21st Century Warming, Site Aspect, and Reversal of Age-Related Growth Decline in Shortleaf Pine (Pinus echinata) in North Carolina, USA
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lawson, E.R.; Honkala, B.H. Silvics of North America. Volume 1 Conifers. Agriculture Handbook 654. USDA Forest Service. 1990; pp. 316–324. Available online: https://www.srs.fs.usda.gov/pubs/misc/ag_654_vol1.pdf (accessed on 4 February 2022).
- Sutter, R. Ecological and Social History of Shortleaf Pine; Shortleaf Pine Initiative: Lexington, KY, USA, 2019. [Google Scholar]
- Hooten, M.B.; Wikle, C.K. Shifts in the spatio-temporal growth dynamics of shortleaf pine. Environ. Ecol. Stat. 2007, 14, 207–227. [Google Scholar] [CrossRef]
- Guyette, R.P.; Muzika, R.M.; Voelker, S.L. The historical ecology of fire, climate, and the decline of shortleaf pine in the Missouri Ozarks. In Proceedings of the Shortleaf Pine Restoration and Ecology in the Ozarks, Springfield, MO, USA, 7–9 November 2006; U.S. Department of Agriculture Forest Service, Northern Research Station: Newtown Square, PA, USA, 2007; pp. 8–18. [Google Scholar]
- Petruccelli, C.A.; Sakulich, J.; Harley, G.L.; Grissino-Mayer, H.D. Structure and dynamics of an old-growth pine-oak community in the southern Appalachian Mountains, Georgia, USA. Southeast. Geogr. 2014, 54, 161–182. [Google Scholar] [CrossRef]
- Mitchell, T.J.; Knapp, P.A. Radial Growth Responses of Four Southeastern USA Pine Species to Summertime Precipitation Event Types and Intense Rainfall Events. Atmosphere 2022, 13, 1731. [Google Scholar] [CrossRef]
- Earle, C.J. Pinus Echinata. The Gymnosperm Database. 2023. Available online: http://www.conifers.org/pi/Pinus_echinata.php (accessed on 4 February 2022).
- Klockow, P.A.; Edgar, C.B.; Moore, G.W.; Vogel, J.G. Southern pines are resistant to mortality from an exceptional drought in East Texas. Front. For. Glob. Chang. 2020, 3, 23. [Google Scholar] [CrossRef] [Green Version]
- Adhikari, A.; Masters, R.E.; Adams, H.; Mainali, K.P.; Zou, C.B.; Joshi, O.; Will, R.E. Effects of climate variability and management on shortleaf pine radial growth across a forest-savanna continuum in a 34-year experiment. For. Ecol. Manag. 2021, 491, 119125. [Google Scholar] [CrossRef]
- Grissino-Mayer, H.D.; Butler, D.R. Effects of Climate on Growth of Shortleaf Pine (Pinus echinata Mill.) in Northern Georgia: A Dendroclimatic Study. Southeast. Geogr. 1993, 33, 65–81. [Google Scholar] [CrossRef]
- Stambaugh, M.; Guyette, R. Long-Term Growth and Climate Response of Shortleaf Pine at the Missouri Ozark Forest Ecosystem Project. In Proceedings of the 14th Central Hardwoods Conference, Wooster, OH, USA, 16–19 March 2004; U.S. Department of Agriculture, Forest Service, Northeastern Research Station: Newtown Square, PA, USA, 2004; pp. 448–458. [Google Scholar]
- Watkins, K.; Patterson, T.; Knapp, P. Investigating the Climatic Sensitivity of Shortleaf Pine on a Southeastern US College Campus. Southeast. Geogr. 2018, 58, 146–163. [Google Scholar] [CrossRef]
- Palmer, W.C. Meteorological Drought. Research Paper No. 45; Office of Climatology, US Weather Bureau: Washington, DC, USA, 1965; 58p. Available online: droughtmanagement.info/literature/USWB_Meteorological_Drought_1965.pdf (accessed on 25 March 2023).
