Evaluating MPAS-A Performance for Mesoscale Simulation in a Tropical Region: A Case Study of Extreme Heat in Jakarta, Indonesia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Case Study
2.2. Model Configuration and Experimental Designs
2.3. Validation of Near-Surface Meteorological Variables
2.4. Validation of Land Surface Temperature
2.5. Validation of Vertical Profile of Atmospheric Variables
2.6. Analysis of Spatio-Temporal Variations in Surface Air Temperature
3. Results
3.1. Validation of Near-Surface Meteorological Variables
3.2. Validation of Land Surface Temperature
3.3. Validation of Vertical Profile of Atmospheric Variables
3.4. Effect of Terrestrial Dataset Modifications on Land Surface and Air Temperatures
3.5. Spatial and Temporal Variations in the Extreme Event
3.6. Possible Mechanisms for the Variations in Surface Air Temperature
4. Discussion
4.1. The Role of Sea Breezes as Natural Cooling Mechanisms in Jakarta
4.2. Limitations of This Research
5. Conclusions
- During the extreme case, from the eight experiments, MPAS-A was able to simulate the diurnal pattern of the near-surface meteorological variables well, namely near-surface temperature, relative humidity, surface pressure, and 10 m wind speed, with correlation values exceeding 0.6. However, the model was less accurate in simulating the wind direction, with correlation values ranging from around 0.2 to slightly above 0.4 and MAE ranging from below 55° to approximately 60°. One of the reasons for the less accurate wind direction is the inaccurate DEM (digital elevation model) and domain resolution (3 km), for example, since the topography and urban obstacles (such as buildings) can affect the wind direction.
- From the eight experiments, validations on land surface temperature also showed good performance, with high time correlation values across most grids in the study area, where the area average and median of the time correlation values exceeded 0.8. Additionally, the area average of mean absolute errors is less than 4 °C.
- The vertical profiles of biases in air temperature, relative humidity, and mixing ratio varied through height. Generally, biases in air temperature and relative humidity were lower in the troposphere than those in the stratosphere, except near the surface, where air temperature biases were higher. In certain vertical layers of the atmosphere, biases were sensitive to the initial and boundary conditions used. For altitudes from 200 hPa to approximately 150 hPa, simulations based on ERA5 initial and boundary conditions showed higher temperatures. In contrast, from 300 hPa to 200 hPa, simulations using NCEP initial and boundary conditions tended to underestimate temperatures. Additionally, simulations with NCEP data exhibited a smaller positive bias in relative humidity compared to those using ERA5 data, particularly from 300 hPa to 40 hPa. Larger biases in mixing ratio with alternating patterns were shown in the lower troposphere (below 500 hPa).
- Modifications to the terrestrial datasets could simulate higher land surface and air surface temperatures with values of 2–5 °C and ~1 °C, respectively, over the updated sprawling urban areas.
- MPAS-A successfully captured the intensity of the extreme temperature event on 17 October 2023. During this event, the southern part of Jakarta had higher surface temperatures (greater than 36 °C) than the northern part, which persisted until the afternoon (16:00 LT).
- The simulations indicated that the lower air temperature over the northern part of Jakarta was due to the higher magnitude of negative advection over that region compared to the southern part during the daytime. The minimum cool advection occurred at 12:00 LT, with a magnitude of approximately −8 °C/h in the northern part and approximately −2 °C/h in the southern part. Separation into zonal and meridional components of the advection indicated that the meridional component contributed more significantly to the cool advection, influenced by the sea breeze.
