Evaluation of CMIP6 HighResMIP Models and ERA5 Reanalysis in Simulating Summer Precipitation over the Tibetan Plateau
Abstract
:1. Introduction
2. Materials and Methods
2.1. Models
2.2. Datasets
- The CMPA is a high-quality precipitation dataset with a temporal and horizontal resolution of hourly and 0.1 [40] and is available from 2008 to the present. The merging process was as follows: Firstly, hourly precipitation from more than 30,000 automatic meteorological stations (national and regional stations) across China were resampled into 0.1 × 0.1 grids. Then, the CMORPH (Climate Prediction Center’s morphing technique estimates) satellite precipitation estimates [41] were resampled to create gridded precipitation products of hourly and 0.1 × 0.1 resolutions. Thirdly, the probability density function matching method was adopted to eliminate any prevailing systematic error present in the CMORPH data, utilizing the hourly gauge observations available. Finally, the adjusted CMORPH data were merged with the gauge data to generate CMPA hourly products by using the Optimal Interpolation method.
- Version 6 IMERG (the Integrated Multi-satellitE Retrievals for GPM) is the newest estimate of rain and snow from the Global Precipitation Measurement (GPM) mission [42,43]. It merges the precipitation estimates from the Tropical Rainfall Measuring Mission (TRMM) and GPM satellites, providing a longer and more valuable record for researchers and application developers. As of now, the dates covered by the IMERG dataset available are from June 2000 to September 2021. The spatial and temporal resolution of the IMERG data we used in the study were 30 min and 0.1× 0.1, respectively.
- The ERA5 is the fifth generation reanalysis from ECMWF and is produced by the Copernicus Climate Change Service (C3S) at ECMWF. The data for the 1979–2018 period were released in March 2019. The ERA5 was generated utilizing 4D-Var data assimilation and model forecasts in CY41R2 of the ECMWF Integrated Forecast System (IFS) [44]. The 4D-Var data assimilation uses 12-h windows from 9 to 21 UTC and 21 to 9 UTC (the following day). The data resolution used in this study was hourly and 0.25× 0.25.
- GTOPO30 is a global digital elevation model (DEM) consisting of topographic information from several raster and vector sources, with a horizontal grid spacing of 30 arc seconds (approximately 1 km). It was completed in 1996 after three years of collaborative effort by organizations such as NASA, the United Nations Environment Programme/Global Resource Information Database (UNEP/GRID), the U.S. Agency for International Development (USAID), and others.
2.3. Methodology
3. Results
3.1. Spatial Pattern of the Precipitation Characteristics
3.2. Elevation Dependence of Precipitation Characteristics
4. Discussion
5. Conclusions
- The horizontal resolution of the HighResMIP MME-HR is comparable to that of the ERA5, and both show a comparable ability in simulating the precipitation in the TP. The precipitation amount and frequency derived from the MME-HR are slightly better than that of the ERA5, indicated by a higher spatial correlation and a closer standard deviation with the CMPA. The MME-HR overestimates the occurrence of single-peak grids in the majority of the TP but still manages to simulate the spatial distribution of the single-peak grids and diurnal phase better than the ERA5. Despite its diurnal peak occurring earlier than the CMPA, the difference between the MME-HR and the CMPA’s diurnal peak is smaller than that between the ERA5 and CMPA. In terms of the elevation dependence of the precipitation, the MME-HR shows a smaller deviation in the precipitation amount at various altitudes compared to the CMPA. The ERA5 incorrectly simulates the relationship between the diurnal phase and altitude. In the CMPA and IMERG, the diurnal phase of precipitation amount advances with the increasing elevation from early morning to evening, whereas in the ERA5, it delays from early morning to afternoon. However, the ERA5 can better simulate the precipitation frequency–intensity structure at different altitudes.
- The simulation effect of CMIP6 HighResMIP’s precipitation in the TP does not necessarily improve with the increase in the model’s horizontal resolution, even though the MME-HR shows the best simulation effects among the three MMEs. On the one hand, increasing the resolution enhances the HighResMIP model’s ability to simulate the diurnal variation in precipitation. With the increase in horizontal resolution, the issue of the earlier diurnal peak in the HighResMIP models at highlands is alleviated, and the elevation dependence of the precipitation’s diurnal variation is better characterized. On the other hand, the improvement in the resolution has little impact on the simulation effect of precipitation intensity, but a lower model resolution restricts the generation of heavy precipitation in high-altitude areas.
