Understanding the Characteristics of Vertical Structures for Wind Speed Observations via Wind-LIDAR on Jeju Island
Abstract
:1. Introduction
2. Data and Methods
3. Results
3.1. Characteristics of Monthly Cycle and Characteristics via Elevation of Bonggae’s Wind
3.2. Mean Diurnal Characteristics of Bonggae’s Winds
3.3. Diurnal Characteristics in Each Season of Bonggae Winds
3.4. Maximum Wind Speed Characteristics of Bonggae Wind According to Altitude
3.5. Long-Term Tendency of Bonggae’s Wind
4. Summary and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rhodes, C.J. The 2015 Paris Climate Change Conference: COP21. Sci. Prog. 2016, 99, 97–104. [Google Scholar] [CrossRef]
- Macknick, J.; Newmark, R.; Heath, G.; Hallett, K.C. Operational Water Consumption and Withdrawal Factors for Electricity Generating Technologies: A Review of Existing Literature. Environ. Res. Lett. 2012, 7, 45802. [Google Scholar] [CrossRef]
- Boyle, G. Renewable Energy; Oxford University Press: Oxford, UK, 2004. [Google Scholar]
- Stull, R.B. An Introduction to Boundary Layer Meteorology; Springer Science; Business & Media: London, UK, 1988; Volume 13, p. 187. [Google Scholar] [CrossRef]
- Porté-Agel, F.; Lu, H.; Wu, Y.T. Interaction Between Large Wind Farms and the Atmospheric Boundary Layer. Proced. Lutam. 2014, 10, 307–318. [Google Scholar] [CrossRef] [Green Version]
- National Academies of Sciences. Engineering, and Medicine Thriving on Our Changing Planet: A Decadal Strategy for Earth Observation from Space; National Academies Press: Washington, DC, USA, 2018. [Google Scholar] [CrossRef]
- National Academies of Sciences. Engineering, and Medicine. The Future of Atmospheric Boundary Layer Observing, Understanding, and Modeling; Proceedings of a Workshop; National Academies Press: Washington, DC, USA, 2018. [Google Scholar] [CrossRef]
- Goodess, C.M.; Troccoli, A.; Acton, C.; Añel, J.A.; Bett, P.E.; Brayshaw, D.J.; De Felice, M.; Dorling, S.R.; Dubus, L.; Penny, L.; et al. Advancing Climate Services for the European Renewable Energy Sector Through Capacity Building and User Engagement. Clim. Serv. 2019, 16, 100139. [Google Scholar] [CrossRef]
- St Martin, C.M.; Lundquist, J.K.; Clifton, A.; Poulos, G.S.; Schreck, S.J. Wind Turbine Power Production and Annual Energy Production Depend on Atmospheric Stability and Turbulence. Wind Energy Sci. 2016, 1, 221–236. [Google Scholar] [CrossRef] [Green Version]
- Doörenkaämper, M.; Tambke, J.; Steinfeld, G.; Heinemann, D.; Kühn, M. Atmospheric Impacts on Power Curves of Multi-Megawatt Offshore Wind Turbines. J. Phys. Conf. Ser. 2014, 555, 012029. [Google Scholar] [CrossRef]
- Wharton, S.; Lundquist, J.K. Atmospheric Stability Affects Wind Turbine Power Collection. Environ. Res. Lett. 2012, 7, 014005. [Google Scholar] [CrossRef]
- Antoniou, I.; Pedersen, S.M.; Enevoldsen, P.B. Wind Shear and Uncertainties in Power Curve Measurement and Wind Resources. Wind Eng. 2009, 33, 449–468. [Google Scholar] [CrossRef]
