Application of Informer Model Based on SPEI for Drought Forecasting
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source
2.3. Methods
2.3.1. Standardized Precipitation Evapotranspiration Index
2.3.2. Informer
Informer Model Inputs
Self-Attention Mechanism of Informer Model
Encoder for Informer Model
Decoder for Informer Model
2.3.3. Long Short-Term Memory
2.3.4. Autoregressive Integrated Moving Average
2.3.5. Evaluation Metrics
3. Results
3.1. SPEI Values on Different Timescales
3.2. Analysis of Model Prediction Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MDPI | Multidisciplinary Digital Publishing Institute |
DOAJ | Directory of open-access journals |
TLA | Three-letter acronym |
LD | Linear dichroism |
References
- Rusca, M.; Savelli, E.; Di Baldassarre, G. Unprecedented droughts are expected to exacerbate urban inequalities in Southern Africa. Nat. Clim. Chang. 2023, 13, 98–105. [Google Scholar] [CrossRef]
- Xu, D.; Zhang, Q.; Ding, Y.; Zhang, D. Application of a hybrid ARIMA-LSTM model based on the SPEI for drought forecasting. Environ. Sci. Pollut. Res. 2022, 29, 4128–4144. [Google Scholar] [CrossRef]
- Yang, R.; Geng, G.; Zhou, H.; Wang, T. Spatial-temporal Evolution of Meteorological Drought in the Wei River Basin Based on SPEI_PM. Chin. J. Agrometeorol. 2021, 42, 962–974. [Google Scholar]
- Abbas, A.; Waseem, M.; Ahmad, R.; Khan, K.A.; Zhao, C.; Zhu, J. Sensitivity analysis of greenhouse gas emissions at farm level: Case study of grain and cash crops. Environ. Sci. Pollut. Res. 2022, 29, 82559–82573. [Google Scholar] [CrossRef]
- Abbas, A.; Zhao, C.; Waseem, M.; Ahmed, K.K.; Ahmad, R. Analysis of Energy Input–Output of Farms and Assessment of Greenhouse Gas Emissions: A Case Study of Cotton Growers. Front. Environ. Sci. 2022, 9, 826838. [Google Scholar] [CrossRef]
- Elahi, E.; Khalid, Z.; Zhang, Z. Understanding farmers’intention and willingness to install renewable energy technology: A solution to reduce the environmental emissions of agriculture. Appl. Energy 2022, 309, 118459. [Google Scholar] [CrossRef]
- Elahi, E.; Khalid, Z.; Tauni, M.Z.; Zhang, H.; Xing, L. Extreme weather events risk to crop-production and the adaptation of innovative management strategies to mitigate the risk: A retrospective survey of rural Punjab, Pakistan. Technovation 2021, 117, 102255. [Google Scholar] [CrossRef]
- Ren, Y.; Liu, J.; Shalamzari, M.J.; Arshad, A.; Liu, S.; Liu, T.; Tao, H. Monitoring Recent Changes in Drought and Wetness in the Source Region of the Yellow River Basin, China. Water 2022, 14, 861. [Google Scholar] [CrossRef]
- Alahacoon, N.; Edirisinghe, M. A comprehensive assessment of remote sensing and traditional based drought monitoring indices at global and regional scale. Geomat. Nat. Hazards Risk 2022, 13, 762–799. [Google Scholar] [CrossRef]
- Saeed, S.; Mohammadi, G.M.; Saviz, S. Spatial and temporal analysis of drought in various climates across Iran using the Standardized Precipitation Index (SPI). Arab. J. Geosci. 2022, 15, 1279. [Google Scholar]
- Sergio, M.V.; Santiago, B.; Ji, L.-M. A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. J. Clim. 2010, 23, 1696–1718. [Google Scholar]
- Palmer, W.C. Meteorological Drought; U.S. Department of Commerce Weather Bureau Research Paper: San Diego, CA, USA, 1965.
