Differences in Outdoor Thermal Comfort between Local and Non-Local Tourists in Winter in Tourist Attractions in a City in a Severely Cold Region
Abstract
:1. Introduction
2. Methods
2.1. Study Location and Climatic Conditions
2.2. Thermal Comfort Questionnaire
2.3. Thermal Environment Measurement
2.4. Thermal Comfort Evaluation Indices
2.5. Statistic Analysis of Data
3. Results
3.1. Thermal Preference Vote
3.1.1. Differentiation of Thermal Preference between Local and Non-Local Tourists under Different TSV Points
3.1.2. Differentiation of Thermal Preference between Local and Non-Local Tourists under Different PET Intervals
3.2. Thermal Sensation Vote
3.3. Thermal Satisfaction Vote
3.4. Thermal Comfort Vote
4. Discussion
4.1. Differentiation of Thermal Preference between Local and Non-Local Tourists
4.2. Differentiation of Thermal Sensation between Local and Non-Local Tourists
4.3. Differentiation of Thermal Satisfaction between Local and Non-Local Tourists
4.4. Differentiation of Thermal Comfort between Local and Non-Local Tourists
4.5. Limitations and Research Recommendations and Directions
5. Conclusions
- The TSV showed a significant negative correlation with air temperature and solar radiation preference voting and a significant positive correlation with wind speed preference voting. Under the same thermal sensation conditions, local tourists exhibited a significantly larger proportion of votes for increased air temperature, enhanced solar radiation, and reduced wind speed compared to non-local tourists. The PET also exhibited a significant negative correlation with air temperature and solar radiation preferences. Local tourists expressed a larger proportion of votes for increased air temperature and enhanced solar radiation compared to non-local tourists, especially when the environment turned cold;
- The TSV of both local and non-local tourists showed a positive correlation with the PET, with local tourists generally exhibiting higher TSV values compared to non-local tourists. Furthermore, as the PET values increased, the TSV of local tourists showed a more pronounced upward trend compared to non-local tourists;
- There was a linear positive correlation between the TSaV and PET of local tourists and a quadratic relationship between the TSaV and PET of non-local tourists. Influenced by the purpose of travelling and psychological expectation, the TSaV of non-local tourists was highest when PET = −16 °C. Their thermal satisfaction decreased when the PET value increased or decreased. The TSaV of non-local tourists was higher than that of local tourists when PET < −6 °C. When PET > −6 °C, the TSaV of foreign tourists was lower than that of local tourists;
- There was a positive linear correlation between TCV and PET for local tourists and a quadratic relationship between TCV and PET for non-local tourists. The TCV of non-local tourists peaked at PET of −10 °C and decreased significantly with the increase or decrease in PET. The TCV of non-local tourists was generally higher than that of local tourists at −28 °C < PET< −7 °C. When PET > −7 °C or PET < −28 °C, local tourists had better thermal comfort than non-local tourists.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Scott, D.; Lemieux, C. Weather and Climate Information for Tourism. Procedia Environ. Sci. 2010, 1, 146–183. [Google Scholar] [CrossRef]
