Comparative Analysis of Grass Pollen Dynamics in Urban and Rural Ireland: Identifying Key Sources and Optimizing Prediction Models
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Aerobiological Database
2.2. Footprints
2.3. Regression Trees
3. Results
3.1. Footprints
3.2. Decision Trees
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- The Angiosperm Phylogeny Group; Chase, M.W.; Christenhusz, M.J.M.; Fay, M.F.; Byng, J.W.; Judd, W.S.; Soltis, D.E.; Mabberley, D.J.; Sennikov, A.N.; Soltis, P.S.; et al. An Update of the Angiosperm Phylogeny Group Classification for the Orders and Families of Flowering Plants: APG IV. Bot. J. Linn. Soc. 2016, 181, 1–20. [Google Scholar] [CrossRef]
- de León, D.G.; García-Mozo, H.; Galán, C.; Alcázar, P.; Lima, M.; González-Andújar, J.L. Disentangling the Effects of Feedback Structure and Climate on Poaceae Annual Airborne Pollen Fluctuations and the Possible Consequences of Climate Change. Sci. Total Environ. 2015, 530, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Schiavoni, G.; D’Amato, G.; Afferni, C. The Dangerous Liaison between Pollens and Pollution in Respiratory Allergy. Ann. Allergy Asthma Immunol. 2017, 118, 269–275. [Google Scholar] [CrossRef] [PubMed]
- García-Mozo, H. Poaceae Pollen as the Leading Aeroallergen Worldwide: A Review. Allergy 2017, 72, 1849–1858. [Google Scholar] [CrossRef]
- Nae, A.; Hinchion, K.; Keogh, I.J. A Fifteen-Year Review of Skin Allergy Testing in Irish Patients with Symptomatic Rhinitis. World J. Otorhinolaryngol.-Head Neck Surg. 2021, 7, 338–343. [Google Scholar] [CrossRef]
- Martínez-Bracero, M.; Markey, E.; Clancy, J.H.; Sodeau, J.; O’Connor, D.J. First Long-Time Airborne Fungal Spores Study in Dublin, Ireland (1978–1980). Atmosphere 2022, 13, 313. [Google Scholar] [CrossRef]
- O’Connor, D.J.; Sadyś, M.; Skjøth, C.A.; Healy, D.A.; Kennedy, R.; Sodeau, J.R. Atmospheric Concentrations of Alternaria, Cladosporium, Ganoderma and Didymella Spores Monitored in Cork (Ireland) and Worcester (England) during the Summer of 2010. Aerobiologia 2014, 30, 397–411. [Google Scholar] [CrossRef]
- O’Connor, D.J.; Healy, D.A.; Sodeau, J.R. A 1-Month Online Monitoring Campaign of Ambient Fungal Spore Concentrations in the Harbour Region of Cork, Ireland. Aerobiologia 2015, 31, 295–314. [Google Scholar] [CrossRef]
- Healy, D.A.; Huffman, J.A.; O’Connor, D.J.; Pöhlker, C.; Pöschl, U.; Sodeau, J.R. Ambient Measurements of Biological Aerosol Particles near Killarney, Ireland: A Comparison between Real-Time Fluorescence and Microscopy Techniques. Atmos. Chem. Phys. 2014, 14, 8055–8069. [Google Scholar] [CrossRef]
- Feeney, P.; Rodríguez, S.F.; Molina, R.; McGillicuddy, E.; Hellebust, S.; Quirke, M.; Daly, S.; O’Connor, D.; Sodeau, J. A Comparison of On-Line and Off-Line Bioaerosol Measurements at a Biowaste Site. Waste Manag. 2018, 76, 323–338. [Google Scholar] [CrossRef]
- O’Connor, D.J.; Daly, S.M.; Sodeau, J.R. On-Line Monitoring of Airborne Bioaerosols Released from a Composting/Green Waste Site. Waste Manag. 2015, 42, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Markey, E.; Clancy, J.H.; Martínez-Bracero, M.; Maya-Manzano, J.M.; Smith, M.; Skjøth, C.; Dowding, P.; Sarda-Estève, R.; Baisnée, D.; Donnelly, A.; et al. A Comprehensive Aerobiological Study of the Airborne Pollen in the Irish Environment. Aerobiologia 2022, 38, 343–366. [Google Scholar] [CrossRef] [PubMed]
