MSAFormer: A Transformer-Based Model for PM2.5 Prediction Leveraging Sparse Autoencoding of Multi-Site Meteorological Features in Urban Areas
Abstract
:1. Introduction
2. Materials
3. Methodology
3.1. Overview of the MSAFormer Model
3.2. Meteorological Sparse Autoencoding Module
3.3. Meteorological Positional Embedding Module
3.4. PM2.5 Prediction Transformer Module
- Encoder: The encoder takes the Meteorological Embedding module’s output as an input and passes it through the multi-head self-attention mechanism and the feed-forward network. The self-attention mechanism allows the model to focus on different parts of the input sequence and considers their importance for the current prediction. The feed-forward network further processes the attended features;
- Decoder: The decoder receives the encoded meteorological data and the historical PM2.5 data . Similar to the encoder, it also contains a multi-head self-attention mechanism and a feed-forward network; however, it has an additional multi-head attention mechanism that attends to the encoder’s output.
3.5. Training Strategy
4. Results and Discussion
4.1. Data Preparation and Evaluation Metrics
4.2. Models Comparation and Performance Analysis
- Support Vector Machine (SVM): This was implemented employing a radial basis function (RBF) kernel. The optimal parameters, C and gamma, were ascertained via a grid search over the parameters of ‘C’: [0.1, 1, 10, 100, 1000] and ‘gamma’: [1, 0.1, 0.01, 0.001, 0.0001];
- Random Forest (RF): the RF model was constructed with a forest of 100 trees, with ‘max_features’ set to ‘sqrt’, a choice guided by the nature of regression tasks;
- Adaptive Boosting (AdaBoost): AdaBoost was set up with 50 weak learners, with a learning rate of 1, ensuring an efficient trade-off between bias and variance;
- Long Short-Term Memory (LSTM): the LSTM, a popular variant of recurrent neural networks, was structured with 50 units, and the activation function was set as ‘tanh’;
- Gated Recurrent Unit (GRU): GRU, a modern variant of recurrent neural networks, shared the same structure as LSTM, with 50 units and a ‘tanh’ activation function.
4.3. Sensitivity Analysis of the MSAFormer Model
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Patz, J.A. Public Health Risk Assessment Linked to Climatic and Ecological Change. Hum. Ecol. Risk Assess. Int. J. 2001, 7, 1317–1327. [Google Scholar] [CrossRef]
- Harlan, S.L.; Ruddell, D.M. Climate change and health in cities: Impacts of heat and air pollution and potential co-benefits from mitigation and adaptation. Curr. Opin. Environ. Sustain. 2011, 3, 126–134. [Google Scholar] [CrossRef]
- Singh, N.; Singh, S.; Mall, R.K. Urban ecology and human health: Implications of urban heat island, air pollution and climate change nexus. In Urban Ecology; Verma, P., Singh, P., Singh, R., Raghubanshi, A.S., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; Chapter 17; pp. 317–334. [Google Scholar]
- Karimi, B.; Meyer, C.; Gilbert, D.; Bernard, N. Air pollution below WHO levels decreases by 40% the links of terrestrial microbial networks. Environ. Chem. Lett. 2016, 14, 467–475. [Google Scholar] [CrossRef]
- Zajchowski, C.A.B.; South, F.; Rose, J.; Crofford, E. The role of temperature and air quality in outdoor recreation behavior: A social-ecological systems approach. Geogr. Rev. 2022, 112, 512–531. [Google Scholar] [CrossRef]
