Examining the Microclimate Pattern and Related Spatial Perception of the Urban Stormwater Management Landscape: The Case of Rain Gardens
Abstract
:1. Introduction
1.1. Overview
1.2. GSI and Related Landscape Design
1.3. The Rain Garden as an Important Component of GSI
1.4. Microclimate Impacts of GSI and the Urban Living Environment
2. Knowledge Gap and Research Framework
3. Research Methods
3.1. Rain Garden Prototype Design
3.2. Microclimate Impacts Analysis
3.3. Microclimate Comfort and Perception Analysis
4. Results
4.1. Microclimate Patterns for Different Rain Garden Design Options
4.1.1. Potential Air Temperature
4.1.2. Relative Humidity
4.1.3. Wind Speed and Direction
4.2. Results of the Spatial Perception Study
5. Data Analysis
5.1. Potential Air Temperature and Rain Garden Design
5.2. Relative Humidity and Rain Garden Design
5.3. Wind Speed/Direction and Rain Garden Design
5.4. Public Perception of the Rain Garden Design
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tóth, A.; Halajová, D.; Halaj, P. Green infrastructure: A strategic tool for climate change mitigation in urban environments. Ecol. Saf. 2015, 9, 132–138. [Google Scholar]
- Suppakittpaisarn, P.; Jiang, X.; Sullivan, W.C. Green infrastructure, green stormwater infrastructure, and human health: A review. Curr. Landsc. Ecol. Rep. 2017, 2, 96–110. [Google Scholar] [CrossRef] [Green Version]
- Jensen, M. Stormwater Management in the Urban Landscape. In Proceedings of the 11th ICUD-International Conference on Urban Drainage, Edinburgh, Scotland, UK, 23–29 September 2008; Volume 31. [Google Scholar]
- Goulden, S.; Portman, M.E.; Carmon, N.; Alon-Mozes, T. From conventional drainage to sustainable stormwater management: Beyond the technical challenges. J. Environ. Manag. 2018, 219, 37–45. [Google Scholar] [CrossRef]
- Barbosa, A.E.; Fernandes, J.N.; David, L.M. Key issues for sustainable urban stormwater management. Water Res. 2012, 46, 6787–6798. [Google Scholar] [CrossRef] [PubMed]
- Che, W.; Zhao, Y.; Yang, Z.; Li, J.; Shi, M. Integral stormwater management master plan and design in an ecological community. J. Environ. Sci. 2014, 26, 1818–1823. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Nassauer, J. Community experiences of landscape-based stormwater management practices: A review. Ambio 2022, 51, 1837–1854. [Google Scholar] [CrossRef] [PubMed]
- Liptan, T.W. Sustainable Stormwater Management: A Landscape-Driven Approach to Planning and Design; Timber Press: Portland, OR, USA, 2017. [Google Scholar]
- Apfelbaum, S.I. The Role of Landscapes in Stormwater Management. In 1EPA Seminar Publication; EPA: Chicago, IL, USA, 1995; p. 165. [Google Scholar]
- Dunnett, N.; Clayden, A. Rain Gardens. In Managing Water Sustainably in the Garden and Designed Landscape; Timber Press: Portland, OR, USA, 2007. [Google Scholar]
- Sharma, R.; Malaviya, P. Management of stormwater pollution using green infrastructure: The role of rain gardens. Wiley Interdiscip. Rev. Water 2021, 8, e1507. [Google Scholar] [CrossRef]
- Somes, N.; Potter, M.; Crosby, J.; Pfitzner, M. Rain garden: Design, construction and maintenance recommendations based on a review of existing systems. Rainwater Urban Des. 2007, 2007, 1043–1050. [Google Scholar]
- Singh, K. Rain garden—A solution to urban flooding: A review. In Sustainable Engineering: Proceedings of EGRWSE; Springer: Berlin/Heidelberg, Germany, 2019; Volume 2018, pp. 27–35. [Google Scholar]
- Asleson, B.C.; Nestingen, R.S.; Gulliver, J.S.; Hozalski, R.M.; Nieber, J.L. Performance assessment of rain gardens 1. JAWRA J. Am. Water Resour. Assoc. 2009, 45, 1019–1031. [Google Scholar] [CrossRef]
- Smalls-Mantey, L.A. The Potential Role of Green Infrastructure in the Mitigation of the Urban Heat Island; Drexel University: Philadelphia, PA, USA, 2017. [Google Scholar]
- Balany, F.; Muttil, N.; Muthukumaran, S.; Wong, M.S.; Ng, A.W. Studying the Effect of Blue-Green Infrastructure on Microclimate and Human Thermal Comfort in Melbourne’s Central Business District. Sustainability 2022, 14, 9057. [Google Scholar] [CrossRef]
- Bosco, R.; Giacobbe, S.; Losco, S.; Valente, R. Intra-scale Design and Benefit Assessment of Green Stormwater Infrastructures. In New Metropolitan Perspectives: Post COVID Dynamics: Green and Digital Transition, between Metropolitan and Return to Villages Perspectives; Springer: Berlin/Heidelberg, Germany, 2022; pp. 1956–1965. [Google Scholar]