- Narasimhan, B.; Srinivasan, R. Development and evaluation of Soil Moisture Deficit Index (SMDI) and Evapotranspiration Deficit Index (ETDI) for agricultural drought monitoring. Agric. For. Meteorol. 2005, 133, 69–88. [Google Scholar] [CrossRef]
- Chen, H.; Sun, J. Changes in Drought Characteristics over China Using the Standardized Precipitation Evapotranspiration Index. J. Clim. 2015, 28, 5430–5447. [Google Scholar] [CrossRef]
- Wei, J.; Wang, Z.; Han, L.; Shang, J.; Zhao, B. Analysis of Spatio-Temporal Evolution Characteristics of Drought and Its Driving Factors in Yangtze River Basin Based on SPEI. Atmosphere 2022, 13, 1986. [Google Scholar] [CrossRef]
- Ma, X.; Zhu, X.; Zhao, J.; Zhao, N.; Shi, Y. Analysis of Drought Characteristics and Driving Forces in the Urban Belt Along the Yellow River in Ningxia Based on SPEI. Res. Soil Water Conserv. 2022, 29, 1986. [Google Scholar]
- Wu, Z.; Lu, G.; Guo, H.; Kuang, Y. Drought monitoring technology based on simulation of soil moisture. J. Hohai Univ. (Nat. Sci.) 2012, 40, 28–32. [Google Scholar]
- Li, Y.; Chang, J.; Fan, J.; Yu, B. Agricultural drought evolution characteristics and driving mechanisms in the Yellow River Basin under climate and land use changes. Trans. Chin. Soc. Agric. Eng. 2021, 37, 84–93. [Google Scholar]
- Liu, J.; Ren, Y.; Tao, H.; Shalamzari, M. Spatial and Temporal Variation Characteristics of Heatwaves in Recent Decades over China. Remote. Sens. 2021, 13, 3824. [Google Scholar] [CrossRef]
- Hu, X.; Zhao, A.; Xiang, K.; Zhang, X. Evaluating the application of LSTM model for drought forecasting in Beijing-Tianjin-Hebei region. J. Xi’An Univ. Technol. 2022, 38, 356–365. [Google Scholar]
- Zhang, X.; Sun, C.; Wang, H.; Li, M. Assessment of the effectiveness of ensemble-based drought forecasting models in the Yellow River Basin, China. Nat. Hazards 2019, 95, 347–363. [Google Scholar]
- Xu, D.; Ding, Y.; Liu, H.; Zhang, Q.; Zhang, D. Applicability of a CEEMD—ARIMA Combined Model for Drought Forecasting: A Case Study in the Ningxia Hui Autonomous Region. Atmosphere 2022, 13, 1109. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, W. Climate changes and associated multi-scale impacts on watershed discharge over the upper reach of Yarlung Zangbo River Basin, China. Adv. Meteorol. 2018, 2018, 4851645. [Google Scholar] [CrossRef]
- Khan, M.M.H.; Muhammad, N.S.; El-Shafie, A. Wavelet Based Hybrid ANN-ARIMA Models for Meteorological Drought Forecasting. J. Hydrol. 2020, 590, 125380. [Google Scholar] [CrossRef]
- Xiang, D.; Zhang, P.; Xiang, S.; Pan, C. Multi-modal Meteorological Forecasting Based on Transformer. Comput. Eng. Appl. 2023, 59, 94–103. [Google Scholar]
- Zhou, H.; Zhang, S.; Peng, J.; Zhang, S.; Li, J.; Xiong, H.; Zhang, W. Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting. Proc. AAAI 2021, 35, 11106–11115. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, L. Attention Is All You Need. In Proceedings of the Annual Conference on Neural Information Processing Systems 2017, Long Beach, CA, USA, 4–9 December 2017; pp. 5998–6008. [Google Scholar]
- Dong, H.; Sun, L.; Ouyang, F. Prediction of PM2.5 Concentration Based on Informer. Environ. Eng. 2022, 40, 48–54. [Google Scholar]
- Yu, F.; Koltun, V.; Funkhouser, T. Dilated residual networks. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, 21–26 July 2017; pp. 636–644. [Google Scholar]
- Clevert, D.; Unterthiner, T.; Hochreiter, S. Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs). In Proceedings of the 4th International Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico, 2–4 May 2016. [Google Scholar]
