Sichuan Rainfall Prediction Using an Analog Ensemble
Abstract
:1. Introduction
2. Overview of the Study Area
3. Data and Methodology
3.1. Data and Pre-Processing
3.2. Method
3.2.1. AnEn Method
3.2.2. Evaluation Method
3.2.3. Interpolation Methods: Bilinear Interpolation
4. Statistical Characteristics of Surface Precipitation Observations and Forecasts
4.1. Spatial Distribution Characteristics of Annual Precipitation in Sichuan
4.2. Temporal Distribution Characteristics of Annual Precipitation in Sichuan
5. Analysis of Analog Ensemble Method Application Results
5.1. Temporal Sequence Effectiveness Evaluation
5.2. Investigation of Precipitation Events across Varying Magnitudes
5.3. Spatial Distribution Evaluation
5.4. Overall Performance Evaluation
6. Discussion and Considerations
- In terms of spatial distribution, the amount of precipitation and rainy days in Sichuan Province generally decreased from east to west. Mountainous regions received higher annual precipitation with a more uniform distribution, whereas hilly and basin regions had an uneven precipitation distribution. In contrast, the plains and basins experienced a more consistent distribution of precipitation with an increased number of rainy days. As for the temporal distribution, autumn recorded the highest number of rainy days, while summer showed the maximum precipitation with continuous autumn rain and short-duration heavy rain.
- The AnEn algorithm improved the accuracy of extended-range precipitation forecasts for different seasons in Sichuan Province, significantly reducing the RMSE of the CFSv2 forecast results. Correction of the model forecast results significantly improved the precipitation forecasting in the region.
- To investigate the causes of varying correction effects in different seasons, we conducted a stratified study on precipitation. We found that the primary reason lay in the differing performances of the CFS model and AnEn correction method in relation to precipitation events at various levels. Notably, the CFS model and AnEn correction method exhibited the poorest performance in the context of heavy rainfall events.
- The effectiveness of the AnEn method in improving the model forecasting ability varies depending on the initial and forecast lead times in different seasons. Generally, the correction effect was more pronounced in spring and summer than in autumn and winter. Furthermore, short-term forecast lead times exhibited better correction effects than long-term forecast lead times. However, individual stations may exhibit suboptimal correction results.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Qian, T.; Zhao, P.; Zhang, F.; Bao, X. Rainy-Season Precipitation over the Sichuan Basin and Adjacent Regions in Southwestern China. Mon. Weather Rev. 2015, 143, 383–394. [Google Scholar] [CrossRef]
- Vitart, F.; Molteni, F. Simulation of the Madden-Julian Oscillation and its teleconnections in the ECMWF forecast system. Q. J. R. Meteorol. Soc. 2010, 136, 842–855. [Google Scholar] [CrossRef]
- Benjamin, S.G.; Weygandt, S.S.; Brown, J.M.; Hu, M.; Alexander, C.R.; Smirnova, T.G.; Olson, J.B.; James, E.P.; Dowell, D.C.; Grell, G.A.; et al. A North American Hourly Assimilation and Model Forecast Cycle: The Rapid Refresh. Mon. Weather Rev. 2016, 144, 1669–1694. [Google Scholar] [CrossRef]
- Bauer, P.; Thorpe, A.; Brunet, G. The quiet revolution of numerical weather prediction. Nature 2015, 525, 47–55. [Google Scholar] [CrossRef]