- Sun, Y.-Y.; Li, M.; Lenzen, M.; Malik, A.; Pomponi, F. Tourism, job vulnerability and income inequality during the COVID-19 pandemic: A global perspective. Ann. Tour. Res. Empir. Insights 2022, 3, 100046. [Google Scholar] [CrossRef]
- Zhang, H.; Song, H.; Wen, L.; Liu, C. Forecasting tourism recovery amid COVID-19. Ann. Tour. Res. 2021, 87, 103149. [Google Scholar] [CrossRef]
- De Freitas, C.R. Recreation climate assessment. Int. J. Climatol. 1990, 10, 89–103. [Google Scholar] [CrossRef]
- Mahon, R.; Petrie, J.-A.; Trotman, A.; Eyzaguirre, J.; Burrowes, R.; Matthews, L.; Van Meerbeeck, C.J.; Charles, A. Climate services for tourism: Insights from Caribbean Small Island Developing States. Clim. Serv. 2021, 24, 100262. [Google Scholar] [CrossRef]
- Rutty, M.; Scott, D.; Matthews, L.; Burrowes, R.; Trotman, A.; Mahon, R.; Charles, A. An Inter-Comparison of the Holiday Climate Index (HCI:Beach) and the Tourism Climate Index (TCI) to Explain Canadian Tourism Arrivals to the Caribbean. Atmosphere 2020, 11, 412. [Google Scholar] [CrossRef]
- Amelung, B.; Nicholls, S. Implications of climate change for tourism in Australia. Tour. Manag. 2014, 41, 228–244. [Google Scholar] [CrossRef]
- Eugenio-Martin, J.L.; Campos-Soria, J.A. Climate in the region of origin and destination choice in outbound tourism demand. Tour. Manag. 2010, 31, 744–753. [Google Scholar] [CrossRef]
- Ridderstaat, J.; Oduber, M.; Croes, R.; Nijkamp, P.; Martens, P. Impacts of seasonal patterns of climate on recurrent fluctuations in tourism demand: Evidence from Aruba. Tour. Manag. 2014, 41, 245–256. [Google Scholar] [CrossRef]
- Shaykh-Baygloo, R. Foreign tourists’ experience: The tri-partite relationships among sense of place toward destination city, tourism attractions and tourists’ overall satisfaction—Evidence from Shiraz, Iran. J. Destin. Mark. Manag. 2021, 19, 100518. [Google Scholar] [CrossRef]
- Singh, U.; Upadhyay, S.P.; Jha, I. The co-production of space in a tourist city: A case of Dharamshala. Cities 2022, 131, 103998. [Google Scholar] [CrossRef]
- Farajzadeh, H.; Matzarakis, A.J.T.; Climatology, A. Evaluation of thermal comfort conditions in Ourmieh Lake, Iran. Theor. Appl. Climatol. 2012, 107, 451–459. [Google Scholar] [CrossRef]
- Lin, T.-P.; Tsai, K.-T.; Liao, C.-C.; Huang, Y.-C. Effects of thermal comfort and adaptation on park attendance regarding different shading levels and activity types. Build. Environ. 2013, 59, 599–611. [Google Scholar] [CrossRef]
- Jin, H.; Liu, S.; Kang, J. Thermal comfort range and influence factor of urban pedestrian streets in severe cold regions. Energy Build. 2019, 198, 197–206. [Google Scholar] [CrossRef]
- Yan, T.; Jin, H.; Jin, Y. The mediating role of emotion in the effects of landscape elements on thermal comfort: A laboratory study. Build. Environ. 2023, 233, 110130. [Google Scholar] [CrossRef]
- Liu, L.; Xia, B.; Zhang, L. Outdoor thermal comfort of urban river landscape belt in China’s cold region: A case study of Xi’an. Urban. Clim. 2023, 48, 101406. [Google Scholar] [CrossRef]
- Xu, M.; Hong, B.; Mi, J.; Yan, S. Outdoor thermal comfort in an urban park during winter in cold regions of China. Sustain. Cities Soc. 2018, 43, 208–220. [Google Scholar] [CrossRef]
