Effects of Biochar Amendment on N2O Emissions from Soils with Different pH Levels
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil and Biochar
2.2. Incubation Experiment
2.3. N2O Measurements
2.4. Chemical Analysis of Soil and Biochar
2.5. Data Analysis
3. Results
3.1. Soil pH
3.2. Soil NH4+-N and NO3−-N
3.3. Nitrous Oxide Emissions
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stocker, T. Climate Change 2013: The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Crutzen, P.J. The influence of nitrogen oxides on atmospheric ozone content. In A Pioneer on Atmospheric Chemistry and Climate Change in the Anthropocene; Crutzen, P., Ed.; Springer: Cham, Switzerland, 2016; pp. 108–116. [Google Scholar]
- World Meteorological Organization. Greenhouse Gas Bulletin. In The State of Greenhouse Gases in the Atmosphere Based on Global Observations through 2018; WMO: Geneva, Switzerland, 2019; Volume 15, p. 8. [Google Scholar]
- Tian, H.; Yang, J.; Xu, R.; Lu, C.; Canadell, J.G.; Davidson, E.A.; Jackson, R.B.; Arneth, A.; Chang, J.; Ciais, P.; et al. Global soil nitrous oxide emissions since the preindustrial era estimated by an ensemble of terrestrial biosphere models: Magnitude, attribution, and uncertainty. Glob. Chang. Biol. 2019, 25, 640–659. [Google Scholar] [CrossRef] [PubMed]
- Maaz, T.M.; Sapkota, T.B.; Eagle, A.J.; Kantar, M.B.; Bruulsema, T.W.; Majumdar, K. Meta-analysis of yield and nitrous oxide outcomes for nitrogen management in agriculture. Glob. Chang. Biol. 2021, 27, 2343–2360. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, J.; Cowie, A.; Masiello, C.A.; Kammann, C.; Woolf, D.; Amonette, J.E.; Cayuela, M.L.; Camps-Arbestain, M.; Whitman, T. Biochar in climate change mitigation. Nat. Geosci. 2021, 14, 883–892. [Google Scholar] [CrossRef]
- Ball, P.N.; MacKenzie, M.D.; DeLuca, T.H.; Holben, W.E. Wildfire and charcoal enhance nitrification and ammonium-oxidizing bacterial abundance in dry montane forest soils. J. Environ. Qual. 2010, 39, 1243–1253. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Wu, J.; Han, Z.; Li, Z.; Xu, P.; Liu, S.; Wang, J.; Zou, J. The legacy effect of biochar application on soil nitrous oxide emissions. GCB Bioenergy 2023, 15, 478–493. [Google Scholar] [CrossRef]
- Hamad, A.A.A.; Ni, L.; Shaghaleh, H.; Elsadek, E.; Hamoud, Y.A. Effect of Carbon Content in Wheat Straw Biochar on N2O and CO2 Emissions and Pakchoi Productivity under Different Soil Moisture Conditions. Sustainability 2023, 15, 5100. [Google Scholar] [CrossRef]
- Case, S.; Whitaker, J.; McNamara, N.; Reay, D. The effect of biochar addition on N2O and CO2 emissions from a sandy loam soil-The role of soil aeration. Soil Biol. Biochem. 2012, 51, 125–134. [Google Scholar] [CrossRef]
- Kumar, A.; Medhi, K.; Fagodiya, R.K.; Subrahmanyam, G.; Mondal, R.; Raja, P.; Malyan, S.K.; Gupta, C.K.; Pathak, H. Molecular and ecological perspectives of nitrous oxide producing microbial communities in agro-ecosystems. Rev. Environ. Sci. Biotechnol. 2020, 19, 717–750. [Google Scholar] [CrossRef]
- Malyan, S.K.; Kumar, S.S.; Fagodiya, R.K.; Ghosh, P.; Kumar, A.; Singh, R.; Singh, L. Biochar for environmental sustainability in the energy-water-agroecosystem nexus. Renew. Sust. Energ. Rev. 2021, 149, 111379. [Google Scholar] [CrossRef]
- Hamad, A.A.A.; Wei, Q.; Xu, J.; Hamoud, Y.A.; He, M.; Shaghaleh, H.; Wei, Q.; Li, X.; Qi, Z. Managing Fertigation Frequency and Level to Mitigate N2O and CO2 Emissions and NH3 Volatilization from Subsurface Drip-Fertigated Field in a Greenhouse. Agronomy 2022, 12, 1414. [Google Scholar] [CrossRef]