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Ko, M.S.; Lee, K.; Kim, J.K.; Hong, C.W.; Dong, Z.Y.; Hur, K. Deep Concatenated Residual Network with Bidirectional LSTM for One-Hour-Ahead Wind Power Forecasting. IEEE Trans. Sustain. Energy 2021, 12, 1321–1335. [Google Scholar] [CrossRef]
- Ding, Y.; Yu, G.; Tian, R.; Sun, Y. Application of a Hybrid CEEMD-LSTM Model Based on the Standardized Precipitation Index for Drought Forecasting: The Case of the Xinjiang Uygur Autonomous Region, China. Atmosphere 2022, 13, 1504. [Google Scholar] [CrossRef]
- Li, Z.; Wang, X.; Zhang, E.; Yu, J. Research on the Drought Prediction Model of Large Irrigation Areas Based on VMD-GRU. China Rural. Water Hydropower 2023, 3, 130–137. [Google Scholar]
- Li, Z.; Zou, H.; Qi, B.; Guo, J. A fitting model of annual precipitation prediction based on eemd-arima. Comput. Appl. Softw. 2020, 37, 46–50. [Google Scholar]
- Wu, X.; Chen, Y.; Guan, Y.; Tian, X.; Hua, Y. A hybrid CEEMDAN-SE-ARIMA model and its application to summer precipitation forecast over Northeast China. Trans. Atmos. Sci. 2023, 46, 205–216. [Google Scholar]
- Hinge, G.; Piplodiya, J.; Sharma, A.; Hamouda, M.A.; Mohamed, M.M. Evaluation of Hybrid Wavelet Models for Regional Drought Forecasting. Remote. Sens. 2022, 14, 6381. [Google Scholar] [CrossRef]
- Liu, F.; Dong, T.; Liu, Y. An Improved Informer Model for Short-Term Load Forecasting by Considering Periodic Property of Load Profiles. Front. Energy Res. 2022, 10, 950912. [Google Scholar] [CrossRef]
- Pande, C.B.; AIAnsari, N.; Kushwaha, N.L.; Srivastava, A.; Noor, R.; Kumar, M.; Moharir, N.; Elbeltagi, A. Forecasting of SPI and Meteorological Drought Based on the Artificial Neural Network and M5P Model Tree. Land 2022, 11, 2040. [Google Scholar] [CrossRef]
- Banadkooki, F.B.; Singh, V.P.; Ehteram, M. Multi-timescale drought prediction using new hybrid artificial neural network models. Nat. Hazards 2021, 106, 2461–2478. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, H.; Cui, H.; Chen, Q. Comparison of the Ability of ARIMA, WNN and SVM Models for Drought Forecasting in the Sanjiang Plain, China. Nat. Resour. Res. 2020, 29, 1469–1470. [Google Scholar] [CrossRef]
Station ID | Station Name | Longitude (°E) | Latitude (°N) | Altitude (m) |
---|---|---|---|---|
53420 | Hangjinhouqi | 107.12 | 40.85 | 1024 |
53821 | Huanxian | 107.3 | 36.57 | 1255.6 |
54827 | Taian | 117.15 | 36.17 | 129.8 |
56043 | Maqin | 100.23 | 34.48 | 3719 |
Level | Type | SPEI |
---|---|---|
1 | No drought | |
2 | Mild drought | |
3 | Moderate drought | |
4 | Severe drought | |
5 | Extreme drought |
Example Stations | SPEI Series | p Value | Trend |
---|---|---|---|
Hangjinhouqi | SPEI1 | 0.00055 | decreasing |
SPEI3 | 1.31 × | decreasing | |
SPEI6 | 5.973 × | decreasing | |
SPEI9 | 0 | decreasing | |
SPEI12 | 0 | decreasing | |
SPEI24 | 0 | decreasing | |
Huanxian | SPEI1 | 1.349 × | decreasing |
SPEI3 | 0 | decreasing | |
SPEI6 | 0 | decreasing | |
SPEI9 | 0 | decreasing | |
SPEI12 | 0 | decreasing | |
SPEI24 | 0 | decreasing | |
Taian | SPEI1 | 5.975 × | decreasing |
SPEI3 | 1.372 × | decreasing | |
SPEI6 | 2.22 × | decreasing | |
SPEI9 | 0 | decreasing | |
SPEI12 | 0 | decreasing | |
SPEI24 | 0 | decreasing | |
Maqin | SPEI1 | 3.162 × | decreasing |
SPEI3 | 1.086 × | decreasing | |
SPEI6 | 6.443 × | decreasing | |
SPEI9 | 2.44 × | decreasing | |
SPEI12 | 2.22 × | decreasing | |
SPEI24 | 0 | decreasing |
Example Stations | SPEI Series | Model | MAE | RMSE | NSE |
---|---|---|---|---|---|
Hangjinhouqi | SPEI1 | ARIMA | 0.800 | 1.027 | 0.022 |
