Spatio-Temporal Change Pattern Investigation of PM2.5 in Jiangsu Province with MODIS Time Series Products
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Annual Surface PM Product
2.3. Methods
2.3.1. Univariate Linear Regression
2.3.2. Coefficient of Variation
2.3.3. Hurst Index
- if 0.5 < H < 1, the time series is considered to be persistent, which means that the characteristics of future changes will be the same as those of past changes. The closer H is to 1, the more visible the persistence is.
- If H is equal to 0.5, the time series is a random series without long-term persistence.
- if 0 < H < 0.5, the time series exhibits inverse persistence, which means that the trends of future change and those of previous change are extremely unlike.
3. Results
3.1. Temporal Variation Characteristics of the PM Concentration
3.2. Stability Analysis of the PM Concentration Changes
3.3. Persistence Analysis of the PM Concentration Changes
3.4. Comprehensive Analysis of the Trend and Persistence of PM Concentration Changes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Englert, N. Fine particles and human health—A review of epidemiological studies. Toxicol. Lett. 2004, 149, 235–242. [Google Scholar] [CrossRef]
- Ma, Z.; Dey, S.; Christopher, S.; Liu, R.; Bi, J.; Balyan, P.; Liu, Y. A review of statistical methods used for developing large-scale and long-term PM2. 5 models from satellite data. Remote Sens. Environ. 2022, 269, 112827. [Google Scholar] [CrossRef]
- Wang, Q.; Kwan, M.P.; Zhou, K.; Fan, J.; Wang, Y.; Zhan, D. The impacts of urbanization on fine particulate matter (PM2.5) concentrations: Empirical evidence from 135 countries worldwide. Environ. Pollut. 2019, 247, 989–998. [Google Scholar] [CrossRef]
- Guo, H.; Cheng, T.; Gu, X.; Wang, Y.; Chen, H.; Bao, F.; Shi, S.; Xu, B.; Wang, W.; Zuo, X.; et al. Assessment of PM2.5 concentrations and exposure throughout China using ground observations. Sci. Total Environ. 2017, 601, 1024–1030. [Google Scholar] [CrossRef]
- Zhang, W.; Zheng, F.; Zhang, W.; Yang, X. Estimating Ground-Level Hourly PM2.5 Concentrations Over North China Plain with Deep Neural Networks. J. Indian Soc. Remote Sens. 2021, 49, 1839–1852. [Google Scholar] [CrossRef]
- Xing, Q.; Sun, M. Characteristics of PM2. 5 and PM10 Spatio-Temporal Distribution and Influencing Meteorological Conditions in Beijing. Atmosphere 2022, 13, 1120. [Google Scholar] [CrossRef]
- Chu, H.J.; Huang, B.; Lin, C.Y. Modeling the spatio-temporal heterogeneity in the PM10–PM2.5 relationship. Atmos. Environ. 2015, 102, 176–182. [Google Scholar] [CrossRef]
- Zhang, A.; Qi, Q.; Jiang, L.; Zhou, F.; Wang, J. Population exposure to PM2.5 in the urban area of Beijing. PLoS ONE 2013, 8, e63486. [Google Scholar] [CrossRef]
- Ma, Z.; Hu, X.; Huang, L.; Bi, J.; Liu, Y. Estimating ground-level PM2.5 in China using satellite remote sensing. Environ. Sci. Technol. 2014, 48, 7436–7444. [Google Scholar] [CrossRef]
- Van Donkelaar, A.; Martin, R.V.; Brauer, M.; Boys, B.L. Use of satellite observations for long-term exposure assessment of global concentrations of fine particulate matter. Environ. Health Perspect. 2015, 123, 135–143. [Google Scholar] [CrossRef]
- Xie, R.; Sabel, C.E.; Lu, X.; Zhu, W.; Kan, H.; Nielsen, C.P.; Wang, H. Long-term trend and spatial pattern of PM2.5 induced premature mortality in China. Environ. Int. 2016, 97, 180–186. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Chen, S.; Lü, H.; Liu, Y.; Wu, J. Spatiotemporal patterns of remotely sensed PM2.5 concentration in China from 1999 to 2011. Remote Sens. Environ. 2016, 174, 109–121. [Google Scholar] [CrossRef]
