Microclimatic Variability and Thermal Comfort of Spectators in an Outdoor Stadium Venue
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
- Seating—spectator seating, which includes metal benches and plastic bleacher seats; most of these seats are not shaded; lower-tier seating is located on the east, west, and north sides of the stadium; upper-tier seating is located on the east and west sides of the stadium;
- Field—ground-level; natural grass surface; east, west, and north sides are mostly unshaded; the south side is mostly shaded by a large video board (Figure 1);
- Concourse—semi-outdoor environment that is shaded by stadium structures located on both the lower and upper tiers of the stadium.
2.2. Calculation of Thermal Indices
2.3. First Aid and EMS Data
2.4. Statistical Methods
3. Results
3.1. Thermal Profile of the Stadium
3.2. Thermal Comfort of Stadium Spectators
3.3. Thermal Comfort and Heat-Related Illness
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Campbell, S.; Remenyi, T.A.; Whiteb, C.J.; Johnston, F.H. Heatwave and health impact research: A global review. Health Place 2018, 53, 210–218. [Google Scholar] [CrossRef] [PubMed]
- Kravchenko, J.; Abernethy, A.P.; Fawzy, M.; Lyerly, H.K. Minimization of heatwave morbidity and mortality. Am. J. Prev. Med. 2013, 44, 274–282. [Google Scholar] [CrossRef] [PubMed]
- Casa, D.J.; DeMartini, J.K.; Bergeron, M.F.; Csillan, D.; Eichner, E.R.; Lopez, R.M.; Ferrara, M.S.; Miller, K.C.; O’Connor, F.; Sawka, M.N. National Athletic Trainers’ Association position statement: Exertional heat illnesses. J. Athl. Train. 2015, 50, 986–1000. [Google Scholar] [CrossRef] [PubMed]
- Matzarakis, A.; Frohlich, D.; Bermon, S.; Adami, P.E. Quantifying thermal stress for sport events—The case of the Olympic Games 2020 in Tokyo. Atmosphere 2018, 9, 479. [Google Scholar] [CrossRef]
- Vanos, J.K.; Kosaka, E.; Iida, A.; Yokohari, M.; Middel, A.; Scott-Fleming, I.; Brown, R.D. Planning for spectator thermal comfort and health in the face of extreme heat: The Tokyo 2020 Olympic marathons. Sci. Total Environ. 2019, 657, 904–917. [Google Scholar] [CrossRef]
- Schuster, C.; Honold, J.; Lauf, S.; Lakes, T. Urban heat stress: Novel survey suggests health and fitness as future avenue for research and adaptation strategies. Environ. Res. Lett. 2017, 12, 44021. [Google Scholar] [CrossRef]
- De Freitas, C.R.; Scott, D.; McBoyle, G. A second generation climate index for tourism (CIT): Specification and verification. Int. J. Biometeorol. 2008, 52, 399–407. [Google Scholar] [CrossRef]
- Meehan, P.; Toomey, K.E.; Drinnon, J.; Cunningham, S.; Anderson, N.; Baker, E. Public health response for the 1996 Olympic Games. JAMA 1998, 279, 1469–1473. [Google Scholar] [CrossRef]
- Verdaguer-Codina, J.; Martin, D.E.; Pujol-Amat, P.; Ruiz, A.; Prat, J.A. Climatic heat stress studies at the Barcelona Olympic Games, 1992. Sport Med. Train. Rehabil. 1995, 6, 167–192. [Google Scholar] [CrossRef]
- Soomaroo, L.; Murray, V. Disasters at Mass Gatherings: Lessons from History. PLoS Curr. 2012, 4, RRN1301. [Google Scholar] [CrossRef]
- Arbon, P.; Bridgewater, F.H.; Smith, C. Mass gathering medicine: A predictive model for patient presentation and transport rates. Prehospital Disaster Med. 2001, 16, 150–158. [Google Scholar] [CrossRef] [PubMed]
- Milsten, A.M.; Maguire, B.J.; Bissell, R.A.; Seaman, K.G. Mass-gathering medical care: A review of the literature. Prehospital Disaster Med. 2002, 17, 151–162. [Google Scholar] [CrossRef] [PubMed]
- Shelton, S.; Haire, S.; Gerard, B. Medical care for mass gatherings at collegiate football games. South. Med. J. 1997, 90, 1081–1083. [Google Scholar] [CrossRef] [PubMed]