- Kaur, N.; Kieffer, C.; Ren, W.; Hui, D. How much is soil nitrous oxide emission reduced with biochar application? An evaluation of meta-analyses. GCB Bioenergy 2023, 15, 24–37. [Google Scholar] [CrossRef]
- Weslien, P.; Kasimir Klemedtsson, Å.; Börjesson, G.; Klemedtsson, L. Strong pH influence on N2O and CH4 fluxes from forested organic soils. Eur. J. Soil Sci. 2009, 60, 311–320. [Google Scholar] [CrossRef]
- He, L.; Liu, Y.; Zhao, J.; Bi, Y.; Zhao, X.; Wang, S.; Xing, G. Comparison of straw biochar-mediated changes in nitrification and ammonia oxidizers in agricultural oxisols and cambosols. Biol. Fertil. Soils 2016, 52, 137–149. [Google Scholar] [CrossRef]
- Butterbach-Bahl, K.; Baggs, E.M.; Dannenmann, M.; Kiese, R.; Zechmeister-Boltenstern, S. Nitrous oxide emissions from soils: How well do we understand the processes and their controls? Philos. Trans. R. Soc. B Biol. Sci. 2013, 368, 20130122. [Google Scholar] [CrossRef] [PubMed]
- Pokharel, P.; Qi, L.; Chang, S.X. Manure-based biochar decreases heterotrophic respiration and increases gross nitrification rates in rhizosphere soil. Soil Biol. Biochem. 2021, 154, 108–147. [Google Scholar] [CrossRef]
- Bo, X.; Zhang, Z.; Wang, J.; Guo, S.; Li, Z.; Lin, H.; Huang, Y.; Han, S.; Kuzyakov, Y.; Zou, J. Benefits and limitations of biochar for climate-smart agriculture: A review and case study from China. Biochar 2023, 5, 77. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, H.; Maucieri, C.; Liu, S.; Zou, J. Annual nitric and nitrous oxide emissions response to biochar amendment from an intensive greenhouse vegetable system in southeast China. Sci. Hortic. 2019, 246, 879–886. [Google Scholar] [CrossRef]
- Nelissen, V.; Saha, B.K.; Ruysschaert, G.; Boeckx, P. Effect of different biochar and fertilizer types on N2O and NO emissions. Soil Biol. Biochem. 2014, 70, 244–255. [Google Scholar] [CrossRef]
- Clough, T.J.; Bertram, J.E.; Ray, J.L.; Condron, L.M.; O’Callaghan, M.; Sherlock, R.R.; Wells, N.S. Unweathered wood biochar impact on nitrous oxide emissions from a bovine-urine-amended pasture soil. Soil Sci. Soc. Am. J. 2010, 74, 852–860. [Google Scholar] [CrossRef]
- Dong, W.; Walkiewicz, A.; Bieganowski, A.; Oenema, O.; Nosalewicz, M.; He, C.; Yuming, Z.; Hu, C. Biochar promotes the reduction of N2O to N2 and concurrently suppresses the production of N2O in calcareous soil. Geoderma 2020, 362, 114091. [Google Scholar] [CrossRef]
- Shakoor, A.; Shahzad, S.M.; Chatterjee, N.; Arif, M.S.; Farooq, T.H.; Altaf, M.M.; Tufail, M.A.; Dar, A.A.; Mehmood, T. Nitrous oxide emission from agricultural soils: Application of animal manure or biochar? A global meta-analysis. J. Environ. Manag. 2021, 285, 112170. [Google Scholar] [CrossRef] [PubMed]
- Kroon, P.S.; Hensen, A.; Van den Bulk, W.C.M.; Jongejan, P.A.C.; Vermeulen, A.T. The importance of reducing the systematic error due to non-linearity in N2O flux measurements by static chambers. Nutr. Cycl. Agroecosys. 2008, 82, 175–186. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, M.; Xiong, Z.; Liu, P.; Pan, G. Effects of biochar addition on N2O and CO2 emissions from two paddy soils. Biol. Fert. Soils 2011, 47, 887–896. [Google Scholar] [CrossRef]
- Sparks, D.; Page, A.; Helmke, P.; Loeppert, R.; Soltanpour, P.; Tabatai, M.; Johnson, C.; Sumner, M. Methods of Soil Analysis: Part 3-Chemical Methods; John Wiley and Sons: Hoboken, NJ, USA, 2020; Volume 14. [Google Scholar]