LSTM | 0.799 | 1.021 | 0.032 | ||
Informer | 0.531 | 0.688 | 0.561 | ||
SPEI3 | ARIMA | 0.633 | 0.827 | 0.371 | |
LSTM | 0.635 | 0.824 | 0.375 | ||
Informer | 0.388 | 0.521 | 0.434 | ||
SPEI6 | ARIMA | 0.455 | 0.655 | 0.573 | |
LSTM | 0.452 | 0.642 | 0.590 | ||
Informer | 0.277 | 0.416 | 0.828 | ||
SPEI9 | ARIMA | 0.279 | 0.397 | 0.821 | |
LSTM | 0.291 | 0.402 | 0.817 | ||
Informer | 0.271 | 0.382 | 0.835 | ||
SPEI12 | ARIMA | 0.166 | 0.279 | 0.910 | |
LSTM | 0.187 | 0.296 | 0.899 | ||
Informer | 0.182 | 0.287 | 0.905 | ||
SPEI24 | ARIMA | 0.124 | 0.201 | 0.940 | |
LSTM | 0.145 | 0.214 | 0.932 | ||
Informer | 0.123 | 0.190 | 0.968 | ||
Huanxian | SPEI1 | ARIMA | 0.804 | 1.006 | −0.049 |
LSTM | 0.804 | 1.003 | −0.042 | ||
Informer | 0.666 | 0.842 | 0.264 | ||
SPEI3 | ARIMA | 0.628 | 0.826 | 0.250 | |
LSTM | 0.617 | 0.812 | 0.276 | ||
Informer | 0.271 | 0.402 | 0.822 | ||
SPEI6 | ARIMA | 0.423 | 0.594 | 0.580 | |
LSTM | 0.415 | 0.581 | 0.598 | ||
Informer | 0.211 | 0.271 | 0.912 | ||
SPEI9 | ARIMA | 0.243 | 0.354 | 0.842 | |
LSTM | 0.254 | 0.361 | 0.836 | ||
Informer | 0.191 | 0.286 | 0.896 | ||
SPEI12 | ARIMA | 0.166 | 0.255 | 0.915 | |
LSTM | 0.176 | 0.272 | 0.904 | ||
Informer | 0.096 | 0.133 | 0.977 | ||
SPEI24 | ARIMA | 0.109 | 0.177 | 0.945 | |
LSTM | 0.127 | 0.193 | 0.936 | ||
Informer | 0.086 | 0.123 | 0.974 | ||
Taian | SPEI1 | ARIMA | 0.844 | 1.007 | −0.013 |
LSTM | 0.835 | 0.994 | 0.014 | ||
Informer | 0.507 | 0.672 | 0.548 | ||
SPEI3 | ARIMA | 0.0.619 | 0.791 | 0.289 | |
LSTM | 0.620 | 0.792 | 0.288 | ||
Informer | 0.508 | 0.699 | 0.445 | ||
SPEI6 | ARIMA | 0.401 | 0.552 | 0.575 | |
LSTM | 0.413 | 0.554 | 0.573 | ||
Informer | 0.391 | 0.542 | 0.591 | ||
SPEI9 | ARIMA | 0.270 | 0.387 | 0.789 | |
LSTM | 0.277 | 0.397 | 0.777 | ||
Informer | 0.201 | 0.283 | 0.887 | ||
SPEI12 | ARIMA | 0.193 | 0.295 | 0.876 | |
LSTM | 0.202 | 0.316 | 0.858 | ||
Informer | 0.133 | 0.192 | 0.948 | ||
SPEI24 | ARIMA | 0.137 | 0.202 | 0.909 | |
LSTM | 0.148 | 0.216 | 0.897 | ||
Informer | 0.131 | 0.192 | 0.972 | ||
Maqin | SPEI1 | ARIMA | 0.846 | 1.052 | −0.047 |
LSTM | 0.857 | 1.059 | −0.061 | ||
Informer | 0.543 | 0.738 | 0.484 | ||
SPEI3 | ARIMA | 0.592 | 0.753 | 0.418 | |
LSTM | 0.635 | 0.788 | 0.363 | ||
Informer | 0.245 | 0.335 | 0.884 | ||
SPEI6 | ARIMA | 0.389 | 0.555 | 0.655 | |
LSTM | 0.382 | 0.550 | 0.661 | ||
Informer | 0.162 | 0.329 | 0.879 | ||
SPEI9 | ARIMA | 0.231 | 0.334 | 0.858 | |
LSTM | 0.235 | 0.338 | 0.855 | ||
Informer | 0.124 | 0.193 | 0.952 | ||
SPEI12 | ARIMA | 0.162 | 0.247 | 0.920 | |
LSTM | 0.172 | 0.261 | 0.911 | ||
Informer | 0.101 | 0.145 | 0.972 | ||
SPEI24 | ARIMA | 0.102 | 0.159 | 0.959 | |
LSTM | 0.117 | 0.169 | 0.954 | ||
Informer | 0.064 | 0.092 | 0.986 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shang, J.; Zhao, B.; Hua, H.; Wei, J.; Qin, G.; Chen, G. Application of Informer Model Based on SPEI for Drought Forecasting. Atmosphere 2023, 14, 951. https://doi.org/10.3390/atmos14060951
Shang J, Zhao B, Hua H, Wei J, Qin G, Chen G. Application of Informer Model Based on SPEI for Drought Forecasting. Atmosphere. 2023; 14(6):951. https://doi.org/10.3390/atmos14060951
Chicago/Turabian StyleShang, Jiandong, Bei Zhao, Haobo Hua, Jieru Wei, Guoyong Qin, and Gongji Chen. 2023. "Application of Informer Model Based on SPEI for Drought Forecasting" Atmosphere 14, no. 6: 951. https://doi.org/10.3390/atmos14060951
APA StyleShang, J., Zhao, B., Hua, H., Wei, J., Qin, G., & Chen, G. (2023). Application of Informer Model Based on SPEI for Drought Forecasting. Atmosphere, 14(6), 951. https://doi.org/10.3390/atmos14060951