- Perron, A.D.; Brady, W.J.; Custalow, C.B.; Johnson, D.M. Association of heat index and patient volume at a mass gathering event. Prehosp. Emerg. Care 2005, 9, 49–52. [Google Scholar] [CrossRef] [PubMed]
- Kman, N.E.; Russell, G.B.; Bozeman, W.P.; Ehrman, K.; Winslow, J. Derivation of a Formula to Predict Patient Volume Based on Temperature at College Football Games. Prehosp. Emerg. Care 2007, 11, 453–457. [Google Scholar] [CrossRef] [PubMed]
- Baird, M.B.; O’Connor, R.E.; Williamson, A.L.; Sojka, B.; Alibertis, K.; Brady, W.J. The impact of warm weather on mass event medical need: A review of the literature. Am. J. Emerg. Med. 2010, 28, 224–229. [Google Scholar] [CrossRef]
- Steffen, R.; Bouchama, A.; Johansson, A.; Dvorak, J.; Isla, N.; Smallwood, C.; Memish, Z.A. Non communicable health risks during mass gatherings. Lancet Infect. Dis. 2012, 12, 142–149. [Google Scholar] [CrossRef]
- Bernhard, M.C.; Kent, S.T.; Sloan, M.E.; Evans, M.B.; McClure, L.A.; Gohlke, J.M. Measuring personal heat exposure in an urban and rural environment. Environ. Res. 2015, 137, 410–418. [Google Scholar] [CrossRef]
- Herdt, A.; Brown, R.D.; Scott-Fleming, I.; Cao, G.; MacDonald, M.; Henderson, D.; Vanos, J.K. Outdoor Thermal Comfort during Anomalous Heat at the 2015 Pan American Games in Toronto, Canada. Atmosphere 2018, 9, 321. [Google Scholar] [CrossRef]
- Spagnolo, J.; de Dear, R. A field study of thermal comfort in outdoor and semioutdoor environments in subtropical Sydney Australia. Build. Environ. 2003, 38, 721–738. [Google Scholar] [CrossRef]
- Hwang, R.L.; Lin, T.P. Thermal comfort requirements for occupants of semi-outdoor and outdoor environments in hot-humid regions. Archit. Sci. Rev. 2007, 50, 357–364. [Google Scholar] [CrossRef]
- Papachristou, C.; Foteinaki, K.; Kazanci, O.B.; Olesen, B.W. Structures that Include a Semi-Outdoor Space: Part 2: Thermal Environment. In Proceedings of the 12th REHVA World Congress, Aalborg, Denmark, 22–25 May 2016. [Google Scholar]
- Brazel, A.J.; Marcus, M.G. Heat Enhancement by Longwave Wall Emittance. Geogr. Rev. 1987, 4, 440–455. [Google Scholar] [CrossRef]
- Gutter, B. Assessing the Microclimate of Bryant-Denny Stadium. J. Sci. Health Univ. Ala. (JOSHUA) 2011, 8, 14–18. [Google Scholar]
- Reddick, T.R.; Vanos, J.K. A new approach to monitor and map heat exposure in a semi-outdoor environment: A football stadium case study in west Texas. In Proceedings of the 15th Annual Student Conference, New Orleans, LA, USA, 9 January 2016; American Meteorological Society: Boston, MA, USA, 2016. Available online: https://ams.confex.com/ams/96Annual/webprogram/Paper292220.html (accessed on 31 July 2024).
- Bouyer, J.; Vinet, J.; Delpech, P.; Carré, S. Thermal comfort assessment in semioutdoor environments: Application to comfort study in stadia. J. Wind Eng. Ind. Aerodyn. 2007, 95, 963–976. [Google Scholar] [CrossRef]
- Fiala, D.; Lomas, K.J. Applications of a computer model predicting human thermal comfort and responses to the design of sports stadia. In CIBSE; Institute of Energy and Sustainable Design, De Montfort University: Leicester, UK, 1999; p. 492. [Google Scholar]
- Helbing, D.; Johansson, A. Pedestrian, Crowd, and Evacuation Dynamics. Encycl. Complex. Syst. Sci. 2013, 16, 6476–6495. [Google Scholar] [CrossRef]
- Stewart, I.D.; Kennedy, C.A. Metabolic heat production by human and animal populations in cities. Int. J. Biometeorol. 2017, 61, 1159–1171. [Google Scholar] [CrossRef]
- Davis Wade Stadium at Scott Field. Available online: https://express.adobe.com/page/bz0wAZIToDGjz/ (accessed on 21 July 2024).