- Friend, A.L.; Hafley, W.L. Climatic limitations to growth in loblolly and shortleaf pine (Pinus taeda and P. echinata): A dendroclimatological approach. For. Ecol. Manag. 1989, 26, 113–122. [Google Scholar] [CrossRef]
- Rosenberg, N.J.; Blad, B.L.; Verma, S.B. Microclimate The Biological Environment, 2nd ed.; Wiley: New York, NY, USA, 1983; p. 101. [Google Scholar]
- Oberhuber, W.; Kofler, W. Topographic influences on radial growth of Scots pine (Pinus sylvestris L.) at small spatial scales. Plant Ecol. 2000, 146, 229–238. [Google Scholar] [CrossRef]
- Holland, P.G.; Steyn, D.G. Vegetational Responses to Latitudinal Variations in Slope Angle and Aspect. J. Biogeogr. 1975, 2, 179–183. [Google Scholar] [CrossRef]
- Bilir, T.E.; Fung, I.; Dawson, T.E. Slope-Aspect Induced Climate Differences Influence How Water Is Exchanged between the Land and Atmosphere. J. Geophys. Res. Biogeosci. 2021, 126, e2020JG006027. [Google Scholar] [CrossRef]
- Peterson, D.W.; Peterson, D.L. Effects of climate on radial growth of subalpine conifers in the North Cascade Mountains. Can. J. For. Res. 1994, 24, 1921–1932. [Google Scholar] [CrossRef]
- Fekedulegn, D.; Hicks, R.R.; Colbert, J.J. Influence of topographic aspect, precipitation and drought on radial growth of four major tree species in an Appalachian watershed. For. Ecol. Manag. 2003, 177, 409–425. [Google Scholar] [CrossRef]
- Bennie, J.; Huntley, B.; Wiltshire, A.; Hill, M.O.; Baxter, R. Slope, aspect and climate: Spatially explicit and implicit models of topographic microclimate in chalk grassland. Ecol. Model. 2008, 216, 47–59. [Google Scholar] [CrossRef]
- Leonelli, G.; Pelfini, M.; Battipaglia, G.; Cherubini, P. Site-aspect influence on climate sensitivity over time of a high-altitude pinus cembra tree-ring network. Clim. Chang. 2009, 96, 185–201. [Google Scholar] [CrossRef]
- Salzer, M.W.; Larson, E.R.; Bunn, A.G.; Hughes, M.K. Changing climate response in near-treeline bristlecone pine with elevation and aspect. Environ. Res. Lett. 2014, 9, 114007. [Google Scholar] [CrossRef]
- Kelsey, K.C.; Redmond, M.D.; Barger, N.N.; Neff, J.C. Species, Climate and Landscape Physiography Drive Variable Growth Trends in Subalpine Forests. Ecosystems 2018, 21, 125–140. [Google Scholar] [CrossRef]
- Montpellier, E.E.; Soulé, P.T.; Knapp, P.A.; Shelly, J.S. Divergent growth rates of alpine larch trees (Larix lyallii Parl.) in response to microenvironmental variability. Arct. Antarct. Alp. Res. 2018, 50, e1415626. [Google Scholar] [CrossRef] [Green Version]
- Daniel, I.R., Jr.; Butler, J.R. An archaeological survey and petrographic description of rhyolite sources in the Uwharrie Mountains, North Carolina. South. Indian Stud. 1996, 45, 1–37. [Google Scholar]
- National Cooperative SoilSurvey, U.S.A. (N.C. Soil Survey). Uwharrie Series. 1999. Available online: https://soilseries.sc.egov.usda (accessed on 4 February 2022).
- Soil Survey Staff, Natural Resources Conservation Service. Available online: websoilsurvey.nrcs.usda.gov/app (accessed on 17 January 2022).
- Wells, E.F. A Vascular Flora of the Uwharrie Wildlife Management Area Montgomery County, North Carolina. Castanea 1974, 39, 39–57. Available online: http://www.jstor.org/stable/4032647 (accessed on 17 January 2022).
- Bates, M. Montgomery County Natural Heritage Inventory; North Carolina Natural Heritage Program; Division of Parks and Recreation, Department of Environment and Natural Resources: Raleigh, NC, USA, 2001.
- Mapbox OpenStreetMap. Mapping software and Data. 2023. Available online: Mapbox.com (accessed on 23 March 2023).