- Xiong, K.; He, B.-J. Wintertime outdoor thermal sensations and comfort in cold-humid environments of Chongqing China. Sustain. Cities Soc. 2022, 87, 104203. [Google Scholar] [CrossRef]
- Xu, T.; Yao, R.; Du, C.; Li, B.; Fang, F. A quantitative evaluation model of outdoor dynamic thermal comfort and adaptation: A year-long longitudinal field study. Build. Environ. 2023, 237, 110308. [Google Scholar] [CrossRef]
- Wang, Y.; Ni, Z.; Peng, Y.; Xia, B. Local variation of outdoor thermal comfort in different urban green spaces in Guangzhou, a subtropical city in South China. Urban. For. Urban. Green. 2018, 32, 99–112. [Google Scholar] [CrossRef]
- Lam, C.K.C.; Gao, Y.; Yang, H.; Chen, T.; Zhang, Y.; Ou, C.; Hang, J. Interactive effect between long-term and short-term thermal history on outdoor thermal comfort: Comparison between Guangzhou, Zhuhai and Melbourne. Sci. Total Environ. 2021, 760, 144141. [Google Scholar] [CrossRef] [PubMed]
- Lam, C.K.C.; Cui, S.; Liu, J.; Kong, X.; Ou, C.; Hang, J. Influence of acclimatization and short-term thermal history on outdoor thermal comfort in subtropical South China. Energy Build. 2021, 231, 110541. [Google Scholar] [CrossRef]
- Lin, T.-P.; Matzarakis, A.; Hwang, R.-L. Shading effect on long-term outdoor thermal comfort. Build. Environ. 2010, 45, 213–221. [Google Scholar] [CrossRef]
- Kovács, A.; Unger, J.; Gál, C.V.; Kántor, N. Adjustment of the thermal component of two tourism climatological assessment tools using thermal perception and preference surveys from Hungary. Theor. Appl. Climatol. 2016, 125, 113–130. [Google Scholar] [CrossRef]
- Knez, I.; Thorsson, S. Influences of culture and environmental attitude on thermal, emotional and perceptual evaluations of a public square. Int. J. Biometeorol. 2006, 50, 258. [Google Scholar] [CrossRef] [PubMed]
- Knez, I.; Thorsson, S. Thermal, emotional and perceptual evaluations of a park: Cross-cultural and environmental attitude comparisons. Build. Environ. 2008, 43, 1483–1490. [Google Scholar] [CrossRef]
- An, L.; Hong, B.; Cui, X.; Geng, Y.; Ma, X. Outdoor thermal comfort during winter in China’s cold regions: A comparative study. Sci. Total Environ. 2021, 768, 144464. [Google Scholar] [CrossRef] [PubMed]
- De Dear, R.; Brager, G.S. Developing an adaptive model of thermal comfort and preference. ASHRAE Trans. 1998, 104, 145. [Google Scholar]
- Yang, W.; Wong, N.H.; Zhang, G. A comparative analysis of human thermal conditions in outdoor urban spaces in the summer season in Singapore and Changsha, China. Int. J. Biometeorol. 2013, 57, 895–907. [Google Scholar] [CrossRef]
- Rutty, M.; Scott, D. Bioclimatic comfort and the thermal perceptions and preferences of beach tourists. Int. J. Biometeorol. 2015, 59, 37–45. [Google Scholar] [CrossRef]
- Lu, S.; Xia, H.; Wei, S.; Fang, K.; Qi, Y. Analysis of the differences in thermal comfort between locals and tourists and genders in semi-open spaces under natural ventilation on a tropical island. Energy Build. 2016, 129, 264–273. [Google Scholar] [CrossRef]
- Lam, C.K.C.; Loughnan, M.; Tapper, N. Visitors’ perception of thermal comfort during extreme heat events at the Royal Botanic Garden Melbourne. Int. J. Biometeorol. 2018, 62, 97–112. [Google Scholar] [CrossRef]