- Habeeb, D.; Clawson, J.; Zakeresfahani, A.; Holtz, Z. Investigating and validating on-body temperature sensors for personal heat exposure tracking. In Proceedings of the CHI Conference on Human Factors in Computing Systems, Orleans, LA, USA, 29 April–5 May 2022; Volume 343, pp. 1–14. [Google Scholar]
- Schaefer, G.L.; Cosh, M.H.; Jackson, T.J. The USDA Natural Resources Conservation Service Soil Climate Analysis Network (SCAN). J. Atmos. Ocean. Technol. 2007, 24, 2073–2077. [Google Scholar] [CrossRef]
- Bailey, E.; Fuhrmann, C.M.; Runkle, J.; Stevens, S.; Brown, M.E.; Sugg, M.M. Wearable sensors for personal temperature exposure assessments: A comparative study. Environ. Res. 2020, 180, 108858. [Google Scholar] [CrossRef]
- Scott, A.A.; Zaitchik, B.; Waugh, D.W.; O’Meara, K. Intraurban temperature variability in Baltimore. J. Appl. Meteorol. Climatol. 2017, 56, 159–171. [Google Scholar] [CrossRef]
- Wen, C.; Mamtimin, A.; Feng, J.; Wang, Y.; Yang, F.; Huo, W.; Zhou, C.; Li, R.; Song, M.; Gao, J.; et al. Diurnal Variation in Urban Heat Island Intensity in Birmingham: The Relationship between Nocturnal Surface and Canopy Heat Islands. Land 2023, 12, 2062. [Google Scholar] [CrossRef]
- Alfano, F.R.; Palella, B.I.; Riccio, G. Thermal environment assessment reliability using temperature—Humidity indices. Ind. Health 2011, 49, 95–106. [Google Scholar] [CrossRef] [PubMed]
- de Freitas, C.R.; Grigorieva, E.A. A comprehensive catalogue and classification of human thermal climate indices. Int. J. Biometeorol. 2015, 59, 109–120. [Google Scholar] [CrossRef] [PubMed]
- Rothfusz, L.P. The Heat Index “Equation” (or, More than You Ever Wanted to Know about Heat Index); NWS Southern Region Technical Attachment 1990, SR/SSD 90-23: Fort Worth, TX, USA, 1990; p. 2. Available online: https://www.weather.gov/media/bgm/ta_htindx.PDF (accessed on 31 July 2024).
- Reza, M.; Daneshvar, M.; Bagherzadeh, A.; Tavousi, T. Assessment of Bioclimatic Comfort Conditions based on Physiologically Equivalent Temperature (PET) using the RayMan Model in Iran. Cent. Eur. J. Geosci. 2013, 5, 53–60. [Google Scholar]
- Matzarakis, A.; Fröhlich, D. Sport events and climate for visitors—The case of FIFA World Cup in Qatar 2022. Int. J. Biometeorol. 2015, 59, 481–486. [Google Scholar] [CrossRef]
- Hoppe, P. The physiological equivalent temperature—A universal index for the biometeorological assessment of the thermal environment. Int. J. Biometeorol. 1999, 43, 71–75. [Google Scholar] [CrossRef]
- Matzarakis, A.; Amelung, B. Physiologically equivalent temperature as indicator for impacts of climate change on thermal comfort of humans. In Seasonal Forecasts, Climatic Change and Human Health; Thomson, M.C., Garcia-Herrera, R., Beniston, M., Eds.; Springer: Dordrecht, The Netherlands, 2008; pp. 161–172. [Google Scholar]
- Matzarakis, A.; Rutz, F.; Mayer, H. Modelling radiation fluxes in simple and complex environments: Basics of the RayMan model. Int. J. Biometeorol. 2007, 54, 131–139. [Google Scholar] [CrossRef]
- Mei, W.; Qu, M. Evaluation and Analysis of Wind Flow for a Football Stadium. Procedia Eng. 2016, 145, 774–781. [Google Scholar] [CrossRef]