- Sanusi, R.; Bidin, S. Re-naturing cities: Impact of Microclimate, Human Thermal Comfort and Recreational Participation. In Climate Change, Hazards and Adaptation Options: Handling the Impacts of a Changing Climate; Springer: Berlin/Heidelberg, Germany, 2020; pp. 545–562. [Google Scholar]
- Wang, L.; Ge, M.; Chen, N.; Ding, J.; Shen, X. An Evaluation Model of Riparian Landscape: A Case in Rural Qingxi Area, Shanghai. Land 2022, 11, 1512. [Google Scholar] [CrossRef]
- Alcazar, S.S.; Olivieri, F.; Neila, J. Green roofs: Experimental and analytical study of its potential for urban microclimate regulation in Mediterranean–continental climates. Urban Clim. 2016, 17, 304–317. [Google Scholar] [CrossRef]
- Buyadi, S.N.A.; Mohd, W.M.N.W.; Misni, A. Green spaces growth impact on the urban microclimate. Procedia Soc. Behav. Sci. 2013, 105, 547–557. [Google Scholar] [CrossRef] [Green Version]
- Cui, X.; Ge, M.; Shen, X. Application of Comprehensive Evaluation in New-Product-Development Evaluation: The Case of Landscape-Architectural Outdoor Wooden Furnishing. Forests 2022, 13, 1552. [Google Scholar] [CrossRef]
- Shen, X.; Chen, M.; Ge, M.; Padua, M.G. Examining the conceptual model of potential urban development patch (PUDP), VOCs, and food culture in urban ecology: A case in Chengdu, China. Atmosphere 2022, 13, 1369. [Google Scholar] [CrossRef]
- Brown, R.D. Design with Microclimate: The Secret to Comfortable Outdoor Space; Island Press: Washington, DC, USA, 2010. [Google Scholar]
- Piselli, C.; Castaldo, V.; Pigliautile, I.; Pisello, A.; Cotana, F. Outdoor comfort conditions in urban areas: On citizens’ perspective about microclimate mitigation of urban transit areas. Sustain. Cities Soc. 2018, 39, 16–36. [Google Scholar] [CrossRef]
- Dietz, M.E.; Clausen, J.C. A field evaluation of rain garden flow and pollutant treatment. Water Air Soil Pollut. 2005, 167, 123–138. [Google Scholar] [CrossRef]
- Li, J.; Xiang, L.; Che, W.; Ge, R. Design and Hydrologic Estimation Method of Multi-Purpose Rain Garden: Beijing Case Study. In Low Impact Development for Urban Ecosystem and Habitat Protection; American Society of Civil Engineers: Reston, VA, USA, 2009; pp. 1–10. [Google Scholar]
- Trowsdale, S.A.; Simcock, R. Urban stormwater treatment using bioretention. J. Hydrol. 2011, 397, 167–174. [Google Scholar] [CrossRef]
- Sun, Y.; Li, Q.; Yu, F.; Ma, M.; Xu, C. Assessing Hydrological Performances of Bioretention Cells to Meet the LID Goals. Sustainability 2023, 15, 4204. [Google Scholar] [CrossRef]
- Ishimatsu, K.; Ito, K.; Mitani, Y.; Tanaka, Y.; Sugahara, T.; Naka, Y. Use of rain gardens for stormwater management in urban design and planning. Landsc. Ecol. Eng. 2017, 13, 205–212. [Google Scholar] [CrossRef]
- Leatherbarrow, D. Uncommon Ground: Architecture, Technology, and Topography; Mit Press: Cambridge, MA, USA, 2002. [Google Scholar]
- Strom, S.; Nathan, K.; Woland, J. Site Engineering for Landscape Architects; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Mazzeo, D.; Matera, N.; Peri, G.; Scaccianoce, G. Forecasting green roofs’ potential in improving building thermal performance and mitigating urban heat island in the Mediterranean area: An artificial intelligence-based approach. Appl. Therm. Eng. 2023, 222, 119879. [Google Scholar] [CrossRef]
- Li, Y.; Song, Y.; Cho, D.; Han, Z. Zonal classification of microclimates and their relationship with landscape design parameters in an urban park. Landsc. Ecol. Eng. 2019, 15, 265–276. [Google Scholar] [CrossRef]
- Ozkeresteci, I.; Crewe, K.; Brazel, A.; Bruse, M. Use and evaluation of the ENVI-met model for environmental design and planning: An experiment on linear parks. In Proceedings of the 21st International Cartographic Conference (ICC), Durban, South Africa, 10–16 August 2003; pp. 10–16. [Google Scholar]
- Tsoka, S.; Tsikaloudaki, A.; Theodosiou, T. Analyzing the ENVI-met microclimate model’s performance and assessing cool materials and urban vegetation applications—A review. Sustain. Cities Soc. 2018, 43, 55–76. [Google Scholar] [CrossRef]
- Sunrise and Sunset Times in Virginia. Available online: https://www.timeanddate.com/sun/@5051468 (accessed on 2 June 2023).