- The ERA5 and different resolutions of the HighResMIP MMEs share common precipitation biases in the TP. All of them overestimate the precipitation amount and frequency while underestimating the intensity. Secondly, they cannot accurately simulate the diurnal variations in the precipitation in the elevated area. In addition, they have the issue of overestimating the frequency of the weak precipitation and underestimating that of the heavy precipitation. These biases are related to the altitude: the interval with the greatest diurnal phase bias is in the altitude range of 1000–3000 m, which is mostly located in the periphery of the TP with a large topographic relief; the deviation in the precipitation frequency–intensity structure increases with increasing altitude.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Qiu, J. China: The third pole. Nature 2008, 454, 393–397. [Google Scholar] [CrossRef] [Green Version]
- Ye, D.; Gao, Y. Meteorology of the Qinghai-Xizang (Tibet) Plateau; Science Press: Beijing, China, 1979. (In Chinese) [Google Scholar]
- Anders, A.M.; Roe, G.H.; Hallet, B.; Montgomery, D.R.; Finnegan, N.J.; Putkonen, J. Spatial patterns of precipitation and topography in the Himalaya. Spec. Pap.-Geol. Soc. Am. 2006, 398, 39–53. [Google Scholar]
- Kuo, H.L.; Qian, Y. Influence of the Tibetian Plateau on cumulative and diurnal changes of weather and climate in summer. Mon. Weather Rev. 1981, 109, 2337–2356. [Google Scholar] [CrossRef]
- Fujinami, H.; Nomura, S.; Yasunari, T. Characteristics of diurnal variations in convection and precipitation over the southern Tibetan Plateau during summer. Sola 2005, 1, 49–52. [Google Scholar] [CrossRef] [Green Version]
- Ueno, K.; Fujii, H.; Yamada, H.; Liu, L. Weak and frequent monsoon precipitation over the Tibetan Plateau. J. Meteorol. Soc. Jpn. Ser. II 2001, 79, 419–434. [Google Scholar] [CrossRef] [Green Version]
- Yu, R.; Zhou, T.; Xiong, A.; Zhu, Y.; Li, J. Diurnal variations of summer precipitation over contiguous China. Geophys. Res. Lett. 2007, 34, 223–234. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Bai, A.; Liu, C. Diurnal variations of summertime precipitation over the Tibetan Plateau in relation to orographically-induced regional circulations. Environ. Res. Lett. 2009, 4, 045203. [Google Scholar] [CrossRef]
- Chen, H.; Yuan, W.; Li, J.; Yu, R. A possible cause for different diurnal variations of warm season rainfall as shown in station observations and TRMM 3B42 data over the southeastern Tibetan Plateau. Adv. Atmos. Sci. 2012, 29, 193–200. [Google Scholar] [CrossRef]
- Li, J. Hourly station-based precipitation characteristics over the Tibetan Plateau. Int. J. Climatol. 2018, 38, 1560–1570. [Google Scholar] [CrossRef]
- Chen, Q.; Ge, F.; Jin, Z.; Lin, Z. How well do the CMIP6 HighResMIP models simulate precipitation over the Tibetan Plateau? Atmos. Res. 2022, 279, 106393. [Google Scholar] [CrossRef]
- Reinman, S.L. Intergovernmental panel on climate change (IPCC). Ref. Rev. 2012, 26, 41–42. [Google Scholar] [CrossRef]
- Meehl, G.A.; Boer, G.J.; Covey, C.; Latif, M.; Stouffer, R.J. The coupled model intercomparison project (CMIP). Bull. Am. Meteorol. Soc. 2000, 81, 313–318. [Google Scholar] [CrossRef]