- Wang, C.; Tu, Y.; Yu, Z.; Lu, R. PM2.5 and Cardiovascular Diseases in the Elderly: An Overview. Int. J. Environ. Res. Public Health 2015, 12, 8187–8197. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.-T.; Liao, C.-Y.; Kuo, C.-Y.; Kuo, H.-W. The Effects of PM2.5 from Asian Dust Storms on Emergency Room Visits for Cardiovascular and Respiratory Diseases. Int. J. Environ. Res. Public Health 2017, 14, 428. [Google Scholar] [CrossRef] [PubMed]
- Luo, G.; Zhang, L.; Hu, X.; Qiu, R. Quantifying public health benefits of PM2.5 reduction and spatial distribution analysis in China. Sci. Total Environ. 2020, 719, 137445. [Google Scholar] [CrossRef]
- Al-Hemoud, A.; Gasana, J.; Al-Dabbous, A.; Alajeel, A.; Al-Shatti, A.; Behbehani, W.; Malak, M. Exposure levels of air pollution (PM2.5) and associated health risk in Kuwait. Environ. Res. 2019, 179, 108730. [Google Scholar] [CrossRef]
- McKeen, S.; Chung, S.H.; Wilczak, J.; Grell, G.; Djalalova, I.; Peckham, S.; Gong, W.; Bouchet, V.; Moffet, R.; Tang, Y.; et al. Evaluation of several PM2.5 forecast models using data collected during the ICARTT/NEAQS 2004 field study. J. Geophys. Res. Atmos. 2007, 112, 7608. [Google Scholar] [CrossRef]
- Mahajan, S.; Liu, H.M.; Tsai, T.C.; Chen, L.J. Improving the Accuracy and Efficiency of PM2.5 Forecast Service Using Cluster-Based Hybrid Neural Network Model. IEEE Access 2018, 6, 19193–19204. [Google Scholar] [CrossRef]
- Luo, C.H.; Yang, H.; Huang, L.P.; Mahajan, S.; Chen, L.J. A Fast PM2.5 Forecast Approach Based on Time-Series Data Analysis, Regression and Regularization. In Proceedings of the 2018 Conference on Technologies and Applications of Artificial Intelligence (TAAI), Taichung, Taiwan, 30 November–2 December 2018; pp. 78–81. [Google Scholar]
- Cho, S.; Park, H.; Son, J.; Chang, L. Development of the Global to Mesoscale Air Quality Forecast and Analysis System (GMAF) and Its Application to PM2.5 Forecast in Korea. Atmosphere 2021, 12, 411. [Google Scholar] [CrossRef]
- Hu, J.; Chen, J.; Ying, Q.; Zhang, H. One-year simulation of ozone and particulate matter in China using WRF/CMAQ modeling system. Atmos. Chem. Phys. 2016, 16, 10333–10350. [Google Scholar] [CrossRef]
- Mathur, R.; Xing, J.; Gilliam, R.; Sarwar, G.; Hogrefe, C.; Pleim, J.; Pouliot, G.; Roselle, S.; Spero, T.L.; Wong, D.C.; et al. Extending the Community Multiscale Air Quality (CMAQ) modeling system to hemispheric scales: Overview of process considerations and initial applications. Atmos. Chem. Phys. 2017, 17, 12449–12474. [Google Scholar] [CrossRef] [PubMed]
- Tuccella, P.; Curci, G.; Visconti, G.; Bessagnet, B.; Menut, L.; Park, R.J. Modeling of gas and aerosol with WRF/Chem over Europe: Evaluation and sensitivity study. J. Geophys. Res. Atmos. 2012, 117, 6302. [Google Scholar] [CrossRef]
- Sicard, P.; Crippa, P.; De Marco, A.; Castruccio, S.; Giani, P.; Cuesta, J.; Paoletti, E.; Feng, Z.; Anav, A. High spatial resolution WRF-Chem model over Asia: Physics and chemistry evaluation. Atmos. Environ. 2021, 244, 118004. [Google Scholar] [CrossRef]