- McDonald, M.; O’driscoll, B. Aerobiological Studies Based in Galway. A Comparison of Pollen and Spore Counts over Two Seasons of Widely Differing Weather Conditions. Clin. Exp. Allergy 1980, 10, 211–215. [Google Scholar] [CrossRef] [PubMed]
- Kurganskiy, A.; Creer, S.; de Vere, N.; Griffith, G.W.; Osborne, N.J.; Wheeler, B.W.; McInnes, R.N.; Clewlow, Y.; Barber, A.; Brennan, G.L.; et al. Predicting the Severity of the Grass Pollen Season and the Effect of Climate Change in Northwest Europe. Sci. Adv. 2021, 7, eabd7658. [Google Scholar] [CrossRef] [PubMed]
- Rojo, J.; Rivero, R.; Romero-Morte, J.; Fernández-González, F.; Pérez-Badia, R. Modeling Pollen Time Series Using Seasonal-Trend Decomposition Procedure Based on LOESS Smoothing. Int. J. Biometeorol. 2017, 61, 335–348. [Google Scholar] [CrossRef]
- Bosch-Cano, F.; Bernard, N.; Sudre, B.; Gillet, F.; Thibaudon, M.; Richard, H.; Badot, P.-M.; Ruffaldi, P. Human Exposure to Allergenic Pollens: A Comparison between Urban and Rural Areas. Environ. Res. 2011, 111, 619–625. [Google Scholar] [CrossRef]
- Frisk, C.A.; Apangu, G.P.; Petch, G.M.; Adams-Groom, B.; Skjøth, C.A. Atmospheric Transport Reveals Grass Pollen Dispersion Distances. Sci. Total Environ. 2022, 814, 152806. [Google Scholar] [CrossRef]
- García-Mozo, H.; Galán, C.; Alcázar, P.; de la Guardia, C.D.; Nieto-Lugilde, D.; Recio, M.; Hidalgo, P.; Gónzalez-Minero, F.; Ruiz, L.; Domínguez-Vilches, E. Trends in Grass Pollen Season in Southern Spain. Aerobiologia 2010, 26, 157–169. [Google Scholar] [CrossRef]
- Cebrino, J.; Galán, C.; Domínguez-Vilches, E. Aerobiological and Phenological Study of the Main Poaceae Species in Córdoba City (Spain) and the Surrounding Hills. Aerobiologia 2016, 32, 595–606. [Google Scholar] [CrossRef]
- Romero-Morte, J.; Rojo, J.; Pérez-Badia, R. Meteorological Factors Driving Airborne Grass Pollen Concentration in Central Iberian Peninsula. Aerobiologia 2020, 36, 527–540. [Google Scholar] [CrossRef]
- Heide, O.M. Control of Flowering and Reproduction in Temperate Grasses. New Phytol. 1994, 128, 347–362. [Google Scholar] [CrossRef] [PubMed]
- Romero-Morte, J.; Rojo, J.; Rivero, R.; Fernández-González, F.; Pérez-Badia, R. Standardised Index for Measuring Atmospheric Grass-Pollen Emission. Sci. Total Environ. 2018, 612, 180–191. [Google Scholar] [CrossRef] [PubMed]
- Bennie, J.; Davies, T.W.; Cruse, D.; Bell, F.; Gaston, K.J. Artificial Light at Night Alters Grassland Vegetation Species Composition and Phenology. J. Appl. Ecol. 2018, 55, 442–450. [Google Scholar] [CrossRef]
- Aboulaich, N.; Bouziane, H.; Kadiri, M.; del Mar Trigo, M.; Riadi, H.; Kazzaz, M.; Merzouki, A. Pollen Production in Anemophilous Species of the Poaceae Family in Tetouan (NW Morocco). Aerobiologia 2009, 25, 27–38. [Google Scholar] [CrossRef]
- Brighetti, M.A.; Costa, C.; Menesatti, P.; Antonucci, F.; Tripodi, S.; Travaglini, A. Multivariate Statistical Forecasting Modeling to Predict Poaceae Pollen Critical Concentrations by Meteoclimatic Data. Aerobiologia 2014, 30, 25–33. [Google Scholar] [CrossRef]