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef] [Green Version]
- Xin, X.; Wu, T.; Zhang, J.; Yao, J.; Fang, Y. Comparison of CMIP6 and CMIP5 simulations of precipitation in China and the East Asian summer monsoon. Int. J. Climatol. 2020, 40, 6423–6440. [Google Scholar] [CrossRef] [Green Version]
- Gusain, A.; Ghosh, S.; Karmakar, S. Added value of CMIP6 over CMIP5 models in simulating Indian summer monsoon rainfall. Atmos. Res. 2020, 232, 104680. [Google Scholar] [CrossRef]
- Ayugi, B.; Zhihong, J.; Zhu, H.; Ngoma, H.; Babaousmail, H.; Rizwan, K.; Dike, V. Comparison of CMIP6 and CMIP5 models in simulating mean and extreme precipitation over East Africa. Int. J. Climatol. 2021, 41, 6474–6496. [Google Scholar] [CrossRef]
- Luo, N.; Guo, Y.; Chou, J.; Gao, Z. Added value of CMIP6 models over CMIP5 models in simulating the climatological precipitation extremes in China. Int. J. Climatol. 2022, 42, 1148–1164. [Google Scholar] [CrossRef]
- Lee, Y.C.; Wang, Y.C. Evaluating Diurnal Rainfall Signal Performance from CMIP5 to CMIP6. J. Clim. 2021, 34, 7607–7623. [Google Scholar] [CrossRef]
- Gulizia, C.; Camilloni, I. Comparative analysis of the ability of a set of CMIP3 and CMIP5 global climate models to represent precipitation in South America. Int. J. Climatol. 2015, 35, 583–595. [Google Scholar] [CrossRef]
- Su, F.; Duan, X.; Chen, D.; Hao, Z.; Cuo, L. Evaluation of the global climate models in the CMIP5 over the Tibetan Plateau. J. Clim. 2013, 26, 3187–3208. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Frauenfeld, O.W. A comprehensive evaluation of precipitation simulations over China based on CMIP5 multimodel ensemble projections. J. Geophys. Res. Atmos. 2014, 119, 5767–5786. [Google Scholar] [CrossRef]
- Zhu, H.; Jiang, Z.; Li, J.; Li, W.; Sun, C.; Li, L. Does CMIP6 inspire more confidence in simulating climate extremes over China? Adv. Atmos. Sci. 2020, 37, 1119–1132. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, J. Impact of moisture divergence on systematic errors in precipitation around the Tibetan Plateau in a general circulation model. Clim. Dyn. 2016, 47, 2923–2934. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.J.; Wang, B.; Ding, Q. The global monsoon variability simulated by CMIP3 coupled climate models. J. Clim. 2008, 21, 5271–5294. [Google Scholar] [CrossRef]
- Haarsma, R.J.; Roberts, M.J.; Vidale, P.L.; Senior, C.A.; Bellucci, A.; Bao, Q.; Chang, P.; Corti, S.; Fučkar, N.S.; Guemas, V.; et al. High resolution model intercomparison project (HighResMIP v1. 0) for CMIP6. Geosci. Model Dev. 2016, 9, 4185–4208. [Google Scholar] [CrossRef] [Green Version]
- Xin, X.; Wu, T.; Jie, W.; Zhang, J. Impact of higher resolution on precipitation over China in CMIP6 HighResMIP models. Atmosphere 2021, 12, 762. [Google Scholar] [CrossRef]
- Haarsma, R.; Acosta, M.; Bakhshi, R.; Bretonnière, P.A.; Caron, L.P.; Castrillo, M.; Corti, S.; Davini, P.; Exarchou, E.; Fabiano, F.; et al. HighResMIP versions of EC-Earth: EC-Earth3P and EC-Earth3P-HR–description, model computational performance and basic validation. Geosci. Model Dev. 2020, 13, 3507–3527. [Google Scholar] [CrossRef]