- From the perspective of air temperature advection, one potential mitigation measure for hot weather conditions in a coastal city like Jakarta is to maximize the benefits of the sea breeze in transporting heat out of the city for city ventilation. This could be achieved by limiting the number of high-rise buildings, particularly in the coastal regions, as they increase surface roughness, reduce wind speed, and hinder sea breeze penetration. Additionally, this numerical study highlights the potential application and development of the MPAS-A model for urban studies. Future advancements could include enhancing urban parameterizations (such as detailing urban surfaces and accounting for building effects and anthropogenic influences) and incorporating urban canopy models, like those implemented in the well-known WRF-ARW model for urban studies. Moreover, MPAS-A is a feasible and promising tool for general applications in weather forecasting and climate prediction/projection, suitable for both research and operational purposes.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, J.; Varghese, B.M.; Hansen, A.; Xiang, J.; Zhang, Y.; Dear, K.; Gourley, M.; Driscoll, T.; Morgan, G.; Capon, A.; et al. Is There an Association between Hot Weather and Poor Mental Health Outcomes? A Systematic Review and Meta-Analysis. Environ. Int. 2021, 153, 106533. [Google Scholar] [CrossRef]
- Fritz, M. Temperature and Non-Communicable Diseases: Evidence from Indonesia’s Primary Health Care System. Health Econ. 2022, 31, 2445–2464. [Google Scholar] [CrossRef]
- Shirreffs, S.M. The Importance of Good Hydration for Work and Exercise Performance. Nutr. Rev. 2005, 63, S14–S21. [Google Scholar] [CrossRef] [PubMed]
- Ebi, K.L.; Capon, A.; Berry, P.; Broderick, C.; de Dear, R.; Havenith, G.; Honda, Y.; Kovats, R.S.; Ma, W.; Malik, A.; et al. Hot Weather and Heat Extremes: Health Risks. Lancet 2021, 398, 698–708. [Google Scholar] [CrossRef] [PubMed]
- Arifwidodo, S.D.; Chandrasiri, O.; Abdulharis, R.; Kubota, T. Exploring the Effects of Urban Heat Island: A Case Study of Two Cities in Thailand and Indonesia. APN Sci. Bull. 2019, 9, 10–18. [Google Scholar] [CrossRef]
- Supari; Tangang, F.; Juneng, L.; Aldrian, E. Observed Changes in Extreme Temperature and Precipitation over Indonesia. Int. J. Climatol. 2017, 37, 1979–1997. [Google Scholar] [CrossRef]
- Siswanto, S.; van Oldenborgh, G.J.; van der Schrier, G.; Jilderda, R.; van den Hurk, B. Temperature, Extreme Precipitation, and Diurnal Rainfall Changes in the Urbanized Jakarta City during the Past 130 Years. Int. J. Climatol. 2016, 36, 3207–3225. [Google Scholar] [CrossRef]
- Tan, H.; Ray, P.; Barrett, B.S.; Tewari, M.; Moncrieff, M.W. Role of Topography on the MJO in the Maritime Continent: A Numerical Case Study. Clim. Dyn. 2020, 55, 295–314. [Google Scholar] [CrossRef]
- Trilaksono, N.J.; Otsuka, S.; Yoden, S. A Time-Lagged Ensemble Simulation on the Modulation of Precipitation over West Java in January–February 2007. Mon. Weather Rev. 2012, 140, 601–616. [Google Scholar] [CrossRef]
- Junnaedhi, I.D.G.A.; Inagaki, A.; Varquez, A.C.G.; Kanda, M. Evaluation of Multiple Simulated Sea-Breeze Events in Tropical Megacity Using High-Temporal-Resolution Observation Data. J. Japan Soc. Civ. Eng. Ser. B1 Hydraulic Eng. 2021, 77, I_1309–I_1314. [Google Scholar] [CrossRef]
- Vinayak, B.; Lee, H.S.; Gedam, S.; Latha, R. Impacts of Future Urbanization on Urban Microclimate and Thermal Comfort over the Mumbai Metropolitan Region, India. Sustain. Cities Soc. 2022, 79, 103703. [Google Scholar] [CrossRef]