- Cline, J.M. Age-related morphology of montane populations of shortleaf pine in the Uwharrie Mountains, North Carolina, USA. 2021. Available online: libres.uncg.edu/ir/uncg/f/Cline_uncg_0154M_13279.pdf (accessed on 24 March 2022).
- Guay, R. WinDENDRO 2012: User’s Guide; Regent Instruments Inc.: Québec City, QC, Canada, 2012. [Google Scholar]
- Holmes, R.L. Quality control of crossdating and measuring: A Users manual for computer program COFECHA. In Tree-Ring Chronologies of Western North America: California, Eastern Oregon and Northern Great Basin with Procedures Used in the Chronology Development Work Including Users Manuals for Computer Programs COFECHA and ARSTAN; University of Arizona: Tucson, AZ, USA, 1986. [Google Scholar]
- Cook, E.R.; Peters, K. Calculating unbiased tree-ring indices for the study of climatic and environmental change. Holocene 1997, 7, 361–370. [Google Scholar] [CrossRef]
- Soulé, P.T.; Maxwell, J.T.; Knapp, P.A. Climate-Growth Responses From Pinus ponderosa Trees Using Multiple Measures of Annual Radial Growth. Tree-Ring Res. 2019, 75, 25–33. [Google Scholar] [CrossRef]
- NOAA National Centers for Environmental Information, Climate at a Glance: National Time Series, March 2023. Available online: https://www.ncei.noaa.gov/access/monitoring/climate-at-a-glance/national/time-series (accessed on 5 March 2023).
- Guttman, N.B.; Quayle, R.G. A Historical Perspective of U.S. Climate Divisions. Bull. Am. Meteorol. Soc. 1996, 77, 293–304. [Google Scholar] [CrossRef]
- Carrer, M.; Urbinati, C. Age-dependent tree-ring growth responses to climate in Larix decidua and Pinus cembra. Ecology 2004, 85, 730–740. [Google Scholar] [CrossRef]
- Johnson, S.E.; Abrams, M.D. Age class, longevity, and growth rate relationships: Protracted growth increases in old trees in the eastern United States. Tree Physiol. 2009, 29, 1317–1328. [Google Scholar] [CrossRef] [Green Version]
- Ryan, M.G.; Yoder, B.J. Hydraulic limits to tree height and tree growth. Bioscience 1997, 47, 235–242. [Google Scholar] [CrossRef] [Green Version]
- Voelker, S.L.; Muzika, R.M.; Guyette, R.P.; Stambaugh, M.C. Historical CO2 growth enhancement declines with age in Quercus and Pinus. Ecol. Monogr. 2006, 76, 549–564. [Google Scholar] [CrossRef]
- Soule, P.T.; Knapp, P.A. Radial growth and increased water-use efficiency for ponderosa pine trees in three regions in the Western United States. Prof. Geogr. 2011, 63, 379–391. [Google Scholar] [CrossRef] [Green Version]
- Kosiba, A.M.; Schaberg, P.G.; Rayback, S.A.; Hawley, G.J. The surprising recovery of red spruce, growth shows links to decreased acid deposition and elevated temperature. Sci. Total Environ. 2018, 637, 1480–1491. [Google Scholar] [CrossRef]
- Robeson, S.M. Increasing growing-season length in Illinois during the 20th century. Clim. Chang. 2002, 52, 219–238. [Google Scholar] [CrossRef]
- Linderholm, H.W. Growing season changes in the last century. Agric. For. Meteorol. 2006, 137, 1–14. [Google Scholar] [CrossRef]
- Christiansen, D.E.; Markstrom, S.L.; Hay, L.E. Impacts of climate change on the growing season in the United States. Earth Interact. 2011, 15, 1–17. [Google Scholar] [CrossRef]
- Rossi, S.; Anfodillo, T.; Čufar, K.; Cuny, H.E.; Deslauriers, A.; Fonti, P.; Frank, D.; Gričar, J.; Gruber, A.; Huang, J.; et al. Pattern of xylem phenology in conifers of cold ecosystems at the Northern Hemisphere. Glob. Chang. Biol. 2016, 22, 3804–3813. [Google Scholar] [CrossRef] [Green Version]