- Wang, L.; Ding, J.; Chen, M.; Sun, Y.; Tang, X.; Ge, M. Exploring tourists’ multilevel spatial cognition of historical town based on multi-source data—A case study of Feng Jing Ancient Town in Shanghai. Buildings 2022, 12, 1833. [Google Scholar] [CrossRef]
- Cantrell, B.; Michaels, W. Digital Drawing for Landscape Architecture: Contemporary Techniques and Tools for Digital Representation in Site Design; John Wiley & Sons: Hoboken, NJ, USA, 2010. [Google Scholar]
- Treib, M. Representing Landscape Architecture; Taylor & Francis: Abingdon, UK, 2008. [Google Scholar]
- Yan, J. An Evaluation of Current Applications of 3D Visualization Software in Landscape Architecture. Master’s Thesis, Utah State University, Logan, UT, USA, May 2014. [Google Scholar]
- Wu, L.; Sun, J.; Wang, J.; Zhang, Y.; Zhang, F. The Design of Virtual Town Based on TwinMotion. In Proceedings of the 2020 International Conference on Virtual Reality and Visualization (ICVRV), Recife, Brazil, 13–14 November 2020; pp. 348–349. [Google Scholar]
- Ge, M.; Huang, Y.; Kim, M. How Virtual Reality Renderings Impact Scale and Distance Perception Compared to Traditional Representation. J. Digit. Landsc. Archit. 2023, 8, 533–542. [Google Scholar]
- Kim, M.; Kang, Y.; Hong, S.; Abel, T. Difference of Perceived Fear between Actual Environment and Image-Based Environment Using Eye Tracking Method. In Proceedings of the Digital Landscape Architecture, Zurich, Switzerland, 21–23 May 2014; Semantic Scholar: Washington, DC, USA, 2014; pp. 331–340. [Google Scholar]
- Bulut, Z.; Karahan, F.; Sezen, I. Determining visual beauties of natural waterscapes: A case study for Tortum Valley (Erzurum/Turkey). Sci. Res. Essay 2010, 5, 170–182. [Google Scholar]
- Wang, Z.; Sun, H.; Li, J. Research on Architectural Color and Visual Comfort in Historic Landscape Areas. Buildings 2023, 13, 1004. [Google Scholar] [CrossRef]
- Jansson, M.; Fors, H.; Lindgren, T.; Wiström, B. Perceived personal safety in relation to urban woodland vegetation—A review. Urban For. Urban Green. 2013, 12, 127–133. [Google Scholar] [CrossRef] [Green Version]
Variables | Scale/m2 | Depth of Rain Garden/m | Planting Design |
---|---|---|---|
Levels | 6 × 6 m2 (36) 10 × 10 m2 (100) | 0.5 m (0.5) 1.0 m (1.0) | Only ground cover (G) Ground cover + shrub (GS) Ground + shrub + tree (GST) |
Evaluation Matrix | Visual Comforts | Landscape Visual Beauty | Overall Favorite |
---|---|---|---|
Grading criteria | Very uncomfortable: 1 | Very bad visual beauty:1 | Very bad: 1 |
A little bit uncomfortable: 2 | Relatively bad visual beauty: 2 | Bad: 2 | |
Neutral and indifferent: 3 | Neutral and indifferent: 3 | Fair: 3 | |
Fair comfortable: 4 | Good visual beauty: 4 | Good: 4 | |
Very comfortable: 5 | Excellent visual beauty: 5 | Excellent: 5 |
Scale | Visual Comfort | Landscape Visual Beauty | Overall Favorite | |
---|---|---|---|---|
36 m2 | Mean | 3.43 | 3.35 | 3.44 |
Std. Deviation | 0.839 | 0.840 | 0.782 | |
100 m2 | Mean | 3.91 | 3.95 | 3.95 |
Std. Deviation | 0.743 | 0.776 | 0.743 |
Depth | Feelings of Comfort | Landscape Visual Beauty | Overall Favorite | |
---|---|---|---|---|
0.5 m | Mean | 3.66 | 3.68 | 3.78 |
Std. Deviation | 0.812 | 0.831 | 0.761 | |
1.0 m | Mean | 3.68 | 3.62 | 3.60 |
Std. Deviation | 0.845 | 0.891 | 0.834 |