- Kubota, T.; Lee, H.S.; Trihamdani, A.R.; Phuong, T.T.T.; Tanaka, T.; Matsuo, K. Impacts of Land Use Changes from the Hanoi Master Plan 2030 on Urban Heat Islands: Part 1. Cooling Effects of Proposed Green Strategies. Sustain. Cities Soc. 2017, 32, 295–317. [Google Scholar] [CrossRef]
- Lee, H.S.; Trihamdani, A.R.; Kubota, T.; Iizuka, S.; Phuong, T.T.T. Impacts of Land Use Changes from the Hanoi Master Plan 2030 on Urban Heat Islands: Part 2. Influence of Global Warming. Sustain. Cities Soc. 2017, 31, 95–108. [Google Scholar] [CrossRef]
- Darmanto, N.S.; Varquez, A.C.G.; Kawano, N.; Kanda, M. Future Urban Climate Projection in a Tropical Megacity Based on Global Climate Change and Local Urbanization Scenarios. Urban Clim. 2019, 29, 100482. [Google Scholar] [CrossRef]
- Domeisen, D.I.V.; Eltahir, E.A.B.; Fischer, E.M.; Knutti, R.; Perkins-Kirkpatrick, S.E.; Schär, C.; Seneviratne, S.I.; Weisheimer, A.; Wernli, H. Prediction and Projection of Heatwaves. Nat. Rev. Earth Environ. 2023, 4, 36–50. [Google Scholar] [CrossRef]
- Naveena, N.; Satyanarayana, G.C.; Raju, A.D.; Umakanth, N.; Srinivas, D.; Rao, K.S.; Suman, M. Prediction of Heatwave 2013 over Andhra Pradesh and Telangana, India Using WRF Model. Asian J. Atmos. Environ. 2021, 15, 1–12. [Google Scholar] [CrossRef]
- Lavers, D.A.; Villarini, G. Were Global Numerical Weather Prediction Systems Capable of Forecasting the Extreme Colorado Rainfall of 9–16 September 2013? Geophys. Res. Lett. 2013, 40, 6405–6410. [Google Scholar] [CrossRef]
- Ashrit, R.; Sharma, K.; Kumar, S.; Dube, A.; Karunasagar, S.; Arulalan, T.; Mamgain, A.; Chakraborty, P.; Kumar, S.; Lodh, A.; et al. Prediction of the August 2018 Heavy Rainfall Events over Kerala with High-Resolution NWP Models. Meteorol. Appl. 2020, 27, e1906. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.M.; Wang, W.; Powers, J.G. A Description of the Advanced Research WRF Version 2; University Corporation for Atmospheric Research: Boulder, CO, USA, 2005. [Google Scholar] [CrossRef]
- Kramer, M.; Heinzeller, D.; Hartmann, H.; van den Berg, W.; Steeneveld, G.-J. Assessment of MPAS Variable Resolution Simulations in the Grey-Zone of Convection against WRF Model Results and Observations: An MPAS Feasibility Study of Three Extreme Weather Events in Europe. Clim. Dyn. 2020, 55, 253–276. [Google Scholar] [CrossRef]
- Park, S.-H.; Klemp, J.B.; Skamarock, W.C. A Comparison of Mesh Refinement in the Global MPAS-A and WRF Models Using an Idealized Normal-Mode Baroclinic Wave Simulation. Mon. Weather Rev. 2014, 142, 3614–3634. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.B.; Duda, M.G.; Fowler, L.D.; Park, S.-H.; Ringler, T.D. A Multiscale Nonhydrostatic Atmospheric Model Using Centroidal Voronoi Tesselations and C-Grid Staggering. Mon. Weather Rev. 2012, 140, 3090–3105. [Google Scholar] [CrossRef]
- Klemp, J.B.; Skamarock, W.C.; Dudhia, J. Conservative Split-Explicit Time Integration Methods for the Compressible Nonhydrostatic Equations. Mon. Weather Rev. 2007, 135, 2897–2913. [Google Scholar] [CrossRef]
- Li, W.; Song, J.; Hsu, P.; Wang, Y. Evaluation of the Forecast Performance for Week-2 Winter Surface Air Temperature from the Model for Prediction Across Scales–Atmosphere (MPAS-A). Weather Forecast. 2022, 37, 2035–2047. [Google Scholar] [CrossRef]