- Bao, Q.; Liu, Y.; Wu, G.; He, B.; Li, J.; Wang, L.; Wu, X.; Chen, K.; Wang, X.; Yang, J.; et al. CAS FGOALS-f3-H and CAS FGOALS-f3-L outputs for the high-resolution model intercomparison project simulation of CMIP6. Atmos. Ocean. Sci. Lett. 2020, 13, 576–581. [Google Scholar] [CrossRef]
- Roberts, M.J.; Baker, A.J.; Blockley, E.W.; Calvert, D.; Coward, A.C.; Hewitt, H.T.; Jackson, L.C.; Kuhlbrodt, T.; Mathiot, P.; Roberts, C.D.; et al. Description of the resolution hierarchy of the global coupled HadGEM3-GC3.1 model as used in CMIP6 HighResMIP experiments. Geosci. Model Dev. 2019, 12, 4999–5028. [Google Scholar] [CrossRef] [Green Version]
- Mizuta, R.; Yoshimura, H.; Murakami, H.; Matsueda, M.; Endo, H.; Ose, T.; Kamiguchi, K.; Hosaka, M.; Sugi, M.; Yukimoto, S.; et al. Climate Simulations Using MRI-AGCM3.2 with 20-km Grid. J. Meteorol. Soc. Jpn. 2012, 90, 233–258. [Google Scholar] [CrossRef] [Green Version]
- Kodama, C.; Ohno, T.; Seiki, T.; Yashiro, H.; Noda, A.T.; Nakano, M.; Yamada, Y.; Roh, W.; Satoh, M.; Nitta, T.; et al. The Nonhydrostatic ICosahedral Atmospheric Model for CMIP6 HighResMIP simulations (NICAM16-S): Experimental design, model description, and impacts of model updates. Geosci. Model Dev. 2021, 14, 795–820. [Google Scholar] [CrossRef]
- Wu, T.; Lu, Y.; Fang, Y.; Xin, X.; Li, L.Z.X.; Li, W.; Jie, W.; Zhang, J.; Liu, Y.; Zhang, L.; et al. The Beijing Climate Center Climate System Model (BCC-CSM): The main progress from CMIP5 to CMIP6. Geosci. Model Dev. 2019, 12, 1573–1600. [Google Scholar] [CrossRef] [Green Version]
- Rong, X.; Li, J.; Chen, H.; Su, J.; Hua, L.; Zhang, Z.; Xin, Y. The CMIP6 Historical Simulation Datasets Produced by the Climate System Model CAMS-CSM. Adv. Atmos. Sci. 2020, 38, 285–295. [Google Scholar] [CrossRef]
- Voldoire, A.; Saint-Martin, D.; Sénési, S.; Decharme, B.; Alias, A.; Chevallier, M.; Colin, J.; Guérémy, J.; Michou, M.; Moine, M.P.; et al. Evaluation of CMIP6 DECK Experiments With CNRM-CM6-1. J. Adv. Model. Earth Syst. 2019, 11, 2177–2213. [Google Scholar] [CrossRef] [Green Version]
- Zhao, M.; Golaz, J.C.; Held, I.; Guo, H.; Balaji, V.; Benson, R.; Chen, J.H.; Chen, X.; Donner, L.; Dunne, J.; et al. The GFDL global atmosphere and land model AM4. 0/LM4. 0: 2. Model description, sensitivity studies, and tuning strategies. J. Adv. Model. Earth Syst. 2018, 10, 735–769. [Google Scholar] [CrossRef] [Green Version]
- Harris, L.M.; Lin, S.; Tu, C.Y. High-Resolution Climate Simulations Using GFDL HiRAM with a Stretched Global Grid. J. Clim. 2016, 29, 4293–4314. [Google Scholar] [CrossRef]
- Boucher, O.; Servonnat, J.; Albright, A.L.; Aumont, O.; Balkanski, Y.; Bastrikov, V.; Bekki, S.; Bonnet, R.; Bony, S.; Bopp, L.; et al. Presentation and Evaluation of the IPSL-CM6A-LR Climate Model. J. Adv. Model. Earth Syst. 2020, 12, e2019MS002010. [Google Scholar] [CrossRef]
- He, B.; Bao, Q.; Wang, X.; Zhou, L.; Wu, X.; Liu, Y.; Wu, G.; Chen, K.; He, S.; Hu, W.; et al. CAS FGOALS-f3-L Model Datasets for CMIP6 Historical Atmospheric Model Intercomparison Project Simulation. Adv. Atmos. Sci. 2019, 36, 771–778. [Google Scholar] [CrossRef] [Green Version]
- Shen, Y.; Zhao, P.; Pan, Y.; Yu, J. A high spatiotemporal gauge-satellite merged precipitation analysis over China. J. Geophys. Res. Atmos. 2014, 119, 3063–3075. [Google Scholar] [CrossRef]