- Xi, T.; Wang, Q.; Qin, H.; Jin, H. Influence of outdoor thermal environment on clothing and activity of tourists and local people in a severely cold climate city. Build. Environ. 2020, 173, 106757. [Google Scholar] [CrossRef]
- Yang, B.; Olofsson, T.; Nair, G.; Kabanshi, A. Outdoor thermal comfort under subarctic climate of north Sweden—A pilot study in Umeå. Sustain. Cities Soc. 2017, 28, 387–397. [Google Scholar] [CrossRef]
- Lopes, H.S.; Remoaldo, P.C.; Ribeiro, V.; Martín-Vide, J. Perceptions of human thermal comfort in an urban tourism destination—A case study of Porto (Portugal). Build. Environ. 2021, 205, 108246. [Google Scholar] [CrossRef]
- Salata, F.; Golasi, I.; Proietti, R.; de Lieto Vollaro, A. Implications of climate and outdoor thermal comfort on tourism: The case of Italy. Int. J. Biometeorol. 2017, 61, 2229–2244. [Google Scholar] [CrossRef]
- Lindner-Cendrowska, K. Assessment of bioclimatic conditions in cities for tourism and recreational purposes (a Warsaw case study). Geogr. Pol. 2013, 86, 55–66. [Google Scholar] [CrossRef]
- Lindner-Cendrowska, K.; Błażejczyk, K. Impact of selected personal factors on seasonal variability of recreationist weather perceptions and preferences in Warsaw (Poland). Int. J. Biometeorol. 2018, 62, 113–125. [Google Scholar] [CrossRef]
- Tian, Y.; Hong, B.; Zhang, Z.; Wu, S.; Yuan, T. Factors influencing resident and tourist outdoor thermal comfort: A comparative study in China’s cold region. Sci. Total Environ. 2022, 808, 152079. [Google Scholar] [CrossRef]
- Binarti, F.; Koerniawan, M.D.; Triyadi, S.; Utami, S.S.; Matzarakis, A. A review of outdoor thermal comfort indices and neutral ranges for hot-humid regions. Urban. Clim. 2020, 31, 100531. [Google Scholar] [CrossRef]
- Nasrollahi, N.; Hatami, Z.; Taleghani, M. Development of outdoor thermal comfort model for tourists in urban historical areas; A case study in Isfahan. Build. Environ. 2017, 125, 356–372. [Google Scholar] [CrossRef]
- GB 50176-2016; Code for Thermal Design of Civil Building. Ministry of Housing and Urban: Beijing, China, 2016.
- Statistical Bulletin of Harbin National Economic and Social Development in 2022. Available online: https://www.harbin.gov.cn/haerbin/c104569/202305/c01_730626.shtml (accessed on 29 May 2022).
- Tao, L. Exploration on the development path of Harbin ice and snow industry in the post-epidemic era. China Econ. 2022, 125–127. (In Chinese) [Google Scholar] [CrossRef]
- Lei, Y. Multi-dimensional Evaluation of Outdoor Thermal Comfort in Severe Cold City. Master’s Thesis, Harbin Institute of Technology, Harbin, China, 2019. (In Chinese) [Google Scholar] [CrossRef]
- Lui, K. Ice and Snow Tourism Sustainable Development Reseach of Harbin. Master’s Thesis, Harbin Institute of Technology, Harbin, China, 2009. (In Chinese). Available online: https://kns.cnki.net/kcms2/article/abstract?v=3uoqIhG8C475KOm_zrgu4lQARvep2SAk6at-NE8M3PgrTsq96O6n6brbim8EhnLLt8jVWhr_JvcZaZbjtMNNJI1NDkC98mCu&uniplatform=NZKPT (accessed on 24 May 2023).
- GB 50033-2013; Standard for Daylighting Design of Buildings. Ministry of Housing and Urban-Rural Development of the People’s Republic of China: Beijing, China, 2013.
- Center, N.M. Harbin Meteorological Data Released. Available online: http://www.weather.com.cn/forecast/history.shtml?areaid=101050101&month=11 (accessed on 4 January 2023).
