Spatiotemporal Dynamics of Ecosystem Service Balance in the Beijing-Tianjin-Hebei Region and Its Ecological Security Barrier with Inner Mongolia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Processing
2.3. Quantitative Assessment of ESs Balance
2.4. Future Land-Use Simulation
3. Results
3.1. Historical, Temporal, and Spatial Analyses of the ESs Balance in the JJJM Region
3.2. Future Land-Use Trends of the JJJM Region in 2040
3.3. Quantification of the Future ESs Balance of the JJJM Region
4. Discussion
4.1. Spatial Dynamics of ESs Balance and Natural Factors
4.2. Shaping ESs Balances through Land-Use Changes
4.3. Insights, Limitations, and Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, Y.; Fu, B.; Wang, S.; Rhodes, J.R.; Li, Y.; Zhao, W.; Li, C.; Zhou, S.; Wang, C. Global Assessment of Nature’s Contribution to People. Sci. Bull. 2023, 68, 424–435. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Ge, Q.; Geng, X.; Wang, Z.; Gao, L.; Bryan, B.A.; Chen, S.; Su, Y.; Cai, D.; Ye, J.; et al. Unintended Consequences of Combating Desertification in China. Nat. Commun. 2023, 14, 1139. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Chau, S.N.; Chen, X.; Zhang, J.; Li, Y.; Dietz, T.; Wang, J.; Winkler, J.A.; Fan, F.; Huang, B.; et al. Assessing Progress towards Sustainable Development over Space and Time. Nature 2020, 577, 74–78. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Raga, M.; Yu, Y.; Campo, J. New Studies to Measure the Effects of Climate Change on the Increase in Environmental Risks. Atmosphere 2023, 14, 227. [Google Scholar] [CrossRef]
- Costanza, R.; de Groot, R.; Sutton, P.; van der Ploeg, S.; Anderson, S.J.; Kubiszewski, I.; Farber, S.; Turner, R.K. Changes in the Global Value of Ecosystem Services. Glob. Environ. Chang. 2014, 26, 152–158. [Google Scholar] [CrossRef]
- Daily, G.C. Nature’s Services: Societal Dependence on Natural Ecosystems (1997); Yale University Press: New Haven, CT, USA, 2013; pp. 454–464. ISBN 978-0-300-18847-9. [Google Scholar]
- Reid, W.V. Millennium Ecosystem Assessment: Ecosystems and Human Well-Being; Island Press: Washington, DC, USA, 2005; ISBN 978-1-59726-040-4. [Google Scholar]
- Chen, W.; Chi, G. Spatial Mismatch of Ecosystem Service Demands and Supplies in China, 2000–2020. Environ. Monit. Assess 2022, 194, 295. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Chi, G.; Li, J. The Spatial Aspect of Ecosystem Services Balance and Its Determinants. Land Use Policy 2020, 90, 104263. [Google Scholar] [CrossRef]
- Xie, G.; Zhen, L.; Lu, C.; Xiao, Y.; Chen, C. Expert Knowledge Based Valuation Method of Ecosystem Services in China. J. Nat. Resour. 2008, 23, 911–919. [Google Scholar]
- Xie, G.; Zhang, C.; Zhang, L.; Chen, W.; Li, S. Improvement of the Evaluation Method for Ecosystem Service Value Based on Per Unit Area. J. Nat. Resour. 2015, 30, 1243–1254. [Google Scholar] [CrossRef]
- Burkhard, B.; Kroll, F.; Nedkov, S.; Müller, F. Mapping Ecosystem Service Supply, Demand and Budgets. Ecol. Indic. 2012, 21, 17–29. [Google Scholar] [CrossRef]