- Ming, X.; Liang, Q.; Xia, X.; Li, D.; Fowler, H.J. Real-Time Flood Forecasting Based on a High-Performance 2-D Hydrodynamic Model and Numerical Weather Predictions. Water Resour. Res. 2020, 56, e2019WR025583. [Google Scholar] [CrossRef]
- Efstathiou, G.A.; Zoumakis, N.M.; Melas, D.; Lolis, C.J.; Kassomenos, P. Sensitivity of WRF to boundary layer parameterizations in simulating a heavy rainfall event using different microphysical schemes. Effect on large-scale processes. Atmos. Res. 2013, 132–133, 125–143. [Google Scholar]
- Tudor, M.; Ivatek-Šahdan, S.; Stanešić, A.; Horvath, K.; Bajić, A. Forecasting weather in Croatia using ALADIN numerical weather prediction model. In Climate Change and Regional/Local Responses; IntechOpen: London, UK, 2013. [Google Scholar]
- White, C.; Franks, S.; McEvoy, D. Using subseasonal-to-seasonal (S2S) extreme rainfall forecasts for extended-range flood prediction in Australia. Proc. Int. Assoc. Hydrol. Sci. 2015, 370, 229–234. [Google Scholar]
- Lang, L.C.; Tang, C.; Gao, X.; Li, Z.H.; Wu, F. Spatial interpolation of high-resolution daily precipitation over complex terrains. Acta Geogr. Sin. 2023, 78, 101–120. [Google Scholar]
- Zhao, P.W.; Li, B.; Wang, J.N.; Yang, H.Q.; Guo, P.; Gong, L.J. Accuracy Evaluation and Comparison of GPM IMERG and ERA5 Precipitation Products over Complex Terrain of Yunnan. Meteorol. Sci. Technol. 2021, 49, 114–123. [Google Scholar]
- Chen, F.L.; Liu, X.T.; Zeng, D.D.; Jiang, S.; Gan, Q.; Liang, J.J. Effect of topography on a warm-sector heavy rainfall event in the northern pearl river delta. J. Trop. Meteorol. 2022, 38, 377–386. [Google Scholar]
- De Giorgi, M.G.; Ficarella, A.; Tarantino, M. Assessment of the benefits of numerical weather predictions in wind power forecasting based on statistical methods. Energy 2011, 36, 3968–3978. [Google Scholar] [CrossRef]
- Delle Monache, L.; Nipen, T.; Liu, Y.; Roux, G.; Stull, R. Kalman filter and analog schemes to postprocess numerical weather predictions. Mon. Weather Rev. 2011, 139, 3554–3570. [Google Scholar] [CrossRef] [Green Version]
- Falck, A.S.; Tomasella, J.; Diniz, F.L.R.; Maggioni, V. Applying a precipitation error model to numerical weather predictions for probabilistic flood forecasts. J. Hydrol. 2021, 598, 126374. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, J.; Yu, D.; Chang, J. One-day-ahead probabilistic wind speed forecast based on optimized numerical weather prediction data. Energy Convers. Manag. 2018, 164, 560–569. [Google Scholar] [CrossRef]
- Nandar, A. Bayesian network probability model for weather prediction. In Proceedings of the 2009 International Conference on the Current Trends in Information Technology (CTIT), Dubai, United Arab Emirates, 15–16 December 2009; IEEE: Piscataway, NJ, USA, 2009; pp. 1–5. [Google Scholar]
- Zhao, H.S.; Jin, L.; Huang, X.Y.; Huang, Y. Ecmwf precipitation grading correction forecast method based on cnn and rf algorithm. Meteorol. Sci. Technol. 2021, 49, 419–426. [Google Scholar]
- Delle Monache, L.; Eckel, F.A.; Rife, D.L.; Nagarajan, B.; Searight, K. Probabilistic Weather Prediction with an Analog Ensemble. Mon. Weather Rev. 2013, 141, 3498–3516. [Google Scholar] [CrossRef] [Green Version]
- van den Dool, H.M. A New Look at Weather Forecasting through Analogues. Mon. Weather Rev. 1989, 117, 2230–2247. [Google Scholar] [CrossRef]
- Panziera, L.; Germann, U.; Gabella, M.; Mandapaka, P.V. NORA-Nowcasting of Orographic Rainfall by means of Analogues. Q. J. R. Meteorol. Soc. 2011, 137, 2106–2123. [Google Scholar] [CrossRef]
