Climate Change Flood Risk Analysis: Application of Dynamical Downscaling and Hydrological Modeling
Abstract
:1. Introduction
2. Methodology
2.1. Study Area
2.2. Rainfall Data and Climate Simulation Model
3. Results
3.1. Catchment Land Use and Occupation
3.2. Frequency Analysis
3.3. HEC-HMS Simulation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Merz, B.; Blöschl, G.; Vorogushyn, S.; Dottori, F.; Aerts, J.C.J.H.; Bates, P.; Bertola, M.; Kemter, M.; Kreibich, H.; Lall, U.; et al. Causes, Impacts and Patterns of Disastrous River Floods. Nat. Rev. Earth Environ. 2021, 2, 592–609. [Google Scholar] [CrossRef]
- Billi, P.; Alemu, Y.T.; Ciampalini, R. Increased Frequency of Flash Floods in Dire Dawa, Ethiopia: Change in Rainfall Intensity or Human Impact? Nat. Hazards 2015. [Google Scholar] [CrossRef]
- Acosta-Coll, M.; Ballester-Merelo, F.; Martinez-Peiró, M.; De la Hoz-Franco, E. Real-Time Early Warning System Design for Pluvial Flash Floods—A Review. Sensors 2018, 18, 2255. [Google Scholar] [CrossRef] [Green Version]
- Tien Bui, D.; Hoang, N.D.; Martínez-Álvarez, F.; Ngo, P.T.T.; Hoa, P.V.; Pham, T.D.; Samui, P.; Costache, R. A Novel Deep Learning Neural Network Approach for Predicting Flash Flood Susceptibility: A Case Study at a High Frequency Tropical Storm Area. Sci. Total Environ. 2020, 701, 134413. [Google Scholar] [CrossRef] [PubMed]
- Le Lay, M.; Saulnier, G.M. Exploring the Signature of Climate and Landscape Spatial Variabilities in Flash Flood Events: Case of the 8–9 September 2002 Cévennes-Vivarais Catastrophic Event. Geophys. Res. Lett. 2007, 34, 1–5. [Google Scholar] [CrossRef]
- Chancibault, K.; Anquetin, S.; Ducrocq, V.; Saulnier, G.M. Hydrological Evaluation of High-Resolution Precipitation Forecasts of the Gard Flash-Flood Events (8–9 September 2002). Q. J. R. Meteorol. Soc. 2006, 132, 1091–1117. [Google Scholar] [CrossRef]
- Berne, A.; Delrieu, G.; Boudevillain, B. Variability of the Spatial Structure of Intense Mediterranean Precipitation. Adv. Water Resour. 2009, 32, 1031–1042. [Google Scholar] [CrossRef] [Green Version]
- Ambrizzi, T.; Reboita, M.S.; da Rocha, R.P.; Llopart, M. The State of the Art and Fundamental Aspects of Regional Climate Modeling in South America. Ann. N. Y. Acad. Sci. 2019, 1436, 98–120. [Google Scholar] [CrossRef]
- Giorgi, F. Thirty Years of Regional Climate Modeling: Where Are We and Where Are We Going Next? J. Geophys. Res. Atmos. 2019, 124, 5696–5723. [Google Scholar] [CrossRef] [Green Version]
- Althoff, D.; Rodrigues, L.N.; da Silva, D.D. Impacts of Climate Change on the Evaporation and Availability of Water in Small Reservoirs in the Brazilian Savannah. Clim. Chang. 2020, 159, 215–232. [Google Scholar] [CrossRef]
- Brêda, J.P.L.F.; de Paiva, R.C.D.; Chou, S.C.; Collischonn, W. Assessing Extreme Precipitation from a Regional Climate Model in Different Spatial–Temporal Scales: A Hydrological Perspective in South America. Int. J. Climatol. 2022, 2021, 1–24. [Google Scholar] [CrossRef]
- Michelan, M.G.; Menegaz, M.N.; Gonçalves, F.A.; Henrique, P.; Menezes, B.J.; de Oliveira Tiezzi, R. Estimating the Impact of Climate Change on Water Levels in a Data-Poor River Basin in Southeastern Brazil. Water Policy 2021, 23, 1284–1302. [Google Scholar] [CrossRef]