- Pashley, C.H.; Fairs, A.; Edwards, R.E.; Bailey, J.P.; Corden, J.M.; Wardlaw, A.J. Reproducibility between Counts of Airborne Allergenic Pollen from Two Cities in the East Midlands, UK. Aerobiologia 2009, 25, 249–263. [Google Scholar] [CrossRef]
- Rojo, J.; Oteros, J.; Pérez-Badia, R.; Cervigón, P.; Ferencova, Z.; Gutiérrez-Bustillo, A.M.; Bergmann, K.-C.; Oliver, G.; Thibaudon, M.; Albertini, R.; et al. Near-Ground Effect of Height on Pollen Exposure. Environ. Res. 2019, 174, 160–169. [Google Scholar] [CrossRef]
- López-Orozco, R.; García-Mozo, H.; Oteros, J.; Galán, C. Long-Term Trends in Atmospheric Quercus Pollen Related to Climate Change in Southern Spain: A 25-Year Perspective. Atmos. Environ. 2021, 262, 118637. [Google Scholar] [CrossRef]
- Skjøth, C.A.; Ørby, P.V.; Becker, T.; Geels, C.; Schlünssen, V.; Sigsgaard, T.; Bønløkke, J.H.; Sommer, J.; Søgaard, P.; Hertel, O. Identifying Urban Sources as Cause of Elevated Grass Pollen Concentrations Using GIS and Remote Sensing. Biogeosciences 2013, 10, 541–554. [Google Scholar] [CrossRef]
- Werchan, B.; Werchan, M.; Mücke, H.-G.; Gauger, U.; Simoleit, A.; Zuberbier, T.; Bergmann, K.-C. Spatial Distribution of Allergenic Pollen through a Large Metropolitan Area. Environ. Monit. Assess. 2017, 189, 169. [Google Scholar] [CrossRef]
- Hjort, J.; Hugg, T.T.; Antikainen, H.; Rusanen, J.; Sofiev, M.; Kukkonen, J.; Jaakkola, M.S.; Jaakkola, J.J.K. Fine-Scale Exposure to Allergenic Pollen in the Urban Environment: Evaluation of Land Use Regression Approach. Environ. Health Perspect. 2016, 124, 619–626. [Google Scholar] [CrossRef] [PubMed]
- Sabariego, S.; Pérez-Badia, R.; Bouso, V.; Gutiérrez, M. Poaceae Pollen in the Atmosphere of Aranjuez, Madrid and Toledo (Central Spain). Aerobiologia 2011, 27, 221–228. [Google Scholar] [CrossRef]
- Camacho, I.; Caeiro, E.; Nunes, C.; Morais-Almeida, M. Airborne Pollen Calendar of Portugal: A 15-Year Survey (2002–2017). Allergol. Immunopathol. 2020, 48, 194–201. [Google Scholar] [CrossRef] [PubMed]
- Kok Ong, E.; Bir Singh, M.; Bruce Knox, R. Seasonal Distribution of Pollen in the Atmosphere of Melbourne: An Airborne Pollen Calendar. Aerobiologia 1995, 11, 51–55. [Google Scholar] [CrossRef]
- Oh, J.-W.; Lee, H.-B.; Kang, I.-J.; Kim, S.-W.; Park, K.-S.; Kook, M.-H.; Kim, B.-S.; Baek, H.-S.; Kim, J.-H.; Kim, J.-K.; et al. The Revised Edition of Korean Calendar for Allergenic Pollens. Allergy Asthma Immunol. Res. 2012, 4, 5. [Google Scholar] [CrossRef]
- Maya-Manzano, J.M.; Skjøth, C.A.; Smith, M.; Dowding, P.; Sarda-Estève, R.; Baisnée, D.; McGillicuddy, E.; Sewell, G.; O’Connor, D.J. Spatial and Temporal Variations in the Distribution of Birch Trees and Airborne Betula Pollen in Ireland. Agric. For. Meteorol. 2021, 298–299, 108298. [Google Scholar] [CrossRef]
- Vélez-Pereira, A.M.; De Linares, C.; Belmonte, J. Aerobiological Modeling I: A Review of Predictive Models. Sci. Total Environ. 2021, 795, 148783. [Google Scholar] [CrossRef]
- Copernicus Land Monitoring Service Grassland 2018. 2018. Available online: https://land.copernicus.eu/pan-european/high-resolution-layers/grassland/status-maps/grassland-2018?tab=metadata (accessed on 4 October 2022).