- Kashani, A.G.; Olsen, M.J.; Parrish, C.E.; Wilson, N. A Review of Lidar Radiometric Processing: From AD HOC Intensity Correction to Rigorous Radiometric Calibration. Sensors 2015, 15, 28099–28128. [Google Scholar] [CrossRef] [Green Version]
- Emeis, S.; Harris, M.; Banta, R.M. Boundary-layer Anemometry by Optical Remote Sensing for Wind Energy Applications. Meteorologische 2007, 16, 337–348. [Google Scholar] [CrossRef] [Green Version]
- Weitkamp, C. Lidar Range-Resolved Optical Remote Sensing of the Atmosphere. In Springer Series in Optical Sciences; Springer: Singapore, 2005; Volume 102, p. 40. [Google Scholar] [CrossRef]
- Melfi, S.H.; Lawrence, J.D.; McCormick, M.P. Observation of Raman Scattering by Water Vapor in the Atmosphere. Appl. Phys. Lett. 1969, 15, 295–297. [Google Scholar] [CrossRef]
- Cooney, J.A. Measurements on the Raman Component of Laser Atmospheric Backscatter. Appl. Phys. Lett. 1968, 12, 40–42. [Google Scholar] [CrossRef]
- Schotland, R.M. Some Observations of the Vertical Profile of Water Vapor by a laser Optical Radar. In Proceedings of the 4th Symposium on Remote Sensing of Environment, Ann Arbor, University of Michigan, Rio de Janeiro, Brazil, 27–31 May 1966; Volume 12–14, pp. 273–283. [Google Scholar]
- Smullin, L.D.; Fiocco, G. Optical Echoes from the Moon. Nature 1962, 194, 1267. [Google Scholar] [CrossRef]
- Woodbury, E.J.; Congleton, R.S.; Morse, J.H.; Stitch, M.L. Design and Operation of an Experimental Colidar; IRE WESCON Convention: San Francisco, CA, USA, 1961; Volume 24. [Google Scholar]
- Maiman, T.H. Stimulated Optical Radiation in Ruby. Nature 1960, 187, 493–494. [Google Scholar] [CrossRef]
- Gonzalez-Aparicio, I.; Monforti, F.; Volker, P.; Zucker, A.; Careri, F.; Huld, T.; Badger, J. Simulating European Wind Power Generation Applying Statistical Downscaling to Reanalysis Data. Appl. Energy 2017, 199, 155–168. [Google Scholar] [CrossRef]
- Liu, Z.; Barlow, J.F.; Chan, P.W.; Fung, J.C.H.; Li, Y.; Ren, C.; Mak, H.W.L.; Ng, E. A Review of Progress and Applications of Pulsed Doppler Wind LiDARs. Remote Sens. 2019, 11, 2522. [Google Scholar] [CrossRef] [Green Version]
- Fujii, T.; Fukuchi, T. Laser Remote Sensing, 1st ed.; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar] [CrossRef]
- Kim, H.G.; Chyng, C.W.; An, H.J.; Ji, Y.M. Comparative Validation of Windcube LIDAR and Remtech SODAR for Wind Resource Assessment—Remote Sensing Campaign at Pohang Accelerator Laboratory. J. Korean Sol. Energy Soc. 2011, 31, 63–71. [Google Scholar] [CrossRef]
- Lee, Y.K.; Lee, S.S.; Kim, H.S. Evaluation of wind hazard over Jeju Island. In Proceedings of the 7th Asia-Pacific Conference on Wind Engineering, Taipei, Taiwan, 8–12 November 2009. [Google Scholar]
- Korea Meteorological Administration. Technical Note of Meteorological Observation Standardization Manual (Publication Registration Number: 11-1360000-001611-09); Korea Meteorological Administration: Seoul, Republic of Korea, 2019; pp. 53–57.