- Santos, C.A.S.; Rocha, F.A.; Ramos, T.B.; Alves, L.M.; Mateus, M.; de Oliveira, R.P.; Neves, R. Using a Hydrologic Model to Assess the Performance of Regional Climate Models in a Semi-Arid Watershed in Brazil. Water 2019, 11, 170. [Google Scholar] [CrossRef] [Green Version]
- Chou, S.C.; Lyra, A.; Mourão, C.; Dereczynski, C.; Pilotto, I.; Gomes, J.; Bustamante, J.; Tavares, P.; Silva, A.; Rodrigues, D.; et al. Assessment of Climate Change over South America under RCP 4.5 and 8.5 Downscaling Scenarios. Am. J. Clim. Chang. 2014, 3, 512–527. [Google Scholar] [CrossRef] [Green Version]
- de Oliveira, V.A.; de Mello, C.R.; Beskow, S.; Viola, M.R.; Srinivasan, R. Modeling the Effects of Climate Change on Hydrology and Sediment Load in a Headwater Basin in the Brazilian Cerrado Biome. Ecol. Eng. 2019, 133, 20–31. [Google Scholar] [CrossRef]
- Andrade, C.W.L.; Montenegro, S.M.G.L.; Montenegro, A.A.A.; Lima, J.R.d.S.; Srinivasan, R.; Jones, C.A. Climate Change Impact Assessment on Water Resources under RCP Scenarios: A Case Study in Mundaú River Basin, Northeastern Brazil. Int. J. Climatol. 2021, 41, E1045–E1061. [Google Scholar] [CrossRef]
- Chou, S.C.; Lyra, A.; Mourão, C.; Dereczynski, C.; Pilotto, I.; Gomes, J.; Bustamante, J.; Tavares, P.; Silva, A.; Rodrigues, D.; et al. Evaluation of the Eta Simulations Nested in Three Global Climate Models. Am. J. Clim. Chang. 2014, 3, 438–454. [Google Scholar] [CrossRef] [Green Version]
- Lyra, A.; Tavares, P.; Chou, S.C.; Sueiro, G.; Dereczynski, C.; Sondermann, M.; Silva, A.; Marengo, J.; Giarolla, A. Climate Change Projections over Three Metropolitan Regions in Southeast Brazil Using the Non-Hydrostatic Eta Regional Climate Model at 5-Km Resolution. Theor. Appl. Climatol. 2018, 132, 663–682. [Google Scholar] [CrossRef]
- Almagro, A.; Oliveira, P.T.S.; Rosolem, R.; Hagemann, S.; Nobre, C.A. Performance Evaluation of Eta/HadGEM2-ES and Eta/MIROC5 Precipitation Simulations over Brazil. Atmos. Res. 2020, 244, 105053. [Google Scholar] [CrossRef]
- Alvarenga, L.A.; de Mello, C.R.; Colombo, A.; Chou, S.C.; Cuartas, L.A.; Viola, M.R. Impacts of Climate Change on the Hydrology of a Small Brazilian Headwater Catchment Using the Distributed Hydrology-Soil-Vegetation Model. Am. J. Clim. Chang. 2018, 7, 355–366. [Google Scholar] [CrossRef] [Green Version]
- Bai, Y.; Zhang, Z.; Zhao, W. Assessing the Impact of Climate Change on Flood Events Using HEC-HMS and CMIP5. Water Air Soil Pollut. 2019, 230, 1–13. [Google Scholar] [CrossRef]
- Danielson, S.L.; Hill, D.F.; Hedstrom, K.S.; Beamer, J.; Curchitser, E. Demonstrating a High-Resolution Gulf of Alaska Ocean Circulation Model Forced Across the Coastal Interface by High-Resolution Terrestrial Hydrological Models. J. Geophys. Res. Oceans 2020, 125, 1–20. [Google Scholar] [CrossRef]
- Vezzoli, R.; Mercogliano, P.; Pecora, S.; Zollo, A.L.; Cacciamani, C. Hydrological Simulation of Po River (North Italy) Discharge under Climate Change Scenarios Using the RCM COSMO-CLM. Sci. Total Environ. 2015, 521–522, 346–358. [Google Scholar] [CrossRef]
- Peres, D.J.; Modica, R.; Cancelliere, A. Assessing Future Impacts of Climate Change on Water Supply System Performance: Application to the Pozzillo Reservoir in Sicily, Italy. Water 2019, 11, 2531. [Google Scholar] [CrossRef] [Green Version]