- Sun, C.; Lian, W.; Liu, L.; Dong, Q.; Han, Y. The impact of street geometry on outdoor thermal comfort within three different urban forms in severe cold region of China. Build. Environ. 2022, 222, 109342. [Google Scholar] [CrossRef]
- Nikolopoulou, M.; Steemers, K. Thermal comfort and psychological adaptation as a guide for designing urban spaces. Energy Build. 2003, 35, 95–101. [Google Scholar] [CrossRef]
- Liu, Y.; Dong, Y.; Song, C.; Shi, Y.; Wang, Y.; Liu, J. Dynamic process of behavioral adaptation of migrants with different thermal experiences: A long-term follow-up field survey. Energy Build. 2020, 207, 109605. [Google Scholar] [CrossRef]
- Pazhoohesh, M.; Zhang, C. A satisfaction-range approach for achieving thermal comfort level in a shared office. Build. Environ. 2018, 142, 312–326. [Google Scholar] [CrossRef]
- Ribeiro, A.S.; Alves e Sousa, J.; Cox, M.G.; Forbes, A.B.; Matias, L.C.; Martins, L.L. Uncertainty Analysis of Thermal Comfort Parameters. Int. J. Thermophys. 2015, 36, 2124–2149. [Google Scholar] [CrossRef]
- Chen, X.; Xue, P.; Liu, L.; Gao, L.; Liu, J. Outdoor thermal comfort and adaptation in severe cold area: A longitudinal survey in Harbin, China. Build. Environ. 2018, 143, 548–560. [Google Scholar] [CrossRef]
- Trindade da Silva, F.; Engel de Alvarez, C. An integrated approach for ventilation’s assessment on outdoor thermal comfort. Build. Environ. 2015, 87, 59–71. [Google Scholar] [CrossRef]
- Hwang, R.-L.; Lin, T.-P. Thermal Comfort Requirements for Occupants of Semi-Outdoor and Outdoor Environments in Hot-Humid Regions. Archit. Sci. Rev. 2007, 50, 357–364. [Google Scholar] [CrossRef]
- ISO 10551; Ergonomics of the Thermal Environment—Assessment of the Influence of the Thermal Environment Using Subjective Judgement Scales. ISO: Geneva, Switzerland, 1995.
- Xi, T.; Wang, S.; Wang, Q.; Lv, X. College students’ subjective response to outdoor thermal environment in a severely cold climate city. In Proceedings of the AIP Conference Proceedings, Malang City, Indonesia, 7–8 March 2019. [Google Scholar]
- Wang, Q. Thermal Comfort Differences Between Local and Foreign Tourists in Severely Cold City. Master’s Thesis, Harbin Institute of Technology, Harbin, China, 2019. (In Chinese). [Google Scholar]
- Silva, T.J.V.; Hirashima, S.Q.S. Predicting urban thermal comfort from calibrated UTCI assessment scale—A case study in Belo Horizonte city, southeastern Brazil. Urban. Clim. 2021, 36, 100652. [Google Scholar] [CrossRef]
- ISO 7726; Ergonomics of the Thermal Environment—Instruments for Measuring Physical Quantities. International Standardization Organization: Geneva, Switzerland, 1998.
