Using Machine Learning to Predict Wind Flow in Urban Areas
Abstract
:1. Introduction
2. Materials and Methods
2.1. RANS Model
2.2. Machine Learning
2.3. Test Cases
3. Results
4. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
kNN | k Nearest Neighbors |
ML | Machine learning |
RANS | Reynolds-Averaged Navier–Stokes |
WT | Wind Tunnel |
References
- Hanna, S.R.; Brown, M.J.; Camelli, F.E.; Chan, S.T.; Coirier, W.J.; Hansen, O.R.; Huber, A.H.; Kim, S.; Reynolds, R.M. Detailed simulations of atmospheric flow and dispersion in downtown Manhattan: An application of five computational fluid dynamics models. Bull. Am. Meteorol. Soc. 2006, 87, 1713–1726. [Google Scholar] [CrossRef] [Green Version]
- Gromke, C.; Buccolieri, R.; Di Sabatino, S.; Ruck, B. Dispersion study in a street canyon with tree planting by means of wind tunnel and numerical investigations—Evaluation of CFD data with experimental data. Atmos. Environ. 2008, 42, 8640–8650. [Google Scholar] [CrossRef]
- Spirn, A. Better Air Quality at Street Level: Strategies for Urban Design. In Public Streets for Public Use; Van Nostrand Reinhold: New York, NY, USA, 1987. [Google Scholar]
- Cheng, W.C.; Yang, Y. Scaling of Flows Over Realistic Urban Geometries: A Large-Eddy Simulation Study. Bound. Layer Meteorol. 2022, 186, 125–144. [Google Scholar] [CrossRef]
- Blocken, B.; Persoon, J. Pedestrian wind comfort around a large football stadium in an urban environment: CFD simulation, validation and application of the new Dutch wind nuisance standard. J. Wind. Eng. Ind. Aerodyn. 2009, 97, 255–270. [Google Scholar] [CrossRef]
- Moonen, P.; Defraeye, T.; Dorer, V.; Blocken, B.; Carmeliet, J. Urban Physics: Effect of the micro-climate on comfort, health and energy demand. Front. Archit. Res. 2012, 1, 197–228. [Google Scholar] [CrossRef] [Green Version]
- Neophytou, M.; Gowardhan, A.; Brown, M. An inter-comparison of three urban wind models using Oklahoma City Joint Urban 2003 wind field measurements. J. Wind. Eng. Ind. Aerodyn. 2011, 99, 357–368. [Google Scholar] [CrossRef]
- Tominaga, Y.; Stathopoulos, T. Numerical simulation of dispersion around an isolated cubic building: Model evaluation of RANS and LES. Build. Environ. 2010, 45, 2231–2239. [Google Scholar] [CrossRef] [Green Version]
- Blocken, B.; Stathopoulos, T.; Van Beeck, J. Pedestrian-level wind conditions around buildings: Review of wind-tunnel and CFD techniques and their accuracy for wind comfort assessment. Build. Environ. 2016, 100, 50–81. [Google Scholar] [CrossRef]
- Nimarshana, P.; Attalage, R.; Perera, K.K.C. Quantification of the impact of RANS turbulence models on airflow distribution in horizontal planes of a generic building under cross-ventilation for prediction of indoor thermal comfort. J. Build. Eng. 2022, 52, 104409. [Google Scholar] [CrossRef]
- Anup, K.; Whale, J.; Urmee, T. Urban wind conditions and small wind turbines in the built environment: A review. Renew. Energy 2019, 131, 268–283. [Google Scholar]
- Toja-Silva, F.; Kono, T.; Peralta, C.; Lopez-Garcia, O.; Chen, J. A review of computational fluid dynamics (CFD) simulations of the wind flow around buildings for urban wind energy exploitation. J. Wind. Eng. Ind. Aerodyn. 2018, 180, 66–87. [Google Scholar] [CrossRef]
- Jordan, M.I.; Mitchell, T.M. Machine learning: Trends, perspectives, and prospects. Science 2015, 349, 255–260. [Google Scholar] [CrossRef]
- Mahesh, B. Machine learning algorithms—A review. Int. J. Sci. Res. 2020, 9, 381–386. [Google Scholar]