- Seneviratne, S.I.; Zhang, X.; Adnan, M.; Badi, W.; Dereczynski, C.; Di Luca, A.; Ghosh, S.; Iskandar, I.; Kossin, J.; Lewis, S.; et al. Weather and Climate Extreme Events in a Changing Climate. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar] [CrossRef]
- Maraun, D.; Wetterhall, F.; Ireson, A.M.; Chandler, R.E.; Kendon, E.J.; Widmann, M.; Brienen, S.; Rust, H.W.; Sauter, T.; Themel, M.; et al. Precipitation Downscaling under Climate Change: Recent Developments to Bridge the Gap between Dynamical Models and the End User. Rev. Geophys. 2010, 48, 1–34. [Google Scholar] [CrossRef] [Green Version]
- Brighenti, T.M.; Gassman, P.W.; Gutowski, W.J.; Thompson, J.R. Assessing the Influence of a Bias Correction Method on Future Climate Scenarios Using SWAT as an Impact Model Indicator. Water 2023, 15, 750. [Google Scholar] [CrossRef]
- Cardell, M.F.; Amengual, A.; Romero, R.; Ramis, C. Future Extremes of Temperature and Precipitation in Europe Derived from a Combination of Dynamical and Statistical Approaches. Int. J. Climatol. 2020, 40, 4800–4827. [Google Scholar] [CrossRef]
- Li, J.; Yu, R.; Yuan, W.; Chen, H. Changes in Duration-Related Characteristics of Late-Summer Precipitation over Eastern China in the Past 40 Years. J. Clim. 2011, 24, 5683–5690. [Google Scholar] [CrossRef]
- Lupikasza, E. Spatial and Temporal Variability of Extreme Precipitation in Poland in the Period 1951-2006. Int. J. Climatol. 2010, 30, 991–1007. [Google Scholar] [CrossRef]
- Zhang, X.; Zwiers, F.W.; Li, G.; Wan, H.; Cannon, A.J. Complexity in Estimating Past and Future Extreme Short-Duration Rainfall. Nat. Geosci. 2017, 10, 255–259. [Google Scholar] [CrossRef]
- Pierce, D.W.; Barnett, T.P.; Santer, B.D.; Gleckler, P.J.; Designed, P.J.G.; Performed, T.P.B. Selecting Global Climate Models for Regional Climate Change Studies. Proc. Natl. Acad. Sci. USA 2009, 106, 8441–8446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jahangir, M.H.; Haghighi, P.; Danehkar, S. Downscaling Climate Parameters in Fars Province, Using Models of the Fifth Report and RCP Scenarios. Ecol. Inform. 2022, 68, 101558. [Google Scholar] [CrossRef]
- Dereczynski, C.; Chan Chou, S.; Lyra, A.; Sondermann, M.; Regoto, P.; Tavares, P.; Chagas, D.; Gomes, J.L.; Rodrigues, D.C.; de los Milagros Skansi, M. Downscaling of Climate Extremes over South America—Part I: Model Evaluation in the Reference Climate. Weather Clim. Extremes 2020, 29, 100273. [Google Scholar] [CrossRef]
Year | 2005 | 2016 | 2019 |
---|---|---|---|
Type | Area (km2) | Area (km2) | Area (km2) |
Water | 0.01 | 0.01 | 0.01 |
Industrial | 0.21 | 0.25 | 0.25 |
Buildings | 6.06 | 6.12 | 6.12 |
Pasture | 8.47 | 8.55 | 7.83 |
Expose Soil | 0.54 | 0.51 | 1.23 |
Vegetation | 11.25 | 11.10 | 11.10 |
Total | 26.54 | 26.54 | 26.54 |
Observed Data (1979–2018) | Eta/HadGEM2-ES Present (1979–2018) | Eta/HadGEM2-ES Future (2019–2048) | Flow Bias Percentage à Percent Difference in Flow | Rainfall Bias Percentage à Percent Difference in Rainfall | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Combination | Division | Peak Flow (m3/s) | Rainfall (mm) | Peak Flow (m3/s) | Rainfall (mm) | Peak Flow (m3/s) | Rainfall (mm) | Present Model–Observed | Future–Present | Present Model–Observed | Future–Present |