- Jin, Y.; Kang, J.; Jin, H.; Zhao, J. Analysis of Thermal Environment of Open Community Streets in Winter in Northern China. Energy Procedia 2017, 134, 423–431. [Google Scholar] [CrossRef]
- Hui, L. Impacts of Pavement Strategies on Human Thermal Comfort. ScienceDirect 2016, 13, 281–306. [Google Scholar] [CrossRef]
- Johansson, E.; Thorsson, S.; Emmanuel, R.; Krüger, E. Instruments and methods in outdoor thermal comfort studies—The need for standardization. Urban. Clim. 2014, 10, 346–366. [Google Scholar] [CrossRef]
- Nikolopoulou, M.; Baker, N.; Steemers, K. Thermal comfort in outdoor urban spaces: Understanding the human parameter. Sol. Energy 2001, 70, 227–235. [Google Scholar] [CrossRef]
- Fanger, P. Thermal Comfort. Analysis and Applications in Environmental Engineering; Danish Technical Press: Copenhagen, Denmark, 1970; 244p. [Google Scholar]
- Kumar, S.; Mathur, J.; Mathur, S.; Singh, M.K.; Loftness, V. An adaptive approach to define thermal comfort zones on psychrometric chart for naturally ventilated buildings in composite climate of India. Build. Environ. 2016, 109, 135–153. [Google Scholar] [CrossRef]
- Höppe, P. The physiological equivalent temperature—A universal index for the biometeorological assessment of the thermal environment. Int. J. Biometeorol. 1999, 43, 71–75. [Google Scholar] [CrossRef]
- Mayer, H.; Höppe, P. Thermal comfort of man in different urban environments. Theor. Appl. Climatol. 1987, 38, 43–49. [Google Scholar] [CrossRef]
- Jendritzky, G.; de Dear, R.; Havenith, G. UTCI-Why another thermal index? Int. J. Biometeorol. 2012, 56, 421–428. [Google Scholar] [CrossRef]
- Potchter, O.; Cohen, P.; Lin, T.-P.; Matzarakis, A. Outdoor human thermal perception in various climates: A comprehensive review of approaches, methods and quantification. Sci. Total Environ. 2018, 631–632, 390–406. [Google Scholar] [CrossRef]
- Gonzalez, R.; Nishi, Y.; Gagge, A.P. Experimental evaluation of standard effective temperature a new biometeorological index of man’s thermal discomfort. Int. J. Biometeorol. 1974, 18, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Gao, L.; Xue, P.; Du, J.; Liu, J. Investigation of outdoor thermal sensation and comfort evaluation methods in severe cold area. Sci. Total Environ. 2020, 749, 141520. [Google Scholar] [CrossRef] [PubMed]
- Pickup, J.; de Dear, R. An outdoor thermal comfort index (OUT_SET*)-part I-the model and its assumptions. In Proceedings of the Biometeorology and Urban Climatology at the Turn of the Millenium, Sydney, Australia, 8–12 November 1999; pp. 279–283. [Google Scholar]
- Spagnolo, J.; De Dear, R.J.B. A field study of thermal comfort in outdoor and semi-outdoor environments in subtropical Sydney Australia. Build. Environ. 2003, 38, 721–738. [Google Scholar] [CrossRef]
- Nie, T.; Lai, D.; Liu, K.; Lian, Z.; Yuan, Y.; Sun, L. Discussion on inapplicability of Universal Thermal Climate Index (UTCI) for outdoor thermal comfort in cold region. Urban. Clim. 2022, 46, 101304. [Google Scholar] [CrossRef]
- Höppe, P.R. Heat balance modelling. Experientia 1993, 49, 741–746. [Google Scholar] [CrossRef]
- Lin, T.-P.; Yang, S.-R.; Chen, Y.-C.; Matzarakis, A. The potential of a modified physiologically equivalent temperature (mPET) based on local thermal comfort perception in hot and humid regions. Theor. Appl. Climatol. 2019, 135, 873–876. [Google Scholar] [CrossRef]