- Cheng, Y.; Hui, P.; Liu, D.; Fang, J.; Wang, S.; Wang, S.; Tang, J. MPAS-A Variable-Resolution Simulations for Summer Monsoon Over China: Comparison Between Global and Regional Configuration. J. Geophys. Res. Atmos. 2023, 128, e2022JD037541. [Google Scholar] [CrossRef]
- Maoyi, M.L.; Abiodun, B.J. How Well Does MPAS-Atmosphere Simulate the Characteristics of the Botswana High? Clim. Dyn. 2021, 57, 2109–2128. [Google Scholar] [CrossRef]
- Lui, Y.S.; Tse, L.K.S.; Tam, C.-Y.; Lau, K.H.; Chen, J. Performance of MPAS-A and WRF in Predicting and Simulating Western North Pacific Tropical Cyclone Tracks and Intensities. Theor. Appl. Climatol. 2021, 143, 505–520. [Google Scholar] [CrossRef]
- Orlanski, I. A Rational Subdivision of Scales for Atmospheric Processes. Bull. Am. Meteorol. Soc. 1975, 56, 527–530. [Google Scholar]
- Fiedler, F.; Panofsky, H.A. Atmospheric Scales and Spectral Gaps. Bull. Am. Meteorol. Soc. 1970, 51, 1114–1120. [Google Scholar] [CrossRef]
- Sobel, A.H. Tropical Weather. Available online: https://www.nature.com/scitable/knowledge/library/tropical-weather-84224797/ (accessed on 30 August 2024).
- Stevens, A.N.P. Introduction to the Basic Drivers of Climate. Available online: https://www.nature.com/scitable/knowledge/library/introduction-to-the-basic-drivers-of-climate-13368032/ (accessed on 30 August 2024).
- Hadi, T.W.; Horinouchi, T.; Tsuda, T.; Hashiguchi, H.; Fukao, S. Sea-Breeze Circulation over Jakarta, Indonesia: A Climatology Based on Boundary Layer Radar Observations. Mon. Weather Rev. 2002, 130, 2153–2166. [Google Scholar] [CrossRef]
- Hadi, T.W.; Tsuda, T.; Hashiguchi, H.; Fukao, S. Tropical Sea-Breeze Circulation and Related Atmospheric Phenomena Observed with L-Band Boundary Layer Radar in Indonesia. J. Meteorol. Soc. Japan. Ser. II 2000, 78, 123–140. [Google Scholar] [CrossRef]
- Papanastasiou, D.K.; Melas, D.; Bartzanas, T.; Kittas, C. Temperature, Comfort and Pollution Levels during Heat Waves and the Role of Sea Breeze. Int. J. Biometeorol. 2010, 54, 307–317. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Guan, H.; Gharib, S.; Batelaan, O.; Simmons, C.T. Cooling Power of Sea Breezes and Its Inland Penetration in Dry-Summer Adelaide, Australia. Atmos. Res. 2021, 250, 105409. [Google Scholar] [CrossRef]
- Kitayama, H.; Katayama, T.; Hayashi, T.; Tsutsumi, J.; Ishii, A. Statistical Analysis of the Sea-Land Breeze and Its Effect on the Air Temperature in Summer. J. Wind Eng. Ind. Aerodyn. 1991, 38, 93–99. [Google Scholar] [CrossRef]
- Peng, S.; Kon, Y.; Watanabe, H. Effects of Sea Breeze on Urban Areas Using Computation Fluid Dynamic—A Case Study of the Range of Cooling and Humidity Effects in Sendai, Japan. Sustainability 2022, 14, 1074. [Google Scholar] [CrossRef]
- Guo, F.; Zhao, J.; Zhang, H.; Dong, J.; Zhu, P.; Lau, S.S.Y. Effects of Urban Form on Sea Cooling Capacity under the Heatwave. Sustain. Cities Soc. 2023, 88, 104271. [Google Scholar] [CrossRef]
- Fajary, F.R.; Lee, H.S.; Kubota, T.; Bhanage, V.; Pradana, R.P.; Nimiya, H.; Putra, I.D.G.A. Comprehensive Spatiotemporal Evaluation of Urban Growth, Surface Urban Heat Island, and Urban Thermal Conditions on Java Island of Indonesia and Implications for Urban Planning. Heliyon 2024, 10, e33708. [Google Scholar] [CrossRef]
- Kombara, P.Y.; Junnaedhi, I.D.G.A.; Riawan, E. Characteristic of Anabatic Wind in Bandung Basin Observed by AWS. IOP Conf. Ser. Earth Environ. Sci. 2019, 303, 012010. [Google Scholar] [CrossRef]
- The Geospatial Information Agency of Indonesia Ina-Geoportal. Available online: https://tanahair.indonesia.go.id/portal-web/ (accessed on 14 December 2023).