TR05 | Spring | 84.5 | 84.07 | 65.7 | 71.87 | 48.6 | 59.67 | −22.25% | −26.03% | −14.51% | −16.98% |
Medium | 119.2 | 84.07 | 93.1 | 71.87 | 69.1 | 59.67 | −21.90% | −25.78% | −14.51% | −16.98% | |
Low | 138.3 | 84.07 | 106.9 | 71.87 | 78.4 | 59.67 | −22.70% | −26.66% | −14.51% | −16.98% | |
TR05 S | Spring | 84.5 | 84.07 | 65.7 | 71.87 | 48.6 | 59.67 | −22.25% | −26.03% | −14.51% | −16.98% |
Medium | 82.1 | - | 63.9 | - | 47.3 | - | −22.17% | −25.98% | - | - | |
Low | 82.1 | - | 63.9 | - | 47.3 | - | −22.17% | −25.98% | - | - | |
TR05 M | Spring | - | - | - | - | - | - | - | - | - | - |
Medium | 95.6 | 84.07 | 74.2 | 71.87 | 54.7 | 59.67 | −22.38% | −26.28% | −14.51% | −16.98% | |
Low | 95.6 | - | 74.2 | - | 54.7 | - | −22.38% | −26.28% | - | - | |
TR05 L | Spring | - | - | - | - | - | - | - | - | - | - |
Medium | - | - | - | - | - | - | - | - | - | - | |
Low | 55.6 | 84.07 | 39.5 | 71.87 | 25.9 | 59.67 | −28.96% | −34.43% | −14.51% | −16.98% | |
TR05 SM | Spring | 84.5 | 84.07 | 65.7 | 71.87 | 48.6 | 59.67 | −22.25% | −26.03% | −14.51% | −16.98% |
Medium | 119.2 | 84.07 | 93.1 | 71.87 | 69.1 | 59.67 | −21.90% | −25.78% | −14.51% | −16.98% | |
Low | 119.2 | 0.0 | 93.1 | 0.0 | 69.1 | 0.0 | −21.90% | −25.78% | - | - | |
TR05 SL | Spring | 84.5 | 84.07 | 65.7 | 71.87 | 48.6 | 59.67 | −22.25% | −26.03% | −14.51% | −16.98% |
Medium | 82.1 | - | 63.9 | - | 47.3 | - | −22.17% | −25.98% | - | - | |
Low | 97.3 | 84.07 | 75.3 | 71.87 | 55.2 | 59.67 | −22.61% | −26.69% | −14.51% | −16.98% | |
TR05 ML | Spring | - | - | - | - | - | - | - | - | - | - |
Medium | 95.6 | 84.07 | 74.2 | 71.87 | 54.7 | 59.67 | −22.38% | −26.28% | −14.51% | −16.98% | |
Low | 124.8 | 84.07 | 95.7 | 71.87 | 69.2 | 59.67 | −23.32% | −27.69% | −14.51% | −16.98% |
Data Source | Accumulated 06 h Rainfall (mm) | |||||||
---|---|---|---|---|---|---|---|---|
TR 05 | TR 10 | TR 15 | TR 20 | TR 25 | TR 30 | TR 50 | TR 100 | |
Observed (1979–2018) | 84.07 | 95.92 | 102.60 | 107.26 | 110.85 | 113.77 | 121.88 | 132.63 |
Present climate (1979–2018) | 71.87 | 78.81 | 81.89 | 83.76 | 85.05 | 86.02 | 88.36 | 90.63 |
Future climate (2019–2048) | 59.67 | 69.83 | 75.78 | 80.00 | 83.27 | 85.94 | 93.43 | 103.60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lima, F.N.; Freitas, A.C.V.; Silva, J. Climate Change Flood Risk Analysis: Application of Dynamical Downscaling and Hydrological Modeling. Atmosphere 2023, 14, 1069. https://doi.org/10.3390/atmos14071069
Lima FN, Freitas ACV, Silva J. Climate Change Flood Risk Analysis: Application of Dynamical Downscaling and Hydrological Modeling. Atmosphere. 2023; 14(7):1069. https://doi.org/10.3390/atmos14071069
Chicago/Turabian StyleLima, Fernando Neves, Ana Carolina Vasques Freitas, and Josiano Silva. 2023. "Climate Change Flood Risk Analysis: Application of Dynamical Downscaling and Hydrological Modeling" Atmosphere 14, no. 7: 1069. https://doi.org/10.3390/atmos14071069
APA StyleLima, F. N., Freitas, A. C. V., & Silva, J. (2023). Climate Change Flood Risk Analysis: Application of Dynamical Downscaling and Hydrological Modeling. Atmosphere, 14(7), 1069. https://doi.org/10.3390/atmos14071069