- Joyce, R.J.; Janowiak, J.E.; Arkin, P.A.; Xie, P. CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeorol. 2004, 5, 487–503. [Google Scholar] [CrossRef]
- Hou, A.Y.; Skofronick-Jackson, G.; Kummerow, C.D.; Shepherd, J.M. Global precipitation measurement. In Precipitation: Advances in Measurement, Estimation and Prediction; Springer: Berlin/Heidelberg, Germany, 2008; pp. 131–169. [Google Scholar]
- Hou, A.Y.; Kakar, R.K.; Neeck, S.; Azarbarzin, A.A.; Kummerow, C.D.; Kojima, M.; Oki, R.; Nakamura, K.; Iguchi, T. The global precipitation measurement mission. Bull. Am. Meteorol. Soc. 2014, 95, 701–722. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Trenberth, K.E.; Dai, A.; Rasmussen, R.M.; Parsons, D.B. The changing character of precipitation. Bull. Am. Meteorol. Soc. 2003, 84, 1205–1218. [Google Scholar] [CrossRef]
- McGarry, M.M.; Reed, R.J. Diurnal variations in convective activity and precipitation during phases II and III of GATE. Mon. Weather Rev. 1978, 106, 101–113. [Google Scholar] [CrossRef]
- Oki, T.; Musiake, K. Seasonal change of the diurnal cycle of precipitation over Japan and Malaysia. J. Appl. Meteorol. Climatol. 1994, 33, 1445–1463. [Google Scholar] [CrossRef]
- Chen, T.; Li, J.; Zhang, Y.; Chen, H.; Li, P.; Che, H. Evaluation of Hourly Precipitation Characteristics from a Global Reanalysis and Variable-Resolution Global Model over the Tibetan Plateau by Using a Satellite-Gauge Merged Rainfall Product. Remote Sens. 2023, 15, 1013. [Google Scholar] [CrossRef]
- Basist, A.; Bell, G.D.; Meentemeyer, V. Statistical relationships between topography and precipitation patterns. J. Clim. 1994, 7, 1305–1315. [Google Scholar] [CrossRef]
- Yuan, W.; Xu, H.; Yu, R.; Li, J.; Zhang, Y.; He, N. Regimes of rainfall preceding regional rainfall events over the plain of Beijing City. Int. J. Climatol. 2018, 38, 4979–4989. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Yang, K.; Ouyang, L.; Wang, Y.; Jiang, Y.; Li, X.; Chen, D.; Prein, A. Added value of kilometer-scale modeling over the third pole region: A CORDEX-CPTP pilot study. Clim. Dyn. 2021, 57, 1673–1687. [Google Scholar] [CrossRef]
- Li, J.; Yu, R.; Yuan, W.; Chen, H.; Sun, W.; Zhang, Y. Precipitation over East Asia simulated by NCAR CAM5 at different horizontal resolutions. J. Adv. Model. Earth Syst. 2015, 7, 774–790. [Google Scholar] [CrossRef]
- Chen, M.; Dickinson, R.E.; Zeng, X.; Hahmann, A.N. Comparison of precipitation observed over the continental United States to that simulated by a climate model. J. Clim. 1996, 9, 2233–2249. [Google Scholar] [CrossRef]
- Dai, A.; Trenberth, K.E. The diurnal cycle and its depiction in the Community Climate System Model. J. Clim. 2004, 17, 930–951. [Google Scholar] [CrossRef]
- Roe, G.H.; Montgomery, D.R.; Hallet, B. Orographic precipitation and the relief of mountain ranges. J. Geophys. Res. Solid Earth 2003, 108. [Google Scholar] [CrossRef]
Label (Regridded Resolution) | Model | Institute | Resolution (Lat × Lon) |
---|---|---|---|
High Resolution 0.27 × 0.27) | EC-Earth3P-HR | EC-Earth Consortium, Europe [28] | 0.35 × 0.35 |
FGOALS-f30H | Chinese Academy of Sciences [29] | 0.25 × 0.25 | |