- Ouyang, X.; Wei, X.; Li, Y.; Wang, X.C.; Klemeš, J.J. Impacts of urban land morphology on PM2.5 concentration in the urban agglomerations of China. J. Environ. Manag. 2021, 283, 112000. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Li, T.; Ikhumhen, H.O.; Sá, R.M. Spatio-temporal variability and persistence of PM2.5 concentrations in China using trend analysis methods and Hurst exponent. Atmos. Pollut. Res. 2022, 13, 101274. [Google Scholar] [CrossRef]
- Crippa, M.; Janssens-Maenhout, G.; Guizzardi, D.; Van Dingenen, R.; Dentener, F. Contribution and uncertainty of sectorial and regional emissions to regional and global PM2.5 health impacts. Atmos. Chem. Phys. 2019, 19, 5165–5186. [Google Scholar] [CrossRef]
- Zhang, L.; Wilson, J.P.; MacDonald, B.; Zhang, W.; Yu, T. The changing PM2.5 dynamics of global megacities based on long-term remotely sensed observations. Environ. Int. 2020, 142, 105862. [Google Scholar] [CrossRef]
- Xue, T.; Zheng, Y.; Geng, G.; Zheng, B.; Jiang, X.; Zhang, Q.; He, K. Fusing observational, satellite remote sensing and air quality model simulated data to estimate spatiotemporal variations of PM2.5 exposure in China. Remote Sens. 2017, 9, 221. [Google Scholar] [CrossRef]
- Wei, J.; Li, Z.; Lyapustin, A.; Sun, L.; Peng, Y.; Xue, W.; Su, T.; Cribb, M. Reconstructing 1-km-resolution high-quality PM2.5 data records from 2000 to 2018 in China: Spatiotemporal variations and policy implications. Remote Sens. Environ. 2021, 252, 112136. [Google Scholar] [CrossRef]
- Huang, R.J.; Zhang, Y.; Bozzetti, C.; Ho, K.F.; Cao, J.J.; Han, Y.; Daellenbach, K.R.; Slowik, J.G.; Platt, S.M.; Canonaco, F.; et al. High secondary aerosol contribution to particulate pollution during haze events in China. Nature 2014, 514, 218–222. [Google Scholar] [CrossRef]
- Yang, Y.; Christakos, G.; Yang, X.; He, J. Spatiotemporal characterization and mapping of PM2.5 concentrations in southern Jiangsu Province, China. Environ. Pollut. 2018, 234, 794–803. [Google Scholar] [CrossRef]
- Zhang, H.; Nie, Y.; Deng, Q.; Liu, Y.; Lyu, Q.; Zhang, B. Spatio-Temporal Changes in Air Quality of the Urban Area of Chongqing from 2015 to 2021 Based on a Missing-Data-Filled Dataset. Atmosphere 2022, 13, 1473. [Google Scholar] [CrossRef]
- Yang, Y.; Christakos, G. Spatiotemporal characterization of ambient PM2.5 concentrations in Shandong province (China). Environ. Sci. Technol. 2015, 49, 13431–13438. [Google Scholar] [CrossRef]
- Jiang, L.; He, S.; Zhou, H. Spatio-temporal characteristics and convergence trends of PM2.5 pollution: A case study of cities of air pollution transmission channel in Beijing–Tianjin–Hebei region, China. J. Clean. Prod. 2020, 256, 120631. [Google Scholar] [CrossRef]
- Jia, L.; Sun, J.; Fu, Y. Spatiotemporal variation and influencing factors of air pollution in Anhui Province. Heliyon 2023, 9, e15691. [Google Scholar] [CrossRef]
- Zhou, X.; Zhang, X.; Wang, Y.; Chen, W.; Li, Q. Spatio-temporal variations and socio-economic drivers of air pollution: Evidence from 332 Chinese prefecture-level cities. Atmos. Pollut. Res. 2023, 14, 101782. [Google Scholar] [CrossRef]
- Alyousifi, Y.; Othman, M.; Husin, A.; Rathnayake, U. A new hybrid fuzzy time series model with an application to predict PM10 concentration. Ecotoxicol. Environ. Saf. 2021, 227, 112875. [Google Scholar] [CrossRef]
- Wikipedia Contributors. Jiangsu—Wikipedia, The Free Encyclopedia. 2023. Available online: https://en.wikipedia.org/wiki/Jiangsu (accessed on 3 February 2023).