- Wang, Q.; Zeng, Q.; Tao, J.; Sun, L.; Zhang, L.; Gu, T.; Wang, Z.; Chen, L. Estimating PM2.5 Concentrations Based on MODIS AOD and NAQPMS Data over Beijing–Tianjin–Hebei. Sensors 2019, 19, 1207. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Q.; Zhu, H.; Gao, Y.; Xie, T.; Liu, S.; Chen, L. Estimating Full-Coverage PM2.5 Concentrations Based on Himawari-8 and NAQPMS Data over Sichuan-Chongqing. Appl. Sci. 2022, 12, 7065. [Google Scholar] [CrossRef]
- Mariano, P.; Almeida, S.M.; Santana, P. On the automated learning of air pollution prediction models from data collected by mobile sensor networks. Energy Sources Part A Recovery Util. Environ. Eff. 2021, 2021, 1–17. [Google Scholar] [CrossRef]
- Wu, Z.; Liu, N.; Li, G.; Liu, X.; Wang, Y.; Zhang, L. Learning Adaptive Probabilistic Models for Uncertainty-Aware Air Pollution Prediction. IEEE Access 2023, 11, 24971–24985. [Google Scholar] [CrossRef]
- Barnard, J.C.; Fast, J.D.; Paredes-Miranda, G.; Arnott, W.P.; Laskin, A. Technical Note: Evaluation of the WRF-Chem “Aerosol Chemical to Aerosol Optical Properties” Module using data from the MILAGRO campaign. Atmos. Chem. Phys. 2010, 10, 7325–7340. [Google Scholar] [CrossRef]
- Jiang, F.; Liu, Q.; Huang, X.; Wang, T.; Zhuang, B.; Xie, M. Regional modeling of secondary organic aerosol over China using WRF/Chem. J. Aerosol Sci. 2012, 43, 57–73. [Google Scholar] [CrossRef]
- Zhang, Y.; Pan, Y.; Wang, K.; Fast, J.D.; Grell, G.A. WRF/Chem-MADRID: Incorporation of an aerosol module into WRF/Chem and its initial application to the TexAQS2000 episode. J. Geophys. Res. Atmos. 2010, 115, 3443. [Google Scholar] [CrossRef]
- Ge, B.Z.; Wang, Z.F.; Xu, X.B.; Wu, J.B.; Yu, X.L.; Li, J. Wet deposition of acidifying substances in different regions of China and the rest of East Asia: Modeling with updated NAQPMS. Environ. Pollut. 2014, 187, 10–21. [Google Scholar] [CrossRef] [PubMed]
- Tie, X.; Brasseur, G.; Ying, Z. Impact of model resolution on chemical ozone formation in Mexico City: Application of the WRF-Chem model. Atmos. Chem. Phys. 2010, 10, 8983–8995. [Google Scholar] [CrossRef]
- Tan, J.; Liu, H.; Li, Y.; Yin, S.; Yu, C. A new ensemble spatio-temporal PM2.5 prediction method based on graph attention recursive networks and reinforcement learning. Chaos Solitons Fractals 2022, 162, 112405. [Google Scholar] [CrossRef]
- Masood, A.; Ahmad, K. Data-driven predictive modeling of PM2.5 concentrations using machine learning and deep learning techniques: A case study of Delhi, India. Environ. Monit. Assess. 2022, 195, 60. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Zhao, X.; Chen, Y. Short-term PM2.5 prediction based on a data-driven heuristic approach. In Proceedings of the 2022 3rd International Conference on Electronic Communication and Artificial Intelligence (IWECAI), Zhuhai, China, 14–16 January 2022; pp. 534–539. [Google Scholar]
- Lai, X.; Li, H.; Pan, Y. A combined model based on feature selection and support vector machine for PM2.5 prediction. J. Intell. Fuzzy Syst. 2021, 40, 10099–10113. [Google Scholar] [CrossRef]
- Mogollón-Sotelo, C.; Casallas, A.; Vidal, S.; Celis, N.; Ferro, C.; Belalcazar, L. A support vector machine model to forecast ground-level PM2.5 in a highly populated city with a complex terrain. Air Qual. Atmos. Health 2021, 14, 399–409. [Google Scholar] [CrossRef]
- Babu, S.; Thomas, B. A survey on air pollutant PM2.5 prediction using random forest model. Environ. Health Eng. Manag. J. 2023, 10, 157–163. [Google Scholar] [CrossRef]