- Gholami, S.; Ghader, S.; Khaleghi-Zavareh, H.; Ghafarian, P. Sensitivity of WRF-Simulated 10 m Wind over the Persian Gulf to Different Boundary Conditions and PBL Parameterization Schemes. Atmos. Res. 2021, 247, 105147. [Google Scholar] [CrossRef]
- Hayashi, S.; Aranami, K.; Saito, K. Statistical Verification of Short Term NWP by NHM and WRF-ARW with 20 Km Horizontal Resolution around Japan and Southeast Asia. SOLA 2008, 4, 133–136. [Google Scholar] [CrossRef]
- Jimenez, B.; Moennich, K.; Rey, J.; Durante, F. Use of Different Globally Available Long-Term Data Sets and Its Influence on Expected Wind Farm Energy Yields. DEWI Magazin 2013, 22. [Google Scholar]
- National Centers for Environmental Prediction/National Weather Service/NOAA/U.S. Department of Commerce. NCEP GDAS/FNL 0.25 Degree Global Tropospheric Analyses and Forecast Grids. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory; National Centers for Environmental Prediction/National Weather Service/NOAA/U.S. Department of Commerce: College Park, ML, USA, 2015. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 Global Reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Biavati, G.; Horányi, A.; Muñoz Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Rozum, I.; et al. ERA5 Hourly Data on Single Levels from 1940 to Present; Copernicus Climate Change Service (C3S) Climate Data Store (CDS): Berlin, Germany, 2023. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Biavati, G.; Horányi, A.; Muñoz Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Rozum, I.; et al. ERA5 Hourly Data on Pressure Levels from 1940 to Present; Copernicus Climate Change Service (C3S) Climate Data Store (CDS): Berlin, Germany, 2023. [Google Scholar] [CrossRef]
- Heo, K.-Y.; Ha, T.; Choi, J.-Y.; Park, K.-S.; Kwon, J.-I.; Jun, K. Evaluation of Wind and Wave Simulations Using Different Global Reanalyses. J. Coast. Res. 2017, 79, 99–103. [Google Scholar] [CrossRef]
- University Corporation for Atmospheric Research (UCAR) WPS V4 Geographical Static Data Downloads Page. Available online: https://www2.mmm.ucar.edu/wrf/users/download/get_sources_wps_geog.html (accessed on 8 November 2023).