- Burkhard, B.; Müller, A.; Müller, F.; Grescho, V.; Anh, Q.; Arida, G.; Bustamante, J.V.; Van Chien, H.; Heong, K.L.; Escalada, M.; et al. Land Cover-Based Ecosystem Service Assessment of Irrigated Rice Cropping Systems in Southeast Asia—An Explorative Study. Ecosyst. Serv. 2015, 14, 76–87. [Google Scholar] [CrossRef]
- Wu, X.; Liu, S.; Zhao, S.; Hou, X.; Xu, J.; Dong, S.; Liu, G. Quantification and Driving Force Analysis of Ecosystem Services Supply, Demand and Balance in China. Sci. Total Environ. 2019, 652, 1375–1386. [Google Scholar] [CrossRef] [PubMed]
- Luo, T.; Zeng, J.; Chen, W.; Wang, Y.; Gu, T.; Huang, C. Ecosystem Services Balance and Its Influencing Factors Detection in China: A Case Study in Chengdu-Chongqing Urban Agglomerations. Ecol. Indic. 2023, 151, 110330. [Google Scholar] [CrossRef]
- Zhang, W.; Wu, S. Impacts of Climate and Anthropogenic Disturbances on Vegetation Structure and Functions. Atmosphere 2023, 14, 923. [Google Scholar] [CrossRef]
- Song, Y.; Liang, T.; Zhang, L.; Hao, C.; Wang, H. Spatio-Temporal Changes and Contribution of Human and Meteorological Factors to Grassland Net Primary Productivity in the Three-Rivers Headwater Region from 2000 to 2019. Atmosphere 2023, 14, 278. [Google Scholar] [CrossRef]
- Vihervaara, P.; Rönkä, M.; Walls, M. Trends in Ecosystem Service Research: Early Steps and Current Drivers. Ambio 2010, 39, 314–324. [Google Scholar] [CrossRef] [PubMed]
- Luo, M.; Meng, F.; Wang, Y.; Sa, C.; Duan, Y.; Bao, Y.; Liu, T. Quantitative Detection and Attribution of Soil Moisture Heterogeneity and Variability in the Mongolian Plateau. J. Hydrol. 2023, 621, 129673. [Google Scholar] [CrossRef]
- Luo, M.; Meng, F.; Sa, C.; Duan, Y.; Bao, Y.; Liu, T.; De Maeyer, P. Response of Vegetation Phenology to Soil Moisture Dynamics in the Mongolian Plateau. Catena 2021, 206, 105505. [Google Scholar] [CrossRef]
- Abel, C.; Horion, S.; Tagesson, T.; De Keersmaecker, W.; Seddon, A.W.R.; Abdi, A.M.; Fensholt, R. The Human–Environment Nexus and Vegetation–Rainfall Sensitivity in Tropical Drylands. Nat. Sustain. 2020, 4, 25–32. [Google Scholar] [CrossRef]
- Li, X.; Piao, S.; Huntingford, C.; Peñuelas, J.; Yang, H.; Xu, H.; Chen, A.; Friedlingstein, P.; Keenan, T.F.; Sitch, S.; et al. Global Variations in Critical Drought Thresholds That Impact Vegetation. Natl. Sci. Rev. 2023, 10, nwad049. [Google Scholar] [CrossRef]
- Venter, O.; Sanderson, E.W.; Magrach, A.; Allan, J.R.; Beher, J.; Jones, K.R.; Possingham, H.P.; Laurance, W.F.; Wood, P.; Fekete, B.M.; et al. Sixteen Years of Change in the Global Terrestrial Human Footprint and Implications for Biodiversity Conservation. Nat. Commun. 2016, 7, 12558. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, Z.; Zheng, H.; Xiao, Y.; Polasky, S.; Liu, J.; Xu, W.; Wang, Q.; Zhang, L.; Xiao, Y.; Rao, E.; et al. Improvements in Ecosystem Services from Investments in Natural Capital. Science 2016, 352, 1455–1459. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Gentine, P.; Luo, X.; Lian, X.; Liu, Y.; Zhou, S.; Michalak, A.M.; Sun, W.; Fisher, J.B.; Piao, S.; et al. Increasing Sensitivity of Dryland Vegetation Greenness to Precipitation Due to Rising Atmospheric CO2. Nat. Commun. 