- O’Neill, B.C.; Tebaldi, C.; Van Vuuren, D.P.; Eyring, V.; Friedlingstein, P.; Hurtt, G.; Knutti, R.; Kriegler, E.; Lamarque, J.F.; Lowe, J.; et al. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 2016, 9, 3461–3482. [Google Scholar] [CrossRef] [Green Version]
- Zha, J.; Shen, C.; Zhao, D.; Wu, J.; Fan, W. Slowdown and Reversal of Terrestrial Near-Surface Wind Speed and Its Future Changes over Eastern China. Environ. Res. Lett. 2021, 16, 034028. [Google Scholar] [CrossRef]
- Shen, C.; Zha, J.; Zhao, D.; Wu, J.; Fan, W.; Yang, M.; Li, Z. Estimating Centennial-Scale Changes in Global Terrestrial Near-Surface Wind Speed Based on CMIP6 GCMs. Environ. Res. Lett. 2021, 16, 084039. [Google Scholar] [CrossRef]
- Liu, J.; Gao, Z.; Wang, L.; Li, Y.; Gao, C.Y. The Impact of Urbanization on Wind Speed and Surface Aerodynamic Characteristics in Beijing during 1991–2011. Meteorol. Atmos. Phys. 2018, 130, 311–324. [Google Scholar] [CrossRef]
- Kim, J.C.; Paik, K. Recent Recovery of Surface Wind Speed After Decadal Decrease: A Focus on South Korea. Clim. Dyn. 2015, 45, 1699–1712. [Google Scholar] [CrossRef]
- Adams, A.S.; Keith, D.W. Are Global Wind Power Resource Estimates Overstated? Environ. Res. Lett. 2013, 8, 015021. [Google Scholar] [CrossRef]
- Kim, H.G. Preliminary Estimation of Wind Resource Potential in South Korea. J. Korean Sol. Energy Soc. 2008, 28, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Baidya Roy, S.; Pacala, S.W.; Walko, R.L. Can Large Wind Farms Affect Local Meteorology? J. Geophys. Res. 2004, 109, D19. [Google Scholar] [CrossRef]
- Keith, D.W.; DeCarolis, J.F.; Denkenberger, D.C.; Lenschow, D.H.; Malyshev, S.L.; Pacala, S.; Rasch, P.J. The Influence of Large-Scale Wind Power on Global Climate. Proc. Natl. Acad. Sci. USA 2004, 101, 16115–16120. [Google Scholar] [CrossRef] [PubMed]
- Jeong, H.S.; Kim, Y.H.; Choi, H.W. Characteristics of Wind Environment in Dongbok Bukchon Wind Farm on Jeju. New Renew. Energy 2022, 18, 1–16. [Google Scholar] [CrossRef]
- Kim, D.Y.; Kim, Y.H.; Kim, J.H.; Kim, B.J. Spatial characteristics of wind energy resources over terrain in Jeju Island. New Renew. Energy 2017, 13, 13–20. [Google Scholar] [CrossRef]
- Alblas, L.; Bierbooms, W.; Veldkamp, D. Power output of offshore wind farms in relation to atmospheric stability. J. Phys. Conf. Ser. 2014, 555, 012004. [Google Scholar] [CrossRef]
- Sumner, J.; Masson, C. Influence of atmospheric stability on wind turbine power performance curves. J. Sol. Energy Eng. 2006, 128, 531–538. [Google Scholar] [CrossRef]
- Steiner, M. Urban Air Mobility: Opportunities for the Weather Community. Bull. Am. Meteorol. Soc. 2019, 100, 2131–2133. [Google Scholar] [CrossRef]
- Reiche, C.; McGillen, C.; Siegel, J.; Brody, F. Are We Ready to Weather Urban Air Mobility (UAM)? In Proceedings of the 2019 Integrated Communications, Navigation and Surveillance Conference (ICNS), Herndon, VA, USA, 9–11 April 2019; pp. 1–7. [Google Scholar] [CrossRef]