- Wang, Y.; Du, Y.; Fang, J.; Dong, X.; Wang, Q.; Ban, J.; Sun, Q.; Ma, R.; Zhang, W.; He, M.Z.; et al. A Random Forest Model for Daily PM2.5 Personal Exposure Assessment for a Chinese Cohort. Environ. Sci. Technol. Lett. 2022, 9, 466–472. [Google Scholar] [CrossRef]
- Liu, H.; Jin, K.; Duan, Z. Air PM2.5 concentration multi-step forecasting using a new hybrid modeling method: Comparing cases for four cities in China. Atmos. Pollut. Res. 2019, 10, 1588–1600. [Google Scholar] [CrossRef]
- Kim, H.S.; Han, K.M.; Yu, J.; Kim, J.; Kim, K.; Kim, H. Development of a CNN+LSTM Hybrid Neural Network for Daily PM2.5 Prediction. Atmosphere 2022, 13, 2124. [Google Scholar] [CrossRef]
- Dong, J.; Liu, P.; Song, H.; Yang, D.; Yang, J.; Song, G.; Miao, C.; Zhang, J.; Zhang, L. Effects of anthropogenic precursor emissions and meteorological conditions on PM2.5 concentrations over the “2+26” cities of northern China. Environ. Pollut. 2022, 315, 120392. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, P.; Song, H.; Miao, C.; Yang, J.; Zhang, L.; Dong, J.; Liu, Y.; Zhang, Y.; Li, B. Multi-Scale Effects of Meteorological Conditions and Anthropogenic Emissions on PM2.5 Concentrations over Major Cities of the Yellow River Basin. Int. J. Environ. Res. Public Health 2022, 19, 15060. [Google Scholar] [CrossRef]
- Xing, Q.; Sun, M. Characteristics of PM2.5 and PM10 Spatio-Temporal Distribution and Influencing Meteorological Conditions in Beijing. Atmosphere 2022, 13, 1120. [Google Scholar] [CrossRef]
- Górka, M.; Trzyna, A.; Lewandowska, A.; Drzeniecka-Osiadacz, A.; Miazga, B.; Rybak, J.; Widory, D. The impact of seasonality and meteorological conditions on PM2.5 carbonaceous fractions coupled with carbon isotope analysis: Advantages, weaknesses and interpretation pitfalls. Atmos. Res. 2023, 290, 106800. [Google Scholar] [CrossRef]
- Niu, M.; Zhang, Y.; Ren, Z. Deep Learning-Based PM2.5 Long Time-Series Prediction by Fusing Multisource Data—A Case Study of Beijing. Atmosphere 2023, 14, 340. [Google Scholar] [CrossRef]
- Kim, B.-Y.; Lim, Y.-K.; Cha, J.W. Short-term prediction of particulate matter (PM10 and PM2.5) in Seoul, South Korea using tree-based machine learning algorithms. Atmos. Pollut. Res. 2022, 13, 101547. [Google Scholar] [CrossRef]
- Zheng, Q.; Tian, X.; Yu, Z.; Jiang, N.; Elhanashi, A.; Saponara, S.; Yu, R. Application of wavelet-packet transform driven deep learning method in PM2.5 concentration prediction: A case study of Qingdao, China. Sustain. Cities Soc. 2023, 92, 104486. [Google Scholar] [CrossRef]
- Yan, L.; Zhou, M.; Wu, Y.; Yan, L. Long Short Term Memory Model for Analysis and Forecast of PM2.5. In Proceedings of the Cloud Computing and Security, Haikou, China, 8–10 June 2018; pp. 623–634. [Google Scholar]
- Moursi, A.S.A.; El-Fishawy, N.; Djahel, S.; Shouman, M.A. Enhancing PM2.5 Prediction Using NARX-Based Combined CNN and LSTM Hybrid Model. Sensors 2022, 22, 4418. [Google Scholar] [CrossRef]
- Liu, X.; Li, W. MGC-LSTM: A deep learning model based on graph convolution of multiple graphs for PM2.5 prediction. Int. J. Environ. Sci. Technol. 2022, 20, 10297–10312. [Google Scholar] [CrossRef]
- Huang, G.; Li, X.; Zhang, B.; Ren, J. PM2.5 concentration forecasting at surface monitoring sites using GRU neural network based on empirical mode decomposition. Sci. Total Environ. 2021, 768, 144516. [Google Scholar] [CrossRef] [PubMed]
