 | 0.380 | 0.467 | 0.520 | 0.599 |
05:00 | 0.458 | 0.142 | 0.262 | 0.351 | 0.501 | 0.544 | 0.580 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Guo, S.; Wang, Y.; Chen, S.; Chen, J.; Chen, M.; Bilal, M. The Vertical Distributions of Aerosol Optical Characteristics Based on Lidar in Nanyang City from 2021 to 2022. Atmosphere 2023, 14, 894. https://doi.org/10.3390/atmos14050894
Zhang M, Guo S, Wang Y, Chen S, Chen J, Chen M, Bilal M. The Vertical Distributions of Aerosol Optical Characteristics Based on Lidar in Nanyang City from 2021 to 2022. Atmosphere. 2023; 14(5):894. https://doi.org/10.3390/atmos14050894
Chicago/Turabian StyleZhang, Miao, Si Guo, Yunuo Wang, Shiyong Chen, Jinhan Chen, Mingchun Chen, and Muhammad Bilal. 2023. "The Vertical Distributions of Aerosol Optical Characteristics Based on Lidar in Nanyang City from 2021 to 2022" Atmosphere 14, no. 5: 894. https://doi.org/10.3390/atmos14050894
APA StyleZhang, M., Guo, S., Wang, Y., Chen, S., Chen, J., Chen, M., & Bilal, M. (2023). The Vertical Distributions of Aerosol Optical Characteristics Based on Lidar in Nanyang City from 2021 to 2022. Atmosphere, 14(5), 894. https://doi.org/10.3390/atmos14050894