- Chen, Y.-C.; Matzarakis, A. Modified physiologically equivalent temperature—Basics and applications for western Europe climate. Theor. Appl. Climatol. 2018, 132, 1275–1289. [Google Scholar] [CrossRef]
- Dzyuban, Y.; Hondula, D.; Vanos, J.; Middel, A.; Coseo, P.; Kuras, E.; Redman, C. Evidence of alliesthesia during a neighborhood thermal walk in a hot and dry city. Sci. Total Environ. 2022, 834, 155294. [Google Scholar] [CrossRef]
- Ainsworth, B.E.; Haskell, W.L.; Hermann, S.D.; Meckes, N.; Bassett, D.R., Jr.; Tudor-Locke, C.; Greer, J.L.; Vezina, J.; Whitt-Glover, M.C.; Leon, A.S. Compendium of physical activities: A second update of codes and MET values. Med. Sci. Sports Exerc. 2011, 43, 1575–1581. [Google Scholar] [CrossRef]
- Deb, C.; Ramachandraiah, A. The significance of Physiological Equivalent Temperature (PET) in outdoor thermal comfort studies. Int. J. Eng. Sci. Technol. 2010, 2, 2825–2828. [Google Scholar]
- Rupp, R.F.; Vásquez, N.G.; Lamberts, R. A review of human thermal comfort in the built environment. Energy Build. 2015, 105, 178–205. [Google Scholar] [CrossRef]
- Taleghani, M.; Kleerekoper, L.; Tenpierik, M.; Dobbelsteen, A. Outdoor thermal comfort within five different urban forms in the Netherlands. Build. Environ. 2015, 83, 65–78. [Google Scholar] [CrossRef]
- Martinelli, L.; Lin, T.; Matzarakis, A. Assessment of the influence of daily shadings pattern on human thermal comfort and attendance in Rome during summer period. Build. Environ. 2015, 92, 30–38. [Google Scholar] [CrossRef]
- Matzarakis, A.; Mayer, H. Heat stress in Greece. Int. J. Biometeorol. 1997, 41, 34–39. [Google Scholar] [CrossRef]
- Matzarakis, A.; Moses, H.M.; Iziomon, G. Applications of a universal thermal index: Physiological equivalent temperature. Int J. Biometeorol. 1999, 43, 76–84. [Google Scholar] [CrossRef]
- Jackson NWS Product Guide for Advisory and Warning Criteria. Available online: https://www.weather.gov/jan/productguide_nonprecip (accessed on 31 July 2024).
- Lu, Y.-C.; Romps, D.M. Extending the heat index. J. Appl. Meteorol. Climatol. 2022, 61, 1367–1383. [Google Scholar] [CrossRef]
- Klemm, W.; Heusinkveld, B.G.; Lenzholzer, S.; Jacobs, M.H.; Van Hove, B. Psychological and physical impact of urban green spaces on outdoor thermal comfort during summertime in The Netherlands. Build. Environ. 2015, 83, 120–128. [Google Scholar] [CrossRef]
Mean Temperature | Standard Deviation | |||||
2.5% | 50% | 97.5% | 2.5% | 50% | 97.5% | |
Seating | 21.9 | 22.3 | 22.6 | 6.9 | 7.1 | 7.3 |
Field | 21.7 | 22.0 | 22.3 | 6.8 | 7.0 | 7.2 |
Concourse | 22.5 | 22.7 | 22.9 | 5.5 | 5.7 | 5.9 |
SCAN | 20.5 | 20.8 | 21.2 | 7.3 | 7.5 | 7.7 |
Mean Heat Index | Standard Deviation | |||||
2.5% | 50% | 97.5% | 2.5% | 50% | 97.5% | |
Seating | 31.7 | 32.0 | 32.3 | 3.5 | 3.6 | 3.8 |
Field | 31.3 | 31.5 | 31.8 | 3.0 | 3.1 | 3.3 |
Concourse | 30.2 | 30.4 | 30.6 | 1.8 | 1.9 | 2.1 |
SCAN | 31.0 | 31.3 | 31.5 | 3.0 | 3.1 | 3.2 |
HI Category | HI Range (°C) | PET Category | PET Range (°C) | Effects on the Body Based on HI (PET) |
---|---|---|---|---|