- Grell, G.A.; Freitas, S.R. A Scale and Aerosol Aware Stochastic Convective Parameterization for Weather and Air Quality Modeling. Atmos. Chem. Phys. 2014, 14, 5233–5250. [Google Scholar] [CrossRef]
- Thompson, G.; Field, P.R.; Rasmussen, R.M.; Hall, W.D. Explicit Forecasts of Winter Precipitation Using an Improved Bulk Microphysics Scheme. Part II: Implementation of a New Snow Parameterization. Mon. Weather Rev. 2008, 136, 5095–5115. [Google Scholar] [CrossRef]
- Nakanishi, M.; Niino, H. An Improved Mellor-Yamada Level-3 Model: Its Numerical Stability and Application to a Regional Prediction of Advection Fog. Boundary-Layer Meteorol. 2006, 119, 397–407. [Google Scholar] [CrossRef]
- Nakanishi, M.; Niino, H. Development of an Improved Turbulence Closure Model for the Atmospheric Boundary Layer. J. Meteorol. Soc. Japan. Ser. II 2009, 87, 895–912. [Google Scholar] [CrossRef]
- Iacono, M.J.; Delamere, J.S.; Mlawer, E.J.; Shephard, M.W.; Clough, S.A.; Collins, W.D. Radiative Forcing by Long-Lived Greenhouse Gases: Calculations with the AER Radiative Transfer Models. J. Geophys. Res. Atmos. 2008, 113, D13103. [Google Scholar] [CrossRef]
- Wilks, D.S. Statistical Methods in the Atmospheric Sciences, 2nd ed.; Elsevier: London, UK, 2006; Volume 91, ISBN 978-0-12-751966-1. [Google Scholar]
- Carvalho, D.; Rocha, A.; Gómez-Gesteira, M.; Santos, C. A Sensitivity Study of the WRF Model in Wind Simulation for an Area of High Wind Energy. Environ. Model. Softw. 2012, 33, 23–34. [Google Scholar] [CrossRef]
- Zhang, H.; Pu, Z.; Zhang, X. Examination of Errors in Near-Surface Temperature and Wind from WRF Numerical Simulations in Regions of Complex Terrain. Weather Forecast. 2013, 28, 893–914. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Ichii, K.; Ryu, Y.; Kang, M.; Murayama, S. Uncertainty Quantification in Land Surface Temperature Retrieved from Himawari-8/AHI Data by Operational Algorithms. ISPRS J. Photogramm. Remote Sens. 2022, 191, 171–187. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Ishikawa, H.; Oku, Y.; Hu, Z. An Algorithm for Land Surface Temperature Retrieval Using Three Thermal Infrared Bands of Himawari-8. J. Meteorol. Soc. Japan. Ser. II 2018, 96B, 59–76. [Google Scholar] [CrossRef]
- Oke, T.R.; Mills, G.; Christen, A.; Voogt, J.A. Urban Climates; Cambridge University Press: Cambridge, UK, 2017; ISBN 9781139016476. [Google Scholar]
- Chen, F.; Kusaka, H.; Bornstein, R.; Ching, J.; Grimmond, C.S.B.; Grossman-Clarke, S.; Loridan, T.; Manning, K.W.; Martilli, A.; Miao, S.; et al. The Integrated WRF/Urban Modelling System: Development, Evaluation, and Applications to Urban Environmental Problems. Int. J. Climatol. 2011, 31, 273–288. [Google Scholar] [CrossRef]
- Holton, J.R.; Hakim, G.J. An Introduction to Dynamic Meteorology, 5th ed.; Academic Press: Waltham, MA, USA, 2012; Volume 9780123848, ISBN 978-0-12-384866-6. [Google Scholar]
- Le Blancq, F. Diurnal Pressure Variation: The Atmospheric Tide. Weather 2011, 66, 306–307. [Google Scholar] [CrossRef]
- Dai, A.; Deser, C. Diurnal and Semidiurnal Variations in Global Surface Wind and Divergence Fields. J. Geophys. Res. Atmos. 1999, 104, 31109–31125. [Google Scholar] [CrossRef]
- Xia, G.; Cervarich, M.C.; Roy, S.B.; Zhou, L.; Minder, J.R.; Jimenez, P.A.; Freedman, J.M. Simulating Impacts of Real-World Wind Farms on Land