- Chen, W.; Zheng, X.; Chen, Q.; Wolf, B.; Butterbach-Bahl, K.; Brüggemann, N.; Lin, S. Effects of increasing precipitation and nitrogen deposition on CH4 and N2O fluxes and ecosystem respiration in a degraded steppe in Inner Mongolia, China. Geoderma 2013, 192, 335–340. [Google Scholar] [CrossRef]
- Wang, Z.; Zheng, H.; Luo, Y.; Deng, X.; Herbert, S.; Xing, B. Characterization and influence of biochars on nitrous oxide emission from agricultural soil. Environ. Pollut. 2013, 174, 289–296. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Smith, P.; Hergoualc’h, K.; Zou, J. Direct N2O emissions from global tea plantations and mitigation potential by climate-smart practices. Resour. Conserv. Recy. 2022, 185, 106501. [Google Scholar] [CrossRef]
- Venterea, R.T.; Clough, T.J.; Coulter, J.A.; Breuillin-Sessoms, F.; Wang, P.; Sadowsky, M.J. Ammonium sorption and ammonia inhibition of nitrite-oxidizing bacteria explain contrasting soil N2O production. Sci. Rep. 2015, 5, 12153. [Google Scholar] [CrossRef]
- He, L.; Zhao, X.; Wang, S.; Xing, G. The effects of rice-straw biochar addition on nitrification activity and nitrous oxide emissions in two Oxisols. Soil Till. Res. 2016, 164, 52–62. [Google Scholar] [CrossRef]
- Clough, T.J.; Condron, L.M.; Kammann, C.; Müller, C. A review of biochar and soil nitrogen dynamics. Agronomy 2013, 3, 275–293. [Google Scholar] [CrossRef]
- He, T.; Liu, D.; Yuan, J.; Ni, K.; Zaman, M.; Luo, J.; Lindsey, S.; Ding, W. A two years study on the combined effects of biochar and inhibitors on ammonia volatilization in an intensively managed rice field. Agr. Ecosyst. Environ. 2018, 264, 44–53. [Google Scholar] [CrossRef]
- Lan, Z.M.; Chen, C.R.; Rashti, M.R.; Yang, H.; Zhang, D.K. Stoichiometric ratio of dissolved organic carbon to nitrate regulates nitrous oxide emission from the biochar-amended soils. Sci. Total Environ. 2017, 576, 559–571. [Google Scholar] [CrossRef] [PubMed]
- Prendergast-Miller, M.T.; Duvall, M.; Sohi, S.P. Localisation of nitrate in the rhizosphere of biochar-amended soils. Soil Biol. Biochem. 2011, 43, 2243–2246. [Google Scholar] [CrossRef]
- Liu, Y.; Tang, H.; Muhammad, A.; Huang, G. Emission mechanism and reduction countermeasures of agricultural greenhouse gases—A review. Greenh. Gases 2019, 9, 160–174. [Google Scholar] [CrossRef]
- Yuan, J.H.; Xu, R.K. The amelioration effect of low temperature biochar generated from nine crop residues on an acidic Ultisol. Soil Use Manag. 2011, 27, 110–115. [Google Scholar] [CrossRef]
- Wang, H.; Yi, H.; Zhang, X.; Su, W.; Li, X.; Zhang, Y.; Gao, X. Biochar Mitigates Greenhouse Gas Emissions from an Acidic Tea Soil. Pol. J. Environ. Stud. 2020, 29, 323–330. [Google Scholar] [CrossRef] [PubMed]
- Ntacyabukura, T.; Uwiringiyimana, E.; Zhou, M.; Zhang, B.; Zhu, B.; Harerimana, B.; Nambajimana, J.D.; Nsabimana, G.; Nsengumuremyi, P. Effect of Biochar and Straw Application on Nitrous Oxide and Methane Emissions from Eutric Regosols with Different pH in Sichuan Basin: A Mesocosm Study. Atmosphere 2021, 12, 729. [Google Scholar] [CrossRef]
- Aamer, M.; Bilal Chattha, M.; Mahmood, A.; Naqve, M.; Hassan, M.U.; Shaaban, M.; Rasul, F.; Batool, M.; Rasheed, A.; Tang, H.; et al. Rice residue-based biochar mitigates N2O emission from acid red soil. Agronomy 2021, 11, 2462. [Google Scholar] [CrossRef]