Planting Design | Feelings of Comfort | Landscape Visual Beauty | Overall Favorite | |
---|---|---|---|---|
G | Mean | 3.15 | 3.04 | 3.17 |
Std. Deviation | 0.725 | 0.746 | 0.677 | |
GS | Mean | 3.55 | 3.59 | 3.60 |
Std. Deviation | 0.650 | 0.651 | 0.654 | |
GST | Mean | 4.31 | 4.32 | 4.32 |
Std. Deviation | 0.650 | 0.657 | 0.625 |
Source | Type III Sum of Squares | df | Mean Square | F | Sig. |
---|---|---|---|---|---|
Corrected Model | 274.370 a | 11 | 24.943 | 63.805 | 0.000 |
Intercept | 12,385.548 | 1 | 12,385.548 | 31,683.072 | 0.000 |
Scale | 54.052 | 1 | 54.052 | 138.268 | 0.000 |
Depth | 0.044 | 1 | 0.044 | 0.113 | 0.736 |
Planting design | 214.935 | 2 | 107.468 | 274.909 | 0.000 |
Scale × Depth | 1.450 | 1 | 1.450 | 3.710 | 0.054 |
Scale × Planting design | 1.622 | 2 | 0.811 | 2.075 | 0.126 |
Depth × Planting design | 7.920 | 2 | 3.960 | 10.130 | 0.000 |
Scale × Depth × Planting design | 0.732 | 2 | 0.366 | 0.937 | 0.392 |
Source | Type III Sum of Squares | df | Mean Square | F | Sig. |
---|---|---|---|---|---|
Corrected Model | 271.742 a | 11 | 24.704 | 63.603 | 0.000 |
Intercept | 12,129.351 | 1 | 12,129.351 | 31,228.343 | 0.000 |
Scale | 52.804 | 1 | 52.804 | 135.951 | 0.000 |
Depth | 0.040 | 1 | 0.040 | 0.103 | 0.748 |
Planting design | 207.282 | 2 | 103.641 | 266.835 | 0.000 |
Scale × Depth | 1.440 | 1 | 1.440 | 3.707 | 0.054 |
Scale × Planting design | 1.602 | 2 | 0.801 | 2.063 | 0.128 |
Depth × Planting design | 7.887 | 2 | 3.943 | 10.153 | 0.000 |
Scale × Depth × Planting design | 0.687 | 2 | 0.343 | 0.884 | 0.414 |
Source | Type III Sum of Squares | df | Mean Square | F | Sig. |
---|---|---|---|---|---|
Corrected Model | 338.489 a | 11 | 30.772 | 83.167 | 0.000 |
Intercept | 11,982.951 | 1 | 11,982.951 | 32,386.354 | 0.000 |
Scale | 79.804 | 1 | 79.804 | 215.688 | 0.000 |
Depth | 0.871 | 1 | 0.871 | 2.354 | 0.125 |
Planting design | 244.949 | 2 | 122.474 | 331.012 | 0.000 |
Scale × Depth | 3.484 | 1 | 3.484 | 9.417 | 0.002 |
Scale × Planting design | 1.069 | 2 | 0.534 | 1.444 | 0.236 |
Depth × Planting design | 6.616 | 2 | 3.308 | 8.940 | 0.000 |
Scale × Depth × Planting design | 1.696 | 2 | 0.848 | 2.291 | 0.102 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ge, M.; Huang, Y.; Zhu, Y.; Kim, M.; Cui, X. Examining the Microclimate Pattern and Related Spatial Perception of the Urban Stormwater Management Landscape: The Case of Rain Gardens. Atmosphere 2023, 14, 1138. https://doi.org/10.3390/atmos14071138
Ge M, Huang Y, Zhu Y, Kim M, Cui X. Examining the Microclimate Pattern and Related Spatial Perception of the Urban Stormwater Management Landscape: The Case of Rain Gardens. Atmosphere. 2023; 14(7):1138. https://doi.org/10.3390/atmos14071138
Chicago/Turabian StyleGe, Mengting, Yang Huang, Yifanzi Zhu, Mintai Kim, and Xiaolei Cui. 2023. "Examining the Microclimate Pattern and Related Spatial Perception of the Urban Stormwater Management Landscape: The Case of Rain Gardens" Atmosphere 14, no. 7: 1138. https://doi.org/10.3390/atmos14071138
APA StyleGe, M., Huang, Y., Zhu, Y., Kim, M., & Cui, X. (2023). Examining the Microclimate Pattern and Related Spatial Perception of the Urban Stormwater Management Landscape: The Case of Rain Gardens. Atmosphere, 14(7), 1138. https://doi.org/10.3390/atmos14071138