- 30 Year Averages—Met Éireann—The Irish Meteorological Service. Available online: https://www.met.ie/climate/30-year-averages (accessed on 16 February 2023).
- Hirst, J.M. An Automatic Volumetric Spore Trap. Ann. Appl. Biol. 1952, 39, 257–265. [Google Scholar] [CrossRef]
- Galán, C.; Smith, M.; Thibaudon, M.; Frenguelli, G.; Oteros, J.; Gehrig, R.; Berger, U.; Clot, B.; Brandao, R.; Group, E.Q.W. Pollen Monitoring: Minimum Requirements and Reproducibility of Analysis. Aerobiologia 2014, 30, 385–395. [Google Scholar] [CrossRef]
- R Development Core Team R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Available online: http://www.r-project.org/ (accessed on 17 July 2017).
- Rojo, J.; Picornell, A.; Oteros, J. AeRobiology: The Computational Tool for Biological Data in the Air. Methods Ecol. Evol. 2019, 10, 1371–1376. [Google Scholar] [CrossRef]
- Stein, A.; Draxler, R.R.; Rolph, G.D.; Stunder, B.J.; Cohen, M.; Ngan, F. NOAA’s HYSPLIT Atmospheric Transport and Dispersion Modeling System. Bull. Am. Meteorol. Soc. 2015, 96, 2059–2077. [Google Scholar] [CrossRef]
- Becker, J.; Steckling-Muschack, N.; Mittermeier, I.; Bergmann, K.-C.; Böse-O’Reilly, S.; Buters, J.; Damialis, A.; Heigl, K.; Heinrich, J.; Kabesch, M.; et al. Threshold Values of Grass Pollen (Poaceae) Concentrations and Increase in Emergency Department Visits, Hospital Admissions, Drug Consumption and Allergic Symptoms in Patients with Allergic Rhinitis: A Systematic Review. Aerobiologia 2021, 37, 633–662. [Google Scholar] [CrossRef]
- Real, R.; Barbosa, A.M.; Vargas, J.M. Obtaining Environmental Favourability Functions from Logistic Regression. Environ. Ecol. Stat. 2006, 13, 237–245. [Google Scholar] [CrossRef]
- Vélez-Pereira, A.M.; De Linares, C.; Canela, M.A.; Belmonte, J. A Comparison of Models for the Forecast of Daily Concentration Thresholds of Airborne Fungal Spores. Atmosphere 2023, 14, 1016. [Google Scholar] [CrossRef]
- Linares, C.D.; de la Guardia, C.D.; Lugilde, D.N.; Alba, F. Airborne Study of Grass Allergen (Lol p 1) in Different-Sized Particles. Int. Arch. Allergy Immunol. 2010, 152, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Vélez-Pereira, A.M.; De Linares, C.; Canela, M.-A.; Belmonte, J. Logistic Regression Models for Predicting Daily Airborne Alternaria and Cladosporium Concentration Levels in Catalonia (NE Spain). Int. J. Biometeorol. 2019, 63, 1541–1553. [Google Scholar] [CrossRef] [PubMed]
- Estrella, N.; Menzel, A.; Krämer, U.; Behrendt, H. Integration of Flowering Dates in Phenology and Pollen Counts in Aerobiology: Analysis of Their Spatial and Temporal Coherence in Germany (1992–1999). Int. J. Biometeorol. 2006, 51, 49–59. [Google Scholar] [CrossRef]