(m) | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC |
---|---|---|---|---|---|---|---|---|---|---|---|---|
200 | 8.75 | 7.86 | 7.64 | 7.80 | 6.75 | 5.39 | 4.91 | 5.75 | 7.56 | 7.24 | 6.61 | 8.76 |
180 | 8.59 | 7.67 | 7.52 | 7.53 | 6.54 | 5.21 | 4.68 | 5.68 | 7.31 | 7.08 | 6.43 | 8.51 |
160 | 8.43 | 7.55 | 7.34 | 7.37 | 6.35 | 5.12 | 4.56 | 5.66 | 7.04 | 6.87 | 6.29 | 8.40 |
140 | 8.27 | 7.38 | 7.21 | 7.22 | 6.27 | 4.96 | 4.41 | 5.55 | 6.87 | 6.63 | 6.13 | 8.20 |
120 | 8.07 | 7.24 | 7.14 | 7.10 | 6.15 | 4.83 | 4.33 | 5.44 | 6.63 | 6.41 | 5.97 | 7.99 |
100 | 7.86 | 7.22 | 6.98 | 6.93 | 5.98 | 4.72 | 4.21 | 5.33 | 6.40 | 6.16 | 5.81 | 7.76 |
80 | 7.71 | 7.10 | 6.84 | 6.76 | 5.82 | 4.61 | 4.07 | 5.18 | 6.12 | 5.92 | 5.65 | 7.56 |
60 | 7.36 | 6.84 | 6.61 | 6.50 | 5.63 | 4.47 | 3.95 | 4.98 | 5.81 | 5.63 | 5.40 | 7.24 |
50 | 7.17 | 6.67 | 6.49 | 6.31 | 5.47 | 4.37 | 3.86 | 4.88 | 5.64 | 5.45 | 5.28 | 7.05 |
40 | 6.96 | 6.49 | 6.30 | 6.10 | 5.28 | 4.25 | 3.76 | 4.72 | 5.52 | 5.23 | 5.08 | 6.84 |
Height | 40 m | 50 m | 60 m | 80 m | 100 m | 120 m | 140 m | 160 m | 180 m | 200 m |
---|---|---|---|---|---|---|---|---|---|---|
200 m | 0.07 | 0.11 | 0.21 | 0.38 | 0.56 | 0.71 | 0.80 | 0.91 | 0.97 | 1.00 |
180 m | 0.27 | 0.31 | 0.39 | 0.55 | 0.71 | 0.83 | 0.90 | 0.98 | 1.00 | |
160 m | 0.41 | 0.45 | 0.53 | 0.68 | 0.82 | 0.91 | 0.96 | 1.00 | ||
140 m | 0.59 | 0.63 | 0.70 | 0.82 | 0.92 | 0.98 | 1.00 | |||
120 m | 0.70 | 0.74 | 0.80 | 0.89 | 0.96 | 1.00 | ||||
100 m | 0.83 | 0.86 | 0.91 | 0.96 | 1.00 | |||||
80 m | 0.93 | 0.95 | 0.97 | 1.00 | ||||||
60 m | 0.98 | 0.99 | 1.00 | |||||||
50 m | 0.99 | 1.00 | ||||||||
40 m | 1.00 |
# | Name | Latitude (°N) | Longitude (°E) | |
A | Daeheul | 33.447336 | 126.56546 | |
B | Sancheondan | 33.50081 | 126.64947 | |
C | Hallasaengtaesup | 33.43023 | 126.59777 | |
D | Seonheul | 33.48209 | 126.70904 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yi, D.-W.; Choi, H.-W.; Lee, S.-S.; Lee, Y.H. Understanding the Characteristics of Vertical Structures for Wind Speed Observations via Wind-LIDAR on Jeju Island. Atmosphere 2023, 14, 1260. https://doi.org/10.3390/atmos14081260
Yi D-W, Choi H-W, Lee S-S, Lee YH. Understanding the Characteristics of Vertical Structures for Wind Speed Observations via Wind-LIDAR on Jeju Island. Atmosphere. 2023; 14(8):1260. https://doi.org/10.3390/atmos14081260
Chicago/Turabian StyleYi, Dong-Won, Hee-Wook Choi, Sang-Sam Lee, and Yong Hee Lee. 2023. "Understanding the Characteristics of Vertical Structures for Wind Speed Observations via Wind-LIDAR on Jeju Island" Atmosphere 14, no. 8: 1260. https://doi.org/10.3390/atmos14081260
APA StyleYi, D. -W., Choi, H. -W., Lee, S. -S., & Lee, Y. H. (2023). Understanding the Characteristics of Vertical Structures for Wind Speed Observations via Wind-LIDAR on Jeju Island. Atmosphere, 14(8), 1260. https://doi.org/10.3390/atmos14081260