- Zhao, Y.; Akolekar, H.D.; Weatheritt, J.; Michelassi, V.; Sandberg, R.D. RANS turbulence model development using CFD-driven machine learning. J. Comput. Phys. 2020, 411, 109413. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.L.; Xiao, H.; Paterson, E. Physics-informed machine learning approach for augmenting turbulence models: A comprehensive framework. Phys. Rev. Fluids 2018, 7, 1–42. [Google Scholar] [CrossRef] [Green Version]
- Maulik, R.; Sharma, H.; Patel, S.; Lusch, B.; Jennings, E. Accelerating RANS Turbulence Modeling Using Potential Flow and Machine Learning. arXiv 2019, arXiv:1910.10878. [Google Scholar]
- Vuppala, R.K.; Kara, K. A non-intrusive reduced order model using deep learning for realistic wind data generation for small unmanned aerial systems in urban spaces. AIP Adv. 2022, 12, 085020. [Google Scholar] [CrossRef]
- Mortezazadeh, M.; Zou, J.; Hosseini, M.; Yang, S.; Wang, L. Estimating Urban Wind Speeds and Wind Power Potentials Based on Machine Learning with City Fast Fluid Dynamics Training Data. Atmosphere 2022, 13, 214. [Google Scholar] [CrossRef]
- Altman, N.S. An introduction to kernel and nearest-neighbor nonparametric regression. Am. Stat. 1992, 46, 175–185. [Google Scholar] [CrossRef] [Green Version]
- Chrit, M.; Majdi, M. Improving Wind Speed Forecasting for Urban Air Mobility Using Coupled Simulations. Adv. Meteorol. 2022, 2022, 2629432. [Google Scholar] [CrossRef]
- Chrit, M. Reconstructing urban wind flows for urban air mobility using reduced-order data assimilation. Theor. Appl. Mech. Lett. 2023, 13, 100451. [Google Scholar] [CrossRef]
- Baumann-Stanzer, K.; Andronopoulos, S.; Armand, P.; Berbekar, E.; Efthimiou, G.; Fuka, V.; Gariazzo, C.; Gasparac, G.; Harms, F.; Hellsten, A.; et al. COST ES1006 Model Evaluation. 2015. Available online: https://www.researchgate.net/publication/275952924_COST_ES1006_Model_evaluation_case_studies_Approach_and_results (accessed on 17 January 2023).
- Reynolds, O. On the Dynamical Theory of Incompressible Viscous Fluids and the Determination of the Criterion. Philos. Trans. R. Soc. Lond. 1895, 186, 123–164. [Google Scholar]
- Menter, F.R. Improved Two-Equation k–Omega Turbulence Models for Aerodynamic Flows—NASA Technical Memorandum TM-103975; NASA Technical Memorandum NASA; NASA Ames Research Center: Moffett Field, CA, USA, 1992; pp. 1–31. [Google Scholar]
- Caretto, L.S.; Gosman, A.D.; Patankar, S.V.; Spalding, D.B. Two Calculation Procedures for Steady, Three-Dimensional Flows with Recirculation. In Proceedings of the Third International Conference on Numerical Methods in Fluid Mechanics; Springer: Cham, Switzerland, 2004; pp. 60–68. [Google Scholar] [CrossRef]
- Churchfield, M.J.; Moriarty, P.J.; Vijayakumar, G.; Brasseur, J.G. Wind Energy-Related Atmospheric Boundary Layer Large-Eddy Simulation Using OpenFOAM. In Proceedings of the 19th Symposium on Boundary Layers and Turbulence, Keystone, CO, USA, 2–6 August 2010; pp. 1–26. [Google Scholar]
- Soomro, A.A.; Mokhtar, A.A.; Salilew, W.M.; Abdul Karim, Z.A.; Abbasi, A.; Lashari, N.; Jameel, S.M. Machine Learning Approach to Predict the Performance of a Stratified Thermal Energy Storage Tank at a District Cooling Plant Using Sensor Data. Sensors 2022, 22, 7687. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Oke, T.R. Street design and urban canopy layer climate. Energy Build. 1988, 11, 103–113. [Google Scholar] [CrossRef]
- Vardoulakis, S.; Fisher, B.E.; Pericleous, K.; Gonzalez-Flesca, N. Modelling air quality in street canyons: A review. Atmos. Environ. 2003, 37, 155–182. [Google Scholar] [CrossRef] [Green Version]