- Simoleit, A.; Werchan, M.; Werchan, B.; Mücke, H.-G.; Gauger, U.; Zuberbier, T.; Bergmann, K.-C. Birch, Grass, and Mugwort Pollen Concentrations and Intradiurnal Patterns at Two Different Urban Sites in Berlin, Germany. Allergo J. Int. 2017, 26, 155–164. [Google Scholar] [CrossRef]
- Kasprzyk, I. Comparative Study of Seasonal and Intradiurnal Variation of Airborne Herbaceous Pollen in Urban and Rural Areas. Aerobiologia 2006, 22, 185–195. [Google Scholar] [CrossRef]
- Rodríguez-Rajo, F.J.; Jato, V.; Aira, M.J. Pollen Content in the Atmosphere of Lugo (NW Spain) with Reference to Meteorological Factors (1999–2001). Aerobiologia 2003, 19, 213–225. [Google Scholar] [CrossRef]
- Boullayali, A.; Elhassani, L.; Janati, A.; Achmakh, L.; Bouziane, H. Airborne Pollen Trends in Tétouan (NW of Morocco). Aerobiologia 2021, 37, 479–505. [Google Scholar] [CrossRef]
- Ghitarrini, S.; Galán, C.; Frenguelli, G.; Tedeschini, E. Phenological Analysis of Grasses (Poaceae) as a Support for the Dissection of Their Pollen Season in Perugia (Central Italy). Aerobiologia 2017, 33, 339–349. [Google Scholar] [CrossRef]
- Plaza, M.P.; Alcázar, P.; Hernández-Ceballos, M.A.; Galán, C. Mismatch in Aeroallergens and Airborne Grass Pollen Concentrations. Atmos. Environ. 2016, 144, 361–369. [Google Scholar] [CrossRef]
- Norris-Hill, J. The Modelling of Daily Poaceae Pollen Concentrations. Grana 1995, 34, 182–188. [Google Scholar] [CrossRef]
- Jetschni, J.; Jochner-Oette, S. Spatial and Temporal Variations of Airborne Poaceae Pollen along an Urbanization Gradient Assessed by Different Types of Pollen Traps. Atmosphere 2021, 12, 974. [Google Scholar] [CrossRef]
- Sikoparija, B.; Radisic, P.; Pejak, T.; Simic, S. Airborne Grass and Ragweed Pollen in the Southern Panonnian Valley—Consideration of Rural and Urban Environment. Ann. Agric. Environ. Med. 2006, 13, 2. [Google Scholar]
- Simoleit, A.; Gauger, U.; Mücke, H.-G.; Werchan, M.; Obstová, B.; Zuberbier, T.; Bergmann, K.-C. Intradiurnal Patterns of Allergenic Airborne Pollen near a City Motorway in Berlin, Germany. Aerobiologia 2016, 32, 199–209. [Google Scholar] [CrossRef]
- Brennan, G.L.; Potter, C.; de Vere, N.; Griffith, G.W.; Skjøth, C.A.; Osborne, N.J.; Wheeler, B.W.; McInnes, R.N.; Clewlow, Y.; Barber, A.; et al. Temperate Airborne Grass Pollen Defined by Spatio-Temporal Shifts in Community Composition. Nat. Ecol. Evol. 2019, 3, 750–754. [Google Scholar] [CrossRef] [PubMed]
- Kluska, K.; Piotrowicz, K.; Kasprzyk, I. The Impact of Rainfall on the Diurnal Patterns of Atmospheric Pollen Concentrations. Agric. For. Meteorol. 2020, 291, 108042. [Google Scholar] [CrossRef]