- Hamill, T.M.; Whitaker, J.S. Probabilistic Quantitative Precipitation Forecasts Based on Reforecast Analogs: Theory and Application. Mon. Weather Rev. 2006, 134, 3209–3229. [Google Scholar] [CrossRef]
- Cervone, G.; Clemente-Harding, L.; Alessandrini, S.; Delle Monache, L. Short-term photovoltaic power forecasting using Artificial Neural Networks and an Analog Ensemble. Renew. Energy 2017, 108, 274–286. [Google Scholar] [CrossRef] [Green Version]
- Hu, W.; Cervone, G. Dynamically Optimized Unstructured Grid (DOUG) for Analog Ensemble of numerical weather predictions using evolutionary algorithms. Comput. Geosci. 2019, 133, 104299. [Google Scholar] [CrossRef]
- Junk, C.; Delle Monache, L.; Alessandrini, S.; Cervone, G.; von Bremen, L. Predictor-weighting strategies for probabilistic wind power forecasting with an analog ensemble. Meteorol. Z. 2015, 24, 361–379. [Google Scholar] [CrossRef]
- Zhang, X.; Alexander, L.; Hegerl, G.C.; Jones, P.; Tank, A.K.; Peterson, T.C.; Trewin, B.; Zwiers, F.W. Indices for monitoring changes in extremes based on daily temperature and precipitation data. WIREs Clim. Chang. 2011, 2, 851–870. [Google Scholar] [CrossRef]
- Zhai, P. On changes of China’s maximum and minimum temperature in 1951–1990. Acta Meteorol. Sin. 1999, 13, 190. [Google Scholar]
- Saha, S.; Moorthi, S.; Wu, X.; Wang, J.; Nadiga, S.; Tripp, P.; Behringer, D.; Hou, Y.T.; Chuang, H.Y.; Iredell, M.; et al. The NCEP Climate Forecast System Version 2. J. Clim. 2014, 27, 2185–2208. [Google Scholar] [CrossRef]
- Alessandrini, S.; Sperati, S.; Delle Monache, L. Improving the Analog Ensemble Wind Speed Forecasts for Rare Events. Mon. Weather Rev. 2019, 147, 2677–2692. [Google Scholar] [CrossRef]
- Gneiting, T. Making and Evaluating Point Forecasts. J. Am. Stat. Assoc. 2012, 106, 746–762. [Google Scholar] [CrossRef] [Green Version]
- Alessandrini, S. Predicting Rare Events of Solar Power Production with the Analog Ensemble. Sol. Energy 2022, 231, 72–77. [Google Scholar] [CrossRef]
- Alaoui, B.; Bari, D.; Bergot, T.; Ghabbar, Y. Analog Ensemble Forecasting System for Low-Visibility Conditions over the Main Airports of Morocco. Atmosphere 2022, 13, 1704. [Google Scholar] [CrossRef]
- Candido, S.; Singh, A.; Delle Monache, L. Improving Wind Forecasts in the Lower Stratosphere by Distilling an Analog Ensemble Into a Deep Neural Network. Geophys. Res. Lett. 2020, 47, e2020GL089098. [Google Scholar] [CrossRef]
- Raman, A.; Arellano, A.F.; Delle Monache, L.; Alessandrini, S.; Kumar, R. Exploring Analog-Based Schemes for Aerosol Optical Depth Forecasting with WRF-Chem. Atmos. Environ. 2021, 246, 118134. [Google Scholar] [CrossRef]
- Jeworrek, J.; West, G.; Stull, R. Optimizing Analog Ensembles for Sub-Daily Precipitation Forecasts. Atmosphere 2022, 13, 1662. [Google Scholar] [CrossRef]
- Sha, Y.; Gagne, D.J., II; West, G.; Stull, R. A hybrid analog-ensemble, convolutional-neural-network method for post-processing precipitation forecasts. Mon. Weather. Rev. 2022, 150, 1495–1515. [Google Scholar] [CrossRef]
- Alessandrini, S.; Delle Monache, L.; Rozoff, C.; Lewis, W. Probabilistic Prediction of Hurricane Intensity with an Analog Ensemble. In Proceedings of the 96th American Meteorological Society Annual Meeting, New Orleans, LA, USA, 10–14 January 2016. [Google Scholar]
- Ren, F.; Ding, C.; Zhang, D.L.; Chen, D.; Ren, H.L.; Qiu, W. A Dynamical-Statistical-Analog Ensemble Forecast Model: Theory and an Application to Heavy Rainfall Forecasts of Landfalling Tropical Cyclones. Mon. Weather Rev. 2020, 148, 1503–1517. [Google Scholar] [CrossRef]