Comfortable | 64–74 (18–23) | No thermal stress | ||
Caution | 80–90 (27–32) | Slightly Warm to Warm | 73–95 (23–35) | Fatigue possible with prolonged exposure and/or physical activity (slight to moderate heat stress) |
Extreme Caution | 91–103 (32–41) | Hot | 95–106 (35–41) | Heat stroke, heat cramps, or heat exhaustion possible with prolonged exposure and/or physical activity (strong heat stress) |
Danger | 104–125 (41–54) | Very Hot | >106 (41) | Heat cramps or heat exhaustion likely, and heat stroke possible with prolonged exposure and/or physical activity (extreme heat stress) |
Extreme Danger | >125 (54) | Heat stroke likely |
Mean mPET | Standard Deviation | ||||||
2.5% | 50% | 97.5% | 2.5% | 50% | 97.5% | ||
Seating | 36.4 | 36.9 | 37.4 | 8.2 | 8.5 | 8.7 | |
Field | 35.3 | 35.8 | 36.3 | 7.7 | 8.0 | 8.2 | |
Concourse | 33.8 | 34.2 | 34.7 | 7.4 | 7.6 | 7.8 | |
SCAN | 35.2 | 35.7 | 36.2 | 7.5 | 7.7 | 8.0 | |
Mean mPET | Standard Deviation | ||||||
2.5% | 50% | 97.5% | 2.5% | 50% | 97.5% | ||
Seating | 32.1 | 32.6 | 33.1 | 5.9 | 6.2 | 6.4 | |
Field | 31.7 | 32.2 | 32.6 | 5.6 | 5.8 | 6.0 | |
Concourse | 29.8 | 30.2 | 30.6 | 4.8 | 5.0 | 5.2 | |
SCAN | 31.1 | 31.3 | 31.9 | 5.4 | 5.6 | 5.8 | |
Mean mPET | Standard Deviation | ||||||
2.5% | 50% | 97.5% | 2.5% | 50% | 97.5% | ||
Seating | 31.1 | 31.6 | 32.0 | 5.4 | 5.7 | 5.9 | |
Field | 31.0 | 31.5 | 32.0 | 5.0 | 5.3 | 5.5 | |
Concourse | 29.7 | 30.2 | 30.6 | 4.1 | 4.3 | 4.5 | |
SCAN | 30.3 | 30.7 | 31.1 | 4.9 | 5.1 | 5.3 | |
Mean mPET | Standard Deviation | ||||||
2.5% | 50% | 97.5% | 2.5% | 50% | 97.5% | ||
Seating | 30.7 | 31.2 | 31.6 | 5.2 | 5.5 | 5.7 | |
Field | 30.3 | 30.8 | 31.3 | 4.8 | 5.1 | 5.3 | |
Concourse | 28.6 | 29.0 | 29.4 | 3.6 | 3.8 | 4.0 | |
SCAN | 29.9 | 30.2 | 30.5 | 4.7 | 4.9 | 5.1 |
3 September 2016 | 10 September 2016 | 29 October 2016 | ||||
---|---|---|---|---|---|---|
West | East | West | East | West | East | |
Heat-related cases per 10,000 spectators | 1.57 | 1.93 | 1.21 | 1.38 | 0.34 | 0.69 |
Mean HI | 39.6 | 42.6 | 34.1 | 34.3 | 31.3 | 35.2 |
Mean mPET Wind 0.1 | 50.9 | 51.7 | 27.5 | 28.1 | 39.1 | 41.4 |
Mean mPET Wind 6.1 | 40.9 | 42.1 | 26.1 | 27.2 | 31.8 | 35.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Collins, A.; Brown, M.; Gutter, B.; Fuhrmann, C. Microclimatic Variability and Thermal Comfort of Spectators in an Outdoor Stadium Venue. Atmosphere 2024, 15, 1184. https://doi.org/10.3390/atmos15101184
Collins A, Brown M, Gutter B, Fuhrmann C. Microclimatic Variability and Thermal Comfort of Spectators in an Outdoor Stadium Venue. Atmosphere. 2024; 15(10):1184. https://doi.org/10.3390/atmos15101184
Chicago/Turabian StyleCollins, Andrew, Michael Brown, Barrett Gutter, and Christopher Fuhrmann. 2024. "Microclimatic Variability and Thermal Comfort of Spectators in an Outdoor Stadium Venue" Atmosphere 15, no. 10: 1184. https://doi.org/10.3390/atmos15101184
APA StyleCollins, A., Brown, M., Gutter, B., & Fuhrmann, C. (2024). Microclimatic Variability and Thermal Comfort of Spectators in an Outdoor Stadium Venue. Atmosphere, 15(10), 1184. https://doi.org/10.3390/atmos15101184