- Maya-Manzano, J.; Sadyś, M.; Tormo-Molina, R.; Fernández-Rodríguez, S.; Oteros, J.; Silva-Palacios, I.; Gonzalo-Garijo, A. Relationships between Airborne Pollen Grains, Wind Direction and Land Cover Using GIS and Circular Statistics. Sci. Total Environ. 2017, 584, 603–613. [Google Scholar] [CrossRef]
- Martínez-Bracero, M.; Vélez-Pereira, A.M.; O’Connor, D.J. Grass Pollen Modelling in Ireland Rural and Urban Areas; Poster presentation; Málaga, Spain, 3 September 2023. [Google Scholar]
Category Threshold | Concentration Rank by Threshold Proposed to | |
---|---|---|
Sweden | Denmark | |
Null | <1 pollen grains/m3 | <1 pollen grains/m3 |
Low | 1–10 pollen grains/m3 | 1–30 pollen grains/m3 |
Medium | 10–30 pollen grains/m3 | 30–50 pollen grains/m3 |
High | 30–100 pollen grains/m3 | 50–150 pollen grains/m3 |
Very high | ≥100 pollen grains/m3 | ≥150 pollen grains/m3 |
Location | ||||||||
---|---|---|---|---|---|---|---|---|
Dublin | Carlow | |||||||
Year | 2017 | 2018 | 2019 | 2020 | 2018 | 2019 | 2020 | |
Start date | 31-May | 17-May | 27-May | 24-May | 22-May | 15-May | 6-May | |
End date | 20-Jul | 7-Jul | 6-Aug | 31-Aug | 15-Jul | 8-Aug | 31-Aug | |
Length season | 51 | 52 | 72 | 100 | 55 | 86 | 118 | |
Peak value | 546.65 | 410.15 | 514.90 | 333.80 | 2383.51 | 9818.46 | 2335.97 | |
Peak day | 17-Jun | 17-Jun | 15-Jun | 7-Jun | 13-Jun | 20-Jun | 13-Jun | |
Length pre-peak | 18 | 32 | 20 | 15 | 23 | 37 | 39 | |
Sum pre-peak | 1641.25 | 2700.75 | 961.40 | 1093.75 | 13,318.30 | 17,922.07 | 9452.61 | |
Length post-peak | 33 | 20 | 52 | 85 | 32 | 49 | 79 | |
Sum post-peak | 2462.20 | 1381.57 | 6966.35 | 5180.07 | 13,303.33 | 9892.23 | 11,409.06 | |
Days over (pollen grains/m3) | 30 | 31 | 24 | 51 | 56 | 50 | 49 | 44 |
50 | 25 | 21 | 40 | 38 | 45 | 37 | 41 | |
100 | 13 | 11 | 28 | 21 | 35 | 26 | 29 | |
150 | 9 | 8 | 21 | 12 | 32 | 21 | 27 |
Station | Category Threshold | Swedish Threshold Model | Danish Threshold Model | ||||||
---|---|---|---|---|---|---|---|---|---|
OTF | Sensitivity | Specificity | PLR | OTF | Sensitivity | Specificity | PRL | ||
Dublin | Low | 0.539 | 0.790 | 0.840 | 4.940 | 0.540 | 0.661 | 0.488 | 1.290 |
Medium | 0.272 | 0.464 | 0.862 | 3.360 | 0.180 | 0.359 | 0.784 | 1.660 | |
High | 0.180 | 0.357 | 0.861 | 2.570 | 0.140 | 0.444 | 0.816 | 2.410 | |
Very high | 0.081 | 0.429 | 0.793 | 2.070 | 0.060 | 0.800 | 0.521 | 1.670 | |
Carlow | Low | 0.624 | 0.790 | 0.84 | 4.940 | 0.620 | 0.661 | 0.488 | 1.290 |
Medium | 0.439 | 0.357 | 0.861 | 2.570 | 0.310 | 0.444 | 0.816 | 2.410 | |
High | 0.305 | 0.447 | 0.827 | 2.580 | 0.270 | 0.353 | 0.881 | 2.970 | |