- Keller, J.D.; Monache, L.D.; Alessandrini, S. Statistical Downscaling of a High-Resolution Precipitation Reanalysis Using the Analog Ensemble Method. J. Appl. Meteorol. Climatol. 2017, 56, 2081–2095. [Google Scholar] [CrossRef]
- Willmott, C.; Matsuura, K. Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim. Res. 2005, 30, 79–82. [Google Scholar] [CrossRef]
- Zhi, X.F.; Wang, S.S.; Zhou, H.M.; Zhu, S.P.; Zhao, H. Statistical downscaling of precipitation forecasting using categorized rainfall regression. Trans. Atmos. Sci. 2016, 39, 329–338. [Google Scholar] [CrossRef]
- Shao, D.; Zhang, Y.; Xu, J.; Zhang, H.; Chen, S.; Tu, S. Comparison between Multi-Physics and Stochastic Approaches for the 20 July 2021 Henan Heavy Rainfall Case. Atmosphere 2022, 13, 1057. [Google Scholar] [CrossRef]
- Li, J.; Heap, A.D. A review of comparative studies of spatial interpolation methods in environmental sciences: Performance and impact factors. Ecol. Inform. 2011, 6, 228–241. [Google Scholar] [CrossRef]
- Li, J.; Heap, A.D. Spatial interpolation methods applied in the environmental sciences: A review. Environ. Model. Softw. 2014, 53, 173–189. [Google Scholar] [CrossRef]
- Hisham, M.B.; Yaakob, S.N.; Raof, R.A.A.; Nazren, A.B.A.; Wafi, N.M. An Analysis of Performance for Commonly Used Interpolation Method. Adv. Sci. Lett. 2017, 23, 5147–5150. [Google Scholar] [CrossRef]
- Danahy, E.E.; Agaian, S.S.; Panetta, K.A. Algorithms for the resizing of binary and grayscale images using a logical transform. Proc. Imaging Process. Algorithms Syst. 2007, 6497, 305–314. [Google Scholar]
- Deng, L.H.; Liu, G.Q.; Li, X.B.; Song, T.F.; Huang, S.J. Applied Research of Image Zoom Based on Interpolation Algorithm. Microcomput. Inf. 2010, 26, 23–24. [Google Scholar]
- Cheng, Y.L.; He, F.; Tan, F.F.; Wang, Z.D.; Qin, L.A.; Jing, X.; Zhang, S.L.; Hou, Z.H. Research on the laser spot restoration method of detector array target. Laser Infrared 2020, 50, 749–753. [Google Scholar]
- Jing, Z.; Wu, L.X.; Ma, X.H. Sensitivity of near-inertial internal waves to spatial interpolations of wind stress in ocean generation circulation models. Ocean Model. 2016, 99, 15–21. [Google Scholar] [CrossRef] [Green Version]
- Li, P.C.; Liu, X.D. Bilinear interpolation method for quantum images based on quantum Fourier transform. Int. J. Quantum Inf. 2018, 16, 1850031. [Google Scholar] [CrossRef]
- Guo, Y.; Nie, H. Summertime daily precipitation statistics over East China in CFSv2. Phys. Chem. Earth Parts A/B/C 2020, 115, 102841. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lai, P.; Yang, J.; Liu, L.; Zhang, Y.; Sun, Z.; Huang, Z.; Shao, D.; He, L. Sichuan Rainfall Prediction Using an Analog Ensemble. Atmosphere 2023, 14, 1223. https://doi.org/10.3390/atmos14081223
Lai P, Yang J, Liu L, Zhang Y, Sun Z, Huang Z, Shao D, He L. Sichuan Rainfall Prediction Using an Analog Ensemble. Atmosphere. 2023; 14(8):1223. https://doi.org/10.3390/atmos14081223
Chicago/Turabian StyleLai, Pengyou, Jingtao Yang, Lexi Liu, Yu Zhang, Zhaoxuan Sun, Zhefan Huang, Duanzhou Shao, and Linbin He. 2023. "Sichuan Rainfall Prediction Using an Analog Ensemble" Atmosphere 14, no. 8: 1223. https://doi.org/10.3390/atmos14081223
APA StyleLai, P., Yang, J., Liu, L., Zhang, Y., Sun, Z., Huang, Z., Shao, D., & He, L. (2023). Sichuan Rainfall Prediction Using an Analog Ensemble. Atmosphere, 14(8), 1223. https://doi.org/10.3390/atmos14081223