- Faraji, M.; Nadi, S.; Ghaffarpasand, O.; Homayoni, S.; Downey, K. An integrated 3D CNN-GRU deep learning method for short-term prediction of PM2.5 concentration in urban environment. Sci. Total Environ. 2022, 834, 155324. [Google Scholar] [CrossRef] [PubMed]
- Karimian, H.; Li, Y.; Chen, Y.; Wang, Z. Evaluation of different machine learning approaches and aerosol optical depth in PM2.5 prediction. Environ. Res. 2023, 216, 114465. [Google Scholar] [CrossRef] [PubMed]
- Gokul, P.R.; Mathew, A.; Bhosale, A.; Nair, A.T. Spatio-temporal air quality analysis and PM2.5 prediction over Hyderabad City, India using artificial intelligence techniques. Ecol. Inform. 2023, 76, 102067. [Google Scholar] [CrossRef]
- Zhou, H.; Zhang, F.; Du, Z.; Liu, R. A theory-guided graph networks based PM2.5 forecasting method. Environ. Pollut. 2022, 293, 118569. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Yang, G.; Yuan, E. PM2.5 Spatial-Temporal Long Series Forecasting Based on Deep Learning and EMD. In Proceedings of the Knowledge and Systems Sciences, Singapore, 11–12 June 2022; pp. 3–19. [Google Scholar]
- Yang, H.C.; Yang, M.C.; Wong, G.W.; Chen, M.C. Extreme Event Discovery With Self-Attention for PM2.5 Anomaly Prediction. IEEE Intell. Syst. 2023, 38, 36–45. [Google Scholar] [CrossRef]
- Zhou, L.; Wu, T.; Pu, L.; Meadows, M.; Jiang, G.; Zhang, J.; Xie, X. Spatially heterogeneous relationships of PM2.5 concentrations with natural and land use factors in the Niger River Watershed, West Africa. J. Clean. Prod. 2023, 394, 136406. [Google Scholar] [CrossRef]
- Li, J.; Dai, Y.; Zhu, Y.; Tang, X.; Wang, S.; Xing, J.; Zhao, B.; Fan, S.; Long, S.; Fang, T. Improvements of response surface modeling with self-adaptive machine learning method for PM2.5 and O3 predictions. J. Environ. Manag. 2022, 303, 114210. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. Adv. Neural Inf. Process. Syst. 2017, 30. [Google Scholar] [CrossRef]
- Castangia, M.; Grajales, L.M.M.; Aliberti, A.; Rossi, C.; Macii, A.; Macii, E.; Patti, E. Transformer neural networks for interpretable flood forecasting. Environ. Model. Softw. 2023, 160, 105581. [Google Scholar] [CrossRef]
- Kumbalaparambi, T.S.; Menon, R.; Radhakrishnan, V.P.; Nair, V.P. Assessment of urban air quality from Twitter communication using self-attention network and a multilayer classification model. Environ. Sci. Pollut. Res. 2023, 30, 10414–10425. [Google Scholar] [CrossRef]
- Han, X.-H.; Chen, Y.-W. Residual Sparse Autoencoders for Unsupervised Feature Learning and Its Application to HEp-2 Cell Staining Pattern Recognition. In Deep Learning in Healthcare: Paradigms and Applications; Chen, Y.-W., Jain, L.C., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 181–199. [Google Scholar]
Meteorological Factor | Description | Unit |
---|---|---|
Temperature | Average temperature at the site | Degrees Celsius |
Pressure | Atmospheric pressure at the site | Millibars |
Dew Point | Temperature at which air becomes saturated | Degrees Celsius |
Wind Direction | Direction from which the wind is blowing | Degrees |
Wind Speed | Speed of wind at the site | Meters per second |
Cloud Cover | Percentage of the sky covered by clouds | Percent (%) |