- Baggs, E.M.; Rees, R.M.; Smith, K.A.; Vinten, A.J.A. Nitrous oxide emission from soils after incorporating crop residues. Soil Use Manage. 2010, 16, 82–87. [Google Scholar] [CrossRef]
- Wu, D.; Senbayram, M.; Zang, H.; Ugurlar, F.; Aydemir, S.; Brüggemann, N.; Kuzyakov, Y.; Bol, R.; Blagodatskaya, E. Effect of biochar origin and soil pH on greenhouse gas emissions from sandy and clay soils. Appl. Soil Ecol. 2018, 129, 121–127. [Google Scholar] [CrossRef]
- Van Zwieten, L.; Kimber, S.; Morris, S.; Downie, A.; Berger, E.; Rust, J.; Scheer, C. Influence of biochars on flux of N2O and CO2 from ferrosol. Soil Res. 2010, 48, 555–568. [Google Scholar] [CrossRef]
- Baggs, E.M. Soil microbial sources of nitrous oxide: Recent advances in knowledge, emerging challenges and future direction. Curr. Opin. Environ. Sustain. 2011, 3, 321–327. [Google Scholar] [CrossRef]
- Yoo, G.; Kim, Y.J.; Lee, Y.O.; Ding, W. Investigation of greenhouse gas emissions from the soil amended with rice straw biochar. KSCE J. Civ. Eng. 2016, 20, 2197–2207. [Google Scholar] [CrossRef]
Soil Type | Total C (g kg−1) | Total N (g kg−1) | Soil pH | Sand (%) | Silt (%) | Clay (%) | NH4+-N (mg kg−1) | NO3−-N (mg kg−1) | Bulk Density (g cm−3) |
---|---|---|---|---|---|---|---|---|---|
V | 15.9 | 2.1 | 5.40 | 54.4 | 30.36 | 15.18 | 22.95 | 172.63 | 1.11 |
R | 12.8 | 1.1 | 7.56 | 69.5 | 10.16 | 20.32 | 11.79 | 7.10 | 1.36 |
A | 11.2 | 0.8 | 8.80 | 69.7 | 20.15 | 10.08 | 13.46 | 1.37 | 1.56 |
Biochar | 467.2 | 6.0 | 10.90 | - | - | - | <1 | <1.2 | 0.41 |
Soil Type | Variable | Biochar (B) | N Fertilizer (N) | N × B | |||
---|---|---|---|---|---|---|---|
F | p | F | p | F | p | ||
V | Cum. N2O | 216.227 | <0.001 | 1871.412 | <0.001 | 47.065 | <0.001 |
NH4+-N | 0.114 | 0.741 | 0.265 | 0.616 | 11.325 | 0.006 | |
NO3−-N | 6.995 | 0.021 | 51.986 | <0.001 | 0.299 | 0.594 | |
pH | 1423.772 | <0.001 | 64.216 | <0.001 | 2.691 | 0.127 | |
R | Cum. N2O | 0.937 | 0.352 | 459.391 | <0.001 | 0.13 | 0.725 |
NH4+-N | 0.039 | 0.846 | 3.414 | 0.089 | 3.728 | 0.077 | |
NO3−-N | 314.596 | <0.001 | 700.507 | <0.001 | 2.135 | 0.17 | |
pH | 1952.271 | <0.001 | 146.724 | <0.001 | 21.334 | 0.001 | |
A | Cum. N2O | 10.132 | 0.008 | 575.44 | <0.001 | 8.656 | 0.012 |
NH4+-N | 4.851 | 0.048 | 12.466 | 0.004 | 3.86 | 0.073 | |
NO3−-N | 43.787 | <0.001 | 987.621 | <0.001 | 3.526 | 0.085 | |
pH | 17.186 | 0.001 | 79.771 | <0.001 | 1.237 | 0.288 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, F.; Wang, H.; Shaghaleh, H.; Ali Adam Hamad, A.; Zhang, Y.; Yang, B.; Alhaj Hamoud, Y. Effects of Biochar Amendment on N2O Emissions from Soils with Different pH Levels. Atmosphere 2024, 15, 68. https://doi.org/10.3390/atmos15010068
Lin F, Wang H, Shaghaleh H, Ali Adam Hamad A, Zhang Y, Yang B, Alhaj Hamoud Y. Effects of Biochar Amendment on N2O Emissions from Soils with Different pH Levels. Atmosphere. 2024; 15(1):68. https://doi.org/10.3390/atmos15010068
Chicago/Turabian StyleLin, Feng, Hong Wang, Hiba Shaghaleh, Amar Ali Adam Hamad, Yaojun Zhang, Bairen Yang, and Yousef Alhaj Hamoud. 2024. "Effects of Biochar Amendment on N2O Emissions from Soils with Different pH Levels" Atmosphere 15, no. 1: 68. https://doi.org/10.3390/atmos15010068
APA StyleLin, F., Wang, H., Shaghaleh, H., Ali Adam Hamad, A., Zhang, Y., Yang, B., & Alhaj Hamoud, Y. (2024). Effects of Biochar Amendment on N2O Emissions from Soils with Different pH Levels. Atmosphere, 15(1), 68. https://doi.org/10.3390/atmos15010068