- Bao, Y.; Meng, C.; Hen, S.; Qiu, X.; Gao, P.; Liu, C. Temporal and Spatial Patterns of Droughts for Recent 50 Years in Jiangsu Based on Meteorological Drought Composite Index. Acta Geogr. Sin. 2011, 66, 599. [Google Scholar] [CrossRef]
- Van Donkelaar, A.; Martin, R.V.; Spurr, R.J.; Burnett, R.T. High-resolution satellite-derived PM2.5 from optimal estimation and geographically weighted regression over North America. Environ. Sci. Technol. 2015, 49, 10482–10491. [Google Scholar] [CrossRef]
- Van Donkelaar, A.; Hammer, M.S.; Bindle, L.; Brauer, M.; Brook, J.R.; Garay, M.J.; Hsu, N.C.; Kalashnikova, O.V.; Kahn, R.A.; Lee, C.; et al. Monthly global estimates of fine particulate matter and their uncertainty. Environ. Sci. Technol. 2021, 55, 15287–15300. [Google Scholar] [CrossRef]
- Luo, J.; Du, P.; Samat, A.; Xia, J.; Che, M.; Xue, Z. Spatiotemporal pattern of PM2.5 concentrations in mainland China and analysis of its influencing factors using geographically weighted regression. Sci. Rep. 2017, 7, 40607. [Google Scholar] [CrossRef]
- Kleinow, T. Testing Continuous Time Models in Financial Markets. Ph.D. Thesis, Humboldt-Universitat, Berlin, Germany, 2002. [Google Scholar]
- Bassingthwaighte, J.B.; Raymond, G.M. Evaluating rescaled range analysis for time series. Ann. Biomed. Eng. 1994, 22, 432–444. [Google Scholar] [CrossRef] [PubMed]
Statistical Methods | Criteria | Input | Description |
---|---|---|---|
Linear Regression | The slope of the regression line to indicate the trend of variation. | ||
F | F-test to determine the significance of the estimated trends. | ||
Variation coefficient | V | The coefficient to measure variability of the series. | |
Hurst Index | The i-th element of equal-length subsequences from | ||
The cumulative deviation of the k-th element in the i-th subsequence in | |||
The extreme deviation of . | |||
The standard deviation of . | |||
The rescaled extreme deviation from the expected rescaled extreme deviations of . | |||
H | The index to indicate the persistence for variation or trends. |
Trend Description | Criteria |
---|---|
Highly significant decrease | , or |
Significant decrease | , or |
Insignificant decrease | , or |
Highly significant constant | , or |
Significant constant | , or or |
Insignificant constant | , or |
Insignificant increase | , or |
Significant increase | , or |
Highly significant increase | , or |
Region | Lowest | Lower | Med | Higher | Highest |
---|---|---|---|---|---|
Jiangsu | 8091 | 14,698 | 24,325 | 26,626 | 24,792 |
Southern Jiangsu | 7993 | 11,166 | 4798 | 1991 | 61 |
Central Jiangsu | 98 | 3169 | 9868 | 5251 | 2861 |