- Rakai, A.; Franke, J. Validation of two RANS solvers with flow data of the flat roof Michelstadt case. Urban Clim. 2014, 10, 758–768. [Google Scholar] [CrossRef]
- Efthimiou, G.C.; Bartzis, J.G.; Berbekar, E.; Hertwig, D.; Harms, F.; Leitl, B. Modelling short-term maximum individual exposure from airborne hazardous releases in urban environments. Part II: Validation of a deterministic model with wind tunnel experimental data. Toxics 2015, 3, 259–267. [Google Scholar] [CrossRef] [Green Version]
- Efthimiou, G.C.; Kovalets, I.V.; Argyropoulos, C.D.; Venetsanos, A.; Andronopoulos, S.; Kakosimos, K.E. Evaluation of an inverse modelling methodology for the prediction of a stationary point pollutant source in complex urban environments. Build. Environ. 2018, 143, 107–119. [Google Scholar] [CrossRef]
- Castelli, S.T.; Armand, P.; Tinarelli, G.; Duchenne, C.; Nibart, M. Validation of a Lagrangian particle dispersion model with wind tunnel and field experiments in urban environment. Atmos. Environ. 2018, 193, 273–289. [Google Scholar] [CrossRef]
- Knapp, T.R. Canonical correlation analysis: A general parametric significance-testing system. Psychol. Bull. 1978, 85, 410–416. [Google Scholar] [CrossRef]
- Chang, J.C.; Hanna, S.R. Air quality model performance evaluation. Meteorol. Atmos. Phys. 2004, 87, 167–196. [Google Scholar] [CrossRef]
Index | RANS | ML |
---|---|---|
CCA | 0.96 | 0.93 |
r | 0.93 | 0.90 |
Factor 2 | 0.84 | 0.65 |
RMSD m/s | 0.67 | 0.87 |
Observation Mean m/s | 2.47 | 2.47 |
Model Mean m/s | 2.11 | 2.08 |
Observation STD m/s | 1.52 | 1.52 |
Model STD m/s | 1.52 | 1.79 |
Coarse | Medium | Fine | |
---|---|---|---|
number of cells | 0.5 M | 2.5 M | 9.5 M |
simulation duration [h] | 0.1 | 0.9 | 7.3 |
RMSD (vs. Observation) | 0.494 | 0.483 | 0.472 |
Feature | Set I | Set II | Set III |
---|---|---|---|
Distance from ground | 1.90 | 2.01 | 2.66 |
mean height (including buildings) | - | 0 | 0 |
distance from next building in direction | 1.047 | 0.873 | 1.61 |
distance from previous building in direction | 1.961 | 1.946 | 1.77 |
street width in direction | - | 0.187 | 0 |
street width in direction | - | 0.709 | 0 |
distance from building in left in direction | 0.589 | 0.259 | 1.51 |
distance from building in right in direction | 0.413 | 0 | 0.98 |
height of the previous building in direction | 0.321 | 0.097 | −0.01 |
height of the following building in direction | 0.176 | 0.053 | 0.01 |
street angle | - | - | −2.54 |
ratio between the distance from the previous building and the previous building height | - | - | −0.02 |
ratio between the distance from the following building and the following building height | - | - | 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
BenMoshe, N.; Fattal, E.; Leitl, B.; Arav, Y. Using Machine Learning to Predict Wind Flow in Urban Areas. Atmosphere 2023, 14, 990. https://doi.org/10.3390/atmos14060990
BenMoshe N, Fattal E, Leitl B, Arav Y. Using Machine Learning to Predict Wind Flow in Urban Areas. Atmosphere. 2023; 14(6):990. https://doi.org/10.3390/atmos14060990
Chicago/Turabian StyleBenMoshe, Nir, Eyal Fattal, Bernd Leitl, and Yehuda Arav. 2023. "Using Machine Learning to Predict Wind Flow in Urban Areas" Atmosphere 14, no. 6: 990. https://doi.org/10.3390/atmos14060990
APA StyleBenMoshe, N., Fattal, E., Leitl, B., & Arav, Y. (2023). Using Machine Learning to Predict Wind Flow in Urban Areas. Atmosphere, 14(6), 990. https://doi.org/10.3390/atmos14060990