Very high | 0.192 | 0.917 | 0.580 | 2.180 | 0.170 | 0.438 | 0.642 | 1.220 |
Re | Site | Th | Levels | Split | 1st Node (CV) | 2nd Node (CV) | Rain Effect |
---|---|---|---|---|---|---|---|
Sw | DB | L | 8 | 13 | Tmax (>13.90) | Tmax (>18.00) | RnLag2 (>1.25), Rnlag3c (>2.05) |
M | 9 | 24 | Tmax (>16.30) | Tmax (>14.00), rain (<0.45) | Rnlag2 (>6.75) | ||
H | 12 | 19 | Tmax (>18.30) | Rn (<0.46) | RnLag1 (<2.06), Rnlag2 (<1.96) | ||
VH | 6 | 8 | Tmax (>16.40) | Wsp (<6.50) | Rnlag3 (<1.35) | ||
CW | L | 7 | 13 | Tmax (>13.60) | Tmin (>=6.90), RnLag1 (<0.15) | Rnlag3 (<2.16) | |
M | 7 | 17 | Tmax (>=14.80) | Hm (<12.00) | Rnlag3 (<0.25) | ||
H | 8 | 11 | Tmax (>=28.20) | Rn (<1.65) | Rnlag1 (<1.25), Rnlag1 (<0.75) | ||
VH | 7 | 8 | Tmax (>=26.70) | wsp (>3.95) | Rnlag1 (<1.45), Rnlag3 (>0.30) | ||
De | DB | L | 8 | 13 | Tmax (>=13.90) | Tmax (>18.00) | Rnlag (>1.25), Rnlag3 (>2.06) |
M | 12 | 19 | Tmax (>16.30) | Rn (<0.45) | Rnlag2 (<1.95), Rnlag1 (<2.65) | ||
H | 10 | 17 | Tmax (>16.40) | Rn (<0.05) | Rnlag2 (<0.45) | ||
VH | 3 | 3 | Tmax (>16.40) | Wsp (<6.35) | - | ||
CW | L | 7 | 13 | Tmax (>13.50) | RnLag3 (<0.15) | Rnlag3 (<2.15) | |
M | 8 | 12 | Tmax (>=26.20) | Rn (<1.65) | Rnlag3 (<0.60), Rnlag1 (>=0.75) | ||
H | 5 | 9 | Tmax (>23.00) | Wsp (>=4.55), Tmin (>13.80) | - | ||
VH | 7 | 8 | Tmax (>26.70) | Wsp (>3.95) | Rnlag1 (<1.45) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez-Bracero, M.; Vélez-Pereira, A.M.; Markey, E.; Clancy, J.H.; Sarda-Estève, R.; O’Connor, D.J. Comparative Analysis of Grass Pollen Dynamics in Urban and Rural Ireland: Identifying Key Sources and Optimizing Prediction Models. Atmosphere 2024, 15, 1198. https://doi.org/10.3390/atmos15101198
Martínez-Bracero M, Vélez-Pereira AM, Markey E, Clancy JH, Sarda-Estève R, O’Connor DJ. Comparative Analysis of Grass Pollen Dynamics in Urban and Rural Ireland: Identifying Key Sources and Optimizing Prediction Models. Atmosphere. 2024; 15(10):1198. https://doi.org/10.3390/atmos15101198
Chicago/Turabian StyleMartínez-Bracero, Moisés, Andrés M. Vélez-Pereira, Emma Markey, Jerry Hourihane Clancy, Roland Sarda-Estève, and David J. O’Connor. 2024. "Comparative Analysis of Grass Pollen Dynamics in Urban and Rural Ireland: Identifying Key Sources and Optimizing Prediction Models" Atmosphere 15, no. 10: 1198. https://doi.org/10.3390/atmos15101198
APA StyleMartínez-Bracero, M., Vélez-Pereira, A. M., Markey, E., Clancy, J. H., Sarda-Estève, R., & O’Connor, D. J. (2024). Comparative Analysis of Grass Pollen Dynamics in Urban and Rural Ireland: Identifying Key Sources and Optimizing Prediction Models. Atmosphere, 15(10), 1198. https://doi.org/10.3390/atmos15101198