2022, 13, 4875. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Yuhe, M.; Ran, N.; Xie, D.; Junteng, M.; Wang, P. China’s Key Forestry Ecological Development Programs: Implementation, Environmental Impact and Challenges. Forests 2021, 12, 101. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, D.; Liu, L.; Liang, Z.; Shen, J.; Wei, F.; Li, S. Spatiotemporal Characteristics of the Surface Urban Heat Island and Its Driving Factors Based on Local Climate Zones and Population in Beijing, China. Atmosphere 2021, 12, 1271. [Google Scholar] [CrossRef]
- Li, X.; Quan, W.; Hu, X.-M.; Jia, Q.; Ma, Z.; Dong, F.; Zhang, Y.; Zhou, H.; Wang, D. On the Large Variation in Atmospheric CO2 Concentration at Shangdianzi GAW Station during Two Dust Storm Events in March 2021. Atmosphere 2023, 14, 1348. [Google Scholar] [CrossRef]
- Bao, C.; Yong, M.; Bi, L.; Gao, H.; Li, J.; Bao, Y.; Gomboludev, P. Impacts of Underlying Surface on the Dusty Weather in Central Inner Mongolian Steppe, China. Earth Space Sci. 2021, 8, e2021EA001672. [Google Scholar] [CrossRef]
- Harris, C.R.; Millman, K.J.; Van Der Walt, S.J.; Gommers, R.; Virtanen, P.; Cournapeau, D.; Wieser, E.; Taylor, J.; Berg, S.; Smith, N.J. Array Programming with NumPy. Nature 2020, 585, 357–362. [Google Scholar] [CrossRef]
- Hunter, J.D. Matplotlib: A 2D Graphics Environment. Comput. Sci. Eng. 2007, 9, 90–95. [Google Scholar] [CrossRef]
- Met Office. Cartopy: A Cartographic Python Library with a Matplotlib Interface; Met Office: Exeter, UK, 2010.
- Luiza Petroni, M.; Siqueira-Gay, J.; Lucia Casteli Figueiredo Gallardo, A. Understanding Land Use Change Impacts on Ecosystem Services within Urban Protected Areas. Landsc. Urban Plan. 2022, 223, 104404. [Google Scholar] [CrossRef]
- Geange, S.; Townsend, M.; Clark, D.; Ellis, J.I.; Lohrer, A.M. Communicating the Value of Marine Conservation Using an Ecosystem Service Matrix Approach. Ecosyst. Serv. 2019, 35, 150–163. [Google Scholar] [CrossRef]
- Lyu, Y.; Sheng, L.; Wu, C. Improving Land-Cover-Based Expert Matrices to Quantify the Dynamics of Ecosystem Service Supply, Demand, and Budget: Optimization of Weight Distribution. Ecol. Indic. 2023, 154, 110515. [Google Scholar] [CrossRef]
- Bagstad, K.J.; Cohen, E.; Ancona, Z.H.; McNulty, S.G.; Sun, G. The Sensitivity of Ecosystem Service Models to Choices of Input Data and Spatial Resolution. Appl. Geogr. 2018, 93, 25–36. [Google Scholar] [CrossRef]
- Roche, P.K.; Campagne, C.S. Are Expert-Based Ecosystem Services Scores Related to Biophysical Quantitative Estimates? Ecol. Indic. 2019, 106, 105421. [Google Scholar] [CrossRef]
- Lavorel, S.; Bayer, A.; Bondeau, A.; Lautenbach, S.; Ruiz-Frau, A.; Schulp, N.; Seppelt, R.; Verburg, P.; van Teeffelen, A.; Vannier, C.; et al. Pathways to Bridge the Biophysical Realism Gap in Ecosystem Services Mapping Approaches. Ecol. Indic. 2017, 74, 241–260. [Google Scholar] [CrossRef]
- Wright, W.C.C.; Eppink, F.V.; Greenhalgh, S. Are Ecosystem Service Studies Presenting the Right Information for Decision Making? Ecosyst. Serv. 2017, 25, 128–139. [Google Scholar] [CrossRef]