Northern Jiangsu | 0 | 363 | 9659 | 19,384 | 21,870 |
Suzhou | 4114 | 2598 | 381 | 77 | 0 |
Wuxi | 2740 | 1463 | 0 | 0 | 0 |
Changzhou | 715 | 3420 | 152 | 0 | 0 |
Nanjing | 38 | 1077 | 3514 | 1808 | 61 |
Zhenjiang | 386 | 2608 | 751 | 106 | 0 |
Yangzhou | 0 | 667 | 3442 | 1760 | 500 |
Taizhou | 98 | 1697 | 1528 | 1808 | 694 |
Nantong | 0 | 805 | 4898 | 1683 | 1667 |
Xuzhou | 0 | 0 | 2940 | 5385 | 2916 |
Suqian | 0 | 20 | 1894 | 3465 | 2622 |
Lianyungang | 0 | 9 | 866 | 3645 | 3006 |
Huaian | 0 | 0 | 2071 | 3208 | 4142 |
Yancheng | 0 | 334 | 1888 | 3681 | 9184 |
Zone | SIP | WIP | WP | SP | ||||
---|---|---|---|---|---|---|---|---|
Area | Percent | Area | Percent | Area | Percent | Area | Percent | |
Jiangsu | 10,789 | 10.95 | 83,539 | 84.78 | 4146 | 4.21 | 59 | 0.06 |
Southern Jiangsu | 3425 | 13.16 | 22,008 | 84.58 | 529 | 2.03 | 59 | 0.23 |
Central Jiangsu | 2751 | 12.95 | 18,435 | 86.78 | 58 | 0.27 | 0 | 0 |
Northern Jiangsu | 4613 | 9 | 43,096 | 84.06 | 3559 | 6.94 | 0 | 0 |
Suzhou | 1824 | 25.42 | 5352 | 74.58 | 0 | 0 | 0 | 0 |
Wuxi | 814 | 19.33 | 2954 | 70.17 | 393 | 9.33 | 49 | 1.16 |
Changzhou | 192 | 4.48 | 3998 | 93.22 | 89 | 2.08 | 10 | 0.23 |
Nanjing | 429 | 6.61 | 6019 | 92.67 | 47 | 0.72 | 0 | 0 |
Zhenjiang | 166 | 4.31 | 3685 | 95.69 | 0 | 0 | 0 | 0 |
Yangzhou | 0 | 0 | 6307 | 99.09 | 58 | 0.91 | 0 | 0 |
Taizhou | 6 | 0.1 | 5815 | 99.9 | 0 | 0 | 0 | 0 |
Nantong | 2745 | 30.3 | 6313 | 69.7 | 0 | 0 | 0 | 0 |
Xuzhou | 2958 | 26.31 | 8243 | 73.32 | 41 | 0.36 | 0 | 0 |
Suqian | 207 | 2.59 | 7767 | 97.14 | 22 | 0.28 | 0 | 0 |
Lianyungang | 756 | 10.05 | 4581 | 60.88 | 2188 | 29.08 | 0 | 0 |
Huaian | 659 | 7 | 8172 | 86.76 | 588 | 6.24 | 0 | 0 |
Yancheng | 33 | 0.22 | 14,333 | 95.01 | 720 | 4.77 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, J.; Che, M. Spatio-Temporal Change Pattern Investigation of PM2.5 in Jiangsu Province with MODIS Time Series Products. Atmosphere 2023, 14, 943. https://doi.org/10.3390/atmos14060943
Luo J, Che M. Spatio-Temporal Change Pattern Investigation of PM2.5 in Jiangsu Province with MODIS Time Series Products. Atmosphere. 2023; 14(6):943. https://doi.org/10.3390/atmos14060943
Chicago/Turabian StyleLuo, Jieqiong, and Meiqin Che. 2023. "Spatio-Temporal Change Pattern Investigation of PM2.5 in Jiangsu Province with MODIS Time Series Products" Atmosphere 14, no. 6: 943. https://doi.org/10.3390/atmos14060943
APA StyleLuo, J., & Che, M. (2023). Spatio-Temporal Change Pattern Investigation of PM2.5 in Jiangsu Province with MODIS Time Series Products. Atmosphere, 14(6), 943. https://doi.org/10.3390/atmos14060943