- Chen, L.; Wen, Y.; Zhang, L.; Xiang, W.-N. Studies of thermal comfort and space use in an urban park square in cool and cold seasons in Shanghai. Build. Environ. 2015, 94, 644–653. [Google Scholar] [CrossRef]
- Martinelli, L.; Lin, T.P.; Matzarakis, A. Assessment of the influence of daily shadings pattern on human thermal comfort and attendance in Rome during summer period. Build. Environ. 2015, 92, 30–38. [Google Scholar] [CrossRef]
- Thorsson, S.; Honjo, T.; Lindberg, F.; Eliasson, I.; Lim, E.M. Thermal comfort and outdoor activity in Japanese urban public places. Environ. Behav. 2007, 39, 660–684. [Google Scholar] [CrossRef]
- Matzarakis, A.; Gangwisch, M.; Fröhlich, D. RayMan and SkyHelios Model. In Urban Microclimate Modelling for Comfort and Energy Studies; Palme, M., Salvati, A., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 339–361. [Google Scholar]
- Matzarakis, A.; Rutz, F.; Mayer, H. Modelling radiation fluxes in simple and complex environments: Basics of the RayMan model. Int. J. Biometeorol. 2010, 54, 131–139. [Google Scholar] [CrossRef]
- Cárdenas-Jirón, L.A.; Graw, K.; Gangwisch, M.; Matzarakis, A. Influence of street configuration on human thermal comfort and benefits for climate-sensitive urban planning in Santiago de Chile. Urban. Clim. 2023, 47, 101361. [Google Scholar] [CrossRef]
- Ruggiero, G.; Rapuano, M.; Iachini, T. Perceived temperature modulates peripersonal and interpersonal spaces differently in men and women. J. Environ. Psychol. 2019, 63, 52–59. [Google Scholar] [CrossRef]
- Mansournia, S.; Bahrami, B.; Farahani, L.M.; Aram, F. Understanding children’s perceptions and activities in urban public spaces: The case study of Zrêbar Lake Waterfront in Kurdistan. Urban. Stud. 2020, 58, 372–388. [Google Scholar] [CrossRef]
- Lin, T.-P. Thermal perception, adaptation and attendance in a public square in hot and humid regions. Build. Environ. 2009, 44, 2017–2026. [Google Scholar] [CrossRef]
- Center, N.M. Meteorological Conditions of Xi’an. Available online: http://www.nmc.cn/publish/forecast/ASN/xian.html (accessed on 4 December 2019).
- Jowkar, M.; de Dear, R.; Brusey, J. Influence of long-term thermal history on thermal comfort and preference. Energy Build. 2020, 210, 109685. [Google Scholar] [CrossRef]
- Xue, J.; Hu, X.; Sani, S.N.; Wu, Y.; Li, X.; Chai, L.; Lai, D. Outdoor Thermal Comfort at a University Campus: Studies from Personal and Long-Term Thermal History Perspectives. Sustainability 2020, 12, 9284. [Google Scholar] [CrossRef]
- Jiao, Y.; Yu, H.; Wang, Z.; Wei, Q.; Yu, Y. Influence of individual factors on thermal satisfaction of the elderly in free running environments. Build. Environ. 2017, 116, 218–227. [Google Scholar] [CrossRef]
- Andrade, H.; Alcoforado, M.-J.; Oliveira, S. Perception of temperature and wind by users of public outdoor spaces: Relationships with weather parameters and personal characteristics. Int. J. Biometeorol. 2011, 55, 665–680. [Google Scholar] [CrossRef]
- Xu, J.; Wei, Q.; Huang, X.; Zhu, X.; Li, G. Evaluation of human thermal comfort near urban waterbody during summer. Build. Environ. 2010, 45, 1072–1080. [Google Scholar] [CrossRef]
Region | Main Standard |
---|---|
Severely cold region | The average temperature of the coldest month: ≤−10 °C |
Cold region | The average temperature of the coldest month: −10~0 °C |
Hot summer and cold winter region | The average temperature of coldest and hottest months: −10~0 °C, 25~30 °C |
Hot summer and warm winter region | The average temperature of coldest and hottest months: >10 °C, 25~29 °C |