HadGEM3-GC31-HM | Met Office Hadley Centre, UK [30] | 0.23 × 0.23 | |
MRI-AGCM3-2-S | Meteorological Research Institute, Japan [31] | 0.19 × 0.19 | |
NICAM16-8S | JAMSTEC-AORI-R-CCS, Japan [32] | 0.28 × 0.28 | |
Middle Resolution (0.56 × 0.56) | BCC-CSM2-HR | Beijing Climate Center, China [33] | 0.45 × 0.45 |
CAMS-CSM1-0 | Chinese Academy of Meteorological Sciences, China [34] | 0.47 × 0.47 | |
CNRM-CM6-1-HR | National Centre for Meteorological Research, France [35] | 0.50 × 0.50 | |
EC-Earth3P | EC-Earth Consortium, Europe [28] | 0.70 × 0.70 | |
GFDL-CM4C192 | NOAA, Geophysical Fluid Dynamics Laboratory, USA [36] | 0.50 × 0.63 | |
HadGEM3-GC31-MM | Met Office Hadley Centre, UK [30] | 0.56 × 0.83 | |
HiRAM-SIT-LR | Research Center for Environmental Changes, Taiwan [37] | 0.50 × 0.50 | |
IPSL-CM6A-ATM-HR | L’Institut Pierre-Simon Laplace, France [38] | 0.50 × 0.70 | |
MRI-AGCM3-2-H | Meteorological Research Institute, Japan [31] | 0.56 × 0.56 | |
NICAM16-7S | JAMSTEC-AORI-R-CCS, Japan [32] | 0.56 × 0.56 | |
Low Resolution (1.50 × 1.50) | CNRM-CM6-1 | National Centre for Meteorological Research, France [35] | 1.40 × 1.40 |
FGOALS-f3-L | Chinese Academy of Sciences [39] | 1.00 × 1.25 | |
HadGEM3-GC31-LM | Met Office Hadley Centre, UK [30] | 1.25 × 1.88 | |
IPSL-CM6A-LR | Institut Pierre Simon Laplace, France [38] | 1.26 × 2.50 |
Statistical Index | Equation | Optimal Value |
---|---|---|
MB (Mean Bias) | 0 | |
RMSE (Root Mean Square Error) | 0 | |
CORR (Spatial Correlation Coefficient) | 1 |
Variables | Metrics | CMPA | IMERG | ERA5 | MME-HR | MME-MR | MME-LR |
---|---|---|---|---|---|---|---|
Amount (mm/h, except CORR) | Mean | 0.08 | 0.11 | 0.17 | 0.13 | 0.15 | 0.14 |
MB | / | 0.03 | 0.09 | 0.04 | 0.07 | 0.06 | |
RMSE | / | 0.07 | 0.15 | 0.10 | 0.13 | 0.13 | |
CORR | / | 0.73 | 0.60 | 0.65 | 0.57 | 0.53 | |
Frequency (%, except CORR) | Mean | 9.34 | 12.20 | 33.10 | 36.04 | 48.70 | 43.26 |
MB | / | 2.87 | 23.76 | 26.70 | 39.13 | 34.10 | |
RMSE | / | 6.74 | 27.01 | 32.33 | 46.19 | 39.72 | |
CORR | / | 0.65 | 0.61 | 0.68 | 0.66 | 0.67 | |
Intensity (mm/h, except CORR) | Mean | 0.81 | 0.79 | 0.45 | 0.30 | 0.26 | 0.28 |
MB | / | −0.02 | −0.36 | −0.51 | −0.55 | −0.53 | |
RMSE | / | 0.31 | 0.44 | 0.56 | 0.63 | 0.58 | |
CORR | / | 0.41 | 0.29 | 0.31 | 0.20 | 0.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, T.; Zhang, Y.; Li, N. Evaluation of CMIP6 HighResMIP Models and ERA5 Reanalysis in Simulating Summer Precipitation over the Tibetan Plateau. Atmosphere 2023, 14, 1015. https://doi.org/10.3390/atmos14061015
Chen T, Zhang Y, Li N. Evaluation of CMIP6 HighResMIP Models and ERA5 Reanalysis in Simulating Summer Precipitation over the Tibetan Plateau. Atmosphere. 2023; 14(6):1015. https://doi.org/10.3390/atmos14061015
Chicago/Turabian StyleChen, Tianru, Yi Zhang, and Nina Li. 2023. "Evaluation of CMIP6 HighResMIP Models and ERA5 Reanalysis in Simulating Summer Precipitation over the Tibetan Plateau" Atmosphere 14, no. 6: 1015. https://doi.org/10.3390/atmos14061015
APA StyleChen, T., Zhang, Y., & Li, N. (2023). Evaluation of CMIP6 HighResMIP Models and ERA5 Reanalysis in Simulating Summer Precipitation over the Tibetan Plateau. Atmosphere, 14(6), 1015. https://doi.org/10.3390/atmos14061015