- Upadhyay, K.K.; Tripathi, S.K. Sustainable Forest Management under Climate Change: A Dendrochronological Approach. Environ. Ecol. 2019, 37, 998–1006. [Google Scholar]
- Feng, Y.; Shi, S.; Peng, P.; Zhou, Q.; Wang, H.; Liu, X. Lengthening of the growth season, not increased water availability, increased growth of Picea likiangensis var. rubescens plantations on eastern Tibetan Plateau due to climate change. Web Ecol. 2022, 22, 47–58. [Google Scholar] [CrossRef]
- Soulé, P.T.; Knapp, P.A. Radial growth rate increases in naturally occurring. Ponderosa pine trees: A late-20th century CO2 fertilization effect? New Phytol. 2006, 171, 379–390. [Google Scholar] [CrossRef] [PubMed]
- Koutavas, A. CO2 fertilization and enhanced drought resistance in Greek firs from Cephalonia Island, Greece. Glob. Chang. Biol. 2013, 19, 529–539. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, Y.; Ju, W.; Chen, J.M.; Ciais, P.; Cescatti, A.; Sardans, J.; Janssens, I.A.; Wu, M.; Berry, J.A.; et al. Recent global decline of CO2 fertilization effects on vegetation photosynthesis. Science 2020, 370, 1295–1300. [Google Scholar] [CrossRef]
- Girardin, M.P.; Bouriaud, O.; Hogg, E.H.; Kurz, W.; Zimmermann, N.E.; Metsaranta, J.M.; de Jong, R.; Frank, D.C.; Esper, J.; Büntgen, U.; et al. No growth stimulation of Canada’s boreal forest under half-century of combined warming and CO2 fertilization. Proc. Natl. Acad. Sci. USA 2016, 113, E8406–E8414. [Google Scholar] [CrossRef]
- Reed, C.C.; Ballantyne, A.P.; Cooper, L.A.; Sala, A. Limited evidence for CO2-related growth enhancement in northern Rocky Mountain lodgepole pine populations across climate gradients. Glob. Chang. Biol. 2018, 24, 3922–3937. [Google Scholar] [CrossRef]
Chronology | Dated Series | Series Intercorrelation | Mean Sensitivity |
---|---|---|---|
NS EW | 33 | 0.414 | 0.306 |
SS EW | 32 | 0.487 | 0.277 |
NS LW | 33 | 0.586 | 0.432 |
SS LW | 32 | 0.602 | 0.416 |
NS TW | 33 | 0.526 | 0.292 |
SS TW | 32 | 0.588 | 0.270 |
Early Period | ||
---|---|---|
Chronology | Difference of Means | Significance |
EW | 0.01 | 0.73 |
LW | 0.07 | 0.29 |
TW | 0.08 | 0.4 |
Late Period | ||
EW | 0.13 | <0.05 |
LW | 0.15 | <0.001 |
TW | 0.28 | <0.05 |
Full Period | ||
EW | 0.03 | 0.12 |
LW | 0.09 | <0.05 |
TW | 0.12 | <0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lewis, H.S.; Knapp, P.A. 21st Century Warming, Site Aspect, and Reversal of Age-Related Growth Decline in Shortleaf Pine (Pinus echinata) in North Carolina, USA. Atmosphere 2023, 14, 1240. https://doi.org/10.3390/atmos14081240
Lewis HS, Knapp PA. 21st Century Warming, Site Aspect, and Reversal of Age-Related Growth Decline in Shortleaf Pine (Pinus echinata) in North Carolina, USA. Atmosphere. 2023; 14(8):1240. https://doi.org/10.3390/atmos14081240
Chicago/Turabian StyleLewis, Hunter S., and Paul A. Knapp. 2023. "21st Century Warming, Site Aspect, and Reversal of Age-Related Growth Decline in Shortleaf Pine (Pinus echinata) in North Carolina, USA" Atmosphere 14, no. 8: 1240. https://doi.org/10.3390/atmos14081240
APA StyleLewis, H. S., & Knapp, P. A. (2023). 21st Century Warming, Site Aspect, and Reversal of Age-Related Growth Decline in Shortleaf Pine (Pinus echinata) in North Carolina, USA. Atmosphere, 14(8), 1240. https://doi.org/10.3390/atmos14081240