Temperate region | The average temperature of coldest and hottest months: −13~0 °C, 18~25 °C |
Date: _________ | Time: _________ | Tourist attraction: __________ | |||||||||||||||||
Gender: ☐Male ☐Female | Residence city: _____________ | ||||||||||||||||||
Age: ☐<10 ☐11~20 ☐21~30 ☐31~40 ☐41~50 ☐51~60 ☐61~70 ☐>70 | |||||||||||||||||||
Your preference for thermal environmental parameters: | |||||||||||||||||||
Air temperature | Increase | No change | Decrease | ||||||||||||||||
☐ 1 | ☐ 0 | ☐ −1 | |||||||||||||||||
Relative humidity | Increase | No change | Decrease | ||||||||||||||||
☐ 1 | ☐ 0 | ☐ −1 | |||||||||||||||||
Wind speed | Increase | No change | Decrease | ||||||||||||||||
☐ 1 | ☐ 0 | ☐ −1 | |||||||||||||||||
Solar radiation | Increase | No change | Decrease | ||||||||||||||||
☐ 1 | ☐ 0 | ☐ −1 | |||||||||||||||||
How do you feel at this moment: | |||||||||||||||||||
Extremely cold | Very cold | Cold | Cool | Slightly cool | Neutral | Slightly warm | Warm | Hot | Very hot | Extremely hot | |||||||||
☐ −5 | ☐ −4 | ☐ −3 | ☐ −2 | ☐ −1 | ☐ 0 | ☐ 1 | ☐ 2 | ☐ 3 | ☐ 4 | ☐ 5 | |||||||||
Your satisfaction degree of the thermal environment: | |||||||||||||||||||
Very dissatisfied | Dissatisfied | Slightly dissatisfied | Satisfied | Very satisfied | |||||||||||||||
☐ −3 | ☐ −2 | ☐ −1 | ☐ 0 | ☐ 1 | |||||||||||||||
Your thermal comfort level at this moment: | |||||||||||||||||||
Very uncomfortable | Uncomfortable | Slightly uncomfortable | Comfortable | ||||||||||||||||
☐ −3 | ☐ −2 | ☐ −1 | ☐ 0 |
Model | Parameter | Range | Accuracy |
---|---|---|---|
BES-02B | Air temperature | −30~50 °C | ±0.01 °C |
BES-02B | Relative humidity | 0%~100% | ±0.1% RH |
Kestrel5500 | Wind speed | 0.4~40 m/s | ±0.1 m/s |
Air Temperature Preference | Relative Humidity Preference | Wind Speed Preference | Solar Radiation Preference | |
---|---|---|---|---|
TSV for local tourists | −0.152 ** | −0.098 | 0.193 ** | −0.239 ** |
TSV for non-local tourists | −0.241 ** | −0.057 | 0.099 * | −0.193 ** |
Air Temperature Preference | Relative Humidity Preference | Wind Speed Preference | Solar Radiation Preference | |
---|---|---|---|---|
TSV of local tourists | −0.156 ** | 0.023 | −0.195 | −0.161 ** |
TSV of non-local tourists | −0.155 ** | 0.016 | −0.073 * | −0.222 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Xu, W.; Hu, C.; Zhao, C.; Yang, T.; Xi, T.; Wang, Q. Differences in Outdoor Thermal Comfort between Local and Non-Local Tourists in Winter in Tourist Attractions in a City in a Severely Cold Region. Atmosphere 2023, 14, 1306. https://doi.org/10.3390/atmos14081306
Liu Z, Xu W, Hu C, Zhao C, Yang T, Xi T, Wang Q. Differences in Outdoor Thermal Comfort between Local and Non-Local Tourists in Winter in Tourist Attractions in a City in a Severely Cold Region. Atmosphere. 2023; 14(8):1306. https://doi.org/10.3390/atmos14081306
Chicago/Turabian StyleLiu, Zheming, Weiqing Xu, Chenxin Hu, Caiyi Zhao, Tong Yang, Tianyu Xi, and Qiaochu Wang. 2023. "Differences in Outdoor Thermal Comfort between Local and Non-Local Tourists in Winter in Tourist Attractions in a City in a Severely Cold Region" Atmosphere 14, no. 8: 1306. https://doi.org/10.3390/atmos14081306
APA StyleLiu, Z., Xu, W., Hu, C., Zhao, C., Yang, T., Xi, T., & Wang, Q. (2023). Differences in Outdoor Thermal Comfort between Local and Non-Local Tourists in Winter in Tourist Attractions in a City in a Severely Cold Region. Atmosphere, 14(8), 1306. https://doi.org/10.3390/atmos14081306