Precipitation | Amount of rainfall or snowfall at the site | Millimeters |
Category | Station Code | Station Name | Longitude | Latitude |
---|---|---|---|---|
Air Pollution Monitoring Stations | 1007A | Haidian Wanliu | 116.29 | 39.96 |
Meteorological Stations | 54398 | Shunyi | 116.37 | 40.08 |
54399 | Haidian | 116.17 | 39.59 | |
54424 | Pinggu | 117.07 | 40.10 | |
54431 | Tongzhou | 116.38 | 39.55 | |
54433 | Chaoyang | 116.30 | 39.57 | |
54499 | Changping | 116.13 | 40.13 | |
54514 | Fengtai | 116.15 | 39.52 | |
54594 | Daxing | 116.21 | 39.43 | |
54596 | Fangshan | 116.12 | 39.46 |
Items | Value | Description |
---|---|---|
Sequence Window Size | 5 | Length of memory units |
Conv1d Kernel Size | 7 | Kernel size of the 1D convolution |
Conv1d Embedding Size | 128 | Meteorological data embedding size |
Position Embedding Size | 128 | Position embedding size |
Attention Heads | 8 | Self-attention heads in Transformer |
Transformer Layers | 4 | Layers in Transformer |
Sparse Autoencoder Coefficient (λ) | 0.4 (optimal) | Controls the sparsity of the Meteorological Sparse Autoencoding module |
Parameters | Value | Description |
---|---|---|
Optimizer | Adam | Adaptive learning rate optimizer |
Loss Function | MSE Loss | Measures the difference between predicted and actual PM2.5 concentrations |
Learning Rate | 0.001 | Initial learning rate for the optimizer |
Batch Size | 8 | Number of training examples utilized in one iteration |
Epochs | 50 | Number of complete passes through the training dataset |
Model | RMSE | MAE | R2 |
---|---|---|---|
MSAFormer | 11.112 | 8.691 | 0.898 |
SVM | 19.674 | 14.930 | 0.706 |
RF | 23.000 | 17.452 | 0.632 |
AdaBoost | 21.623 | 16.100 | 0.662 |
LSTM | 20.785 | 15.716 | 0.683 |
GRU | 18.047 | 13.629 | 0.752 |
Model | RMSE | MAE | R2 |
---|---|---|---|
No MSA Module | 15.869 | 11.635 | 0.792 |
λ = 0.0 | 11.506 | 8.901 | 0.893 |
λ = 0.1 | 12.069 | 9.348 | 0.882 |
λ = 0.2 | 12.039 | 9.361 | 0.884 |
λ = 0.3 | 11.936 | 9.369 | 0.886 |
λ = 0.4 | 11.112 | 8.691 | 0.898 |
λ = 0.5 | 13.954 | 10.774 | 0.848 |
λ = 0.6 | 13.619 | 10.608 | 0.856 |
λ = 0.7 | 19.013 | 14.644 | 0.746 |
λ = 0.8 | 18.788 | 14.511 | 0.746 |
λ = 0.9 | 19.417 | 15.027 | 0.727 |
λ = 1.0 | 19.579 | 15.163 | 0.719 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Zhang, L.; Wu, R. MSAFormer: A Transformer-Based Model for PM2.5 Prediction Leveraging Sparse Autoencoding of Multi-Site Meteorological Features in Urban Areas. Atmosphere 2023, 14, 1294. https://doi.org/10.3390/atmos14081294
Wang H, Zhang L, Wu R. MSAFormer: A Transformer-Based Model for PM2.5 Prediction Leveraging Sparse Autoencoding of Multi-Site Meteorological Features in Urban Areas. Atmosphere. 2023; 14(8):1294. https://doi.org/10.3390/atmos14081294
Chicago/Turabian StyleWang, Hongqing, Lifu Zhang, and Rong Wu. 2023. "MSAFormer: A Transformer-Based Model for PM2.5 Prediction Leveraging Sparse Autoencoding of Multi-Site Meteorological Features in Urban Areas" Atmosphere 14, no. 8: 1294. https://doi.org/10.3390/atmos14081294
APA StyleWang, H., Zhang, L., & Wu, R. (2023). MSAFormer: A Transformer-Based Model for PM2.5 Prediction Leveraging Sparse Autoencoding of Multi-Site Meteorological Features in Urban Areas. Atmosphere, 14(8), 1294. https://doi.org/10.3390/atmos14081294