- Zelený, J.; Mercado-Bettín, D.; Müller, F. Towards the Evaluation of Regional Ecosystem Integrity Using NDVI, Brightness Temperature and Surface Heterogeneity. Sci. Total Environ. 2021, 796, 148994. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Huang, M.; Xie, G.; Zhen, L. Evaluating the Impacts of Land Use Change on Ecosystem Service Values under Multiple Scenarios in the Hunshandake Region of China. Sci. Total Environ. 2022, 850, 158067. [Google Scholar] [CrossRef]
- Liu, X.; Liang, X.; Li, X.; Xu, X.; Ou, J.; Chen, Y.; Li, S.; Wang, S.; Pei, F. A Future Land Use Simulation Model (FLUS) for Simulating Multiple Land Use Scenarios by Coupling Human and Natural Effects. Landsc. Urban Plan. 2017, 168, 94–116. [Google Scholar] [CrossRef]
- Liang, X.; Guan, Q.; Clarke, K.C.; Liu, S.; Wang, B.; Yao, Y. Understanding the Drivers of Sustainable Land Expansion Using a Patch-Generating Land Use Simulation (PLUS) Model: A Case Study in Wuhan, China. Comput. Environ. Urban Syst. 2021, 85, 101569. [Google Scholar] [CrossRef]
- Wang, H.; Yuan, W.; Ma, Y.; Bai, X.; Huang, L.; Cheng, S.; Yang, H.; Guo, W. Spatiotemporal Dislocation of Ecosystem Supply and Demand Services from Habitat Quality under Different Development Scenarios. Ecol. Indic. 2023, 157, 111230. [Google Scholar] [CrossRef]
- Liu, J.; Yan, Q.; Zhang, M. Ecosystem Carbon Storage Considering Combined Environmental and Land-Use Changes in the Future and Pathways to Carbon Neutrality in Developed Regions. Sci. Total Environ. 2023, 903, 166204. [Google Scholar] [CrossRef] [PubMed]
- Burkhard, B.; Kandziora, M.; Hou, Y.; Müller, F. Ecosystem Service Potentials, Flows and Demands-Concepts for Spatial Localisation, Indication and Quantification. Landsc. Online 2014, 34, 1–32. [Google Scholar] [CrossRef]
- Zhang, F.; Xu, N.; Wang, C.; Guo, M.; Kumar, P. Multi-Scale Coupling Analysis of Urbanization and Ecosystem Services Supply-Demand Budget in the Beijing-Tianjin-Hebei Region, China. J. Geogr. Sci. 2023, 33, 340–356. [Google Scholar] [CrossRef]
- Dong, L.; Wu, C.; Wang, X.; Zhao, N. Satellite Observed Delaying Effects of Increased Winds on Spring Green-up Dates. Remote Sens. Environ. 2023, 284, 113363. [Google Scholar] [CrossRef]
- Li, Z.; Xia, J.; Deng, X.; Yan, H. Multilevel Modelling of Impacts of Human and Natural Factors on Ecosystem Services Change in an Oasis, Northwest China. Resour. Conserv. Recycl. 2021, 169, 105474. [Google Scholar] [CrossRef]
- McKinney, W. Pandas: A Foundational Python Library for Data Analysis and Statistics. Python High Perform. Sci. Comput. 2011, 14, 1–9. [Google Scholar]
- Chaudhry, S.; Sidhu, G.P.S. Climate Change Regulated Abiotic Stress Mechanisms in Plants: A Comprehensive Review. Plant Cell Rep. 2022, 41, 1–31. [Google Scholar] [CrossRef]
- Li, C.; Fu, B.; Wang, S.; Stringer, L.C.; Wang, Y.; Li, Z.; Liu, Y.; Zhou, W. Drivers and Impacts of Changes in China’s Drylands. Nat. Rev. Earth Environ. 2021, 2, 858–873. [Google Scholar] [CrossRef]
- Fu, B.; Liu, Y.; Meadows, M.E. Ecological Restoration for Sustainable Development in China. Natl. Sci. Rev. 2023, 10, nwad033. [Google Scholar] [CrossRef]
- Zhang, D.; Huang, Q.; He, C.; Wu, J. Impacts of Urban Expansion on Ecosystem Services in the Beijing-Tianjin-Hebei Urban Agglomeration, China: A Scenario Analysis Based on the Shared Socioeconomic Pathways. Resour. Conserv. Recycl. 2017, 125, 115–130. [Google Scholar] [CrossRef]
- Wang, M.; Ti, Y.; Wang, J.; Zhao, Q.; Hu, Z.; Luan, X. Ecosystem Services, Trade-Offs and Synergy Analysis in Tianjin under Different Land Use Scenarios. J. Beijing For. Univ. 2022, 44, 77–85. [Google Scholar]
- Gu, C.; Guan, W.; Liu, H. Chinese Urbanization 2050: SD Modeling and Process Simulation. Sci. China Earth Sci. 2017, 60, 1067–1082. [Google Scholar] [CrossRef]
- Liu, M.; Jia, Y.; Zhao, J.; Shen, Y.; Pei, H.; Zhang, H.; Li, Y. Revegetation Projects Significantly Improved Ecosystem Service Values in the Agro-Pastoral Ecotone of Northern China in Recent 20 Years. Sci. Total Environ. 2021, 788, 147756. [Google Scholar] [CrossRef]
- Shao, Q.; Liu, S.; Ning, J.; Liu, G.; Yang, F.; Zhang, X.; Niu, L.; Hhuang, H.; Fan, J.; Liu, J. Assessment of Ecological Benefits of Key National Ecological Projects in China in 2000–2019 Using Remote Sensing. Acta Geogr. Sin. 2022, 77, 2133–2153. [Google Scholar] [CrossRef]
- Huang, J.; Zheng, F.; Dong, X.; Wang, X.-C. Exploring the Complex Trade-Offs and Synergies among Ecosystem Services in the Tibet Autonomous Region. J. Clean. Prod. 2023, 384, 135483. [Google Scholar] [CrossRef]
Cropland | Forest | Grassland | Water | Wetland | Impervious | Barren | |
---|---|---|---|---|---|---|---|
Cropland | 0.2077 | Y | Y | N | N | Y | Y |
Forest | N | 0.1740 | Y | N | N | N | Y |
Grassland | Y | Y | 0.3454 | N | N | Y | Y |
Water | Y | Y | Y | 0.0261 | Y | N | Y |
Wetland | Y | Y | Y | Y | 0.0470 | N | Y |
Impervious | N | N | Y | N | N | 0.0940 | N |
Barren | Y | Y | Y | N | N | Y | 0.1058 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, Y.; Hu, R.; Meng, F.; Luo, M.; Sa, C.; Bao, Y.; Lei, J.; Chao, L. Spatiotemporal Dynamics of Ecosystem Service Balance in the Beijing-Tianjin-Hebei Region and Its Ecological Security Barrier with Inner Mongolia. Atmosphere 2024, 15, 76. https://doi.org/10.3390/atmos15010076
Fang Y, Hu R, Meng F, Luo M, Sa C, Bao Y, Lei J, Chao L. Spatiotemporal Dynamics of Ecosystem Service Balance in the Beijing-Tianjin-Hebei Region and Its Ecological Security Barrier with Inner Mongolia. Atmosphere. 2024; 15(1):76. https://doi.org/10.3390/atmos15010076
Chicago/Turabian StyleFang, Yixin, Richa Hu, Fanhao Meng, Min Luo, Chula Sa, Yuhai Bao, Jun Lei, and Lu Chao. 2024. "Spatiotemporal Dynamics of Ecosystem Service Balance in the Beijing-Tianjin-Hebei Region and Its Ecological Security Barrier with Inner Mongolia" Atmosphere 15, no. 1: 76. https://doi.org/10.3390/atmos15010076
APA StyleFang, Y., Hu, R., Meng, F., Luo, M., Sa, C., Bao, Y., Lei, J., & Chao, L. (2024). Spatiotemporal Dynamics of Ecosystem Service Balance in the Beijing-Tianjin-Hebei Region and Its Ecological Security Barrier with Inner Mongolia. Atmosphere, 15(1), 76. https://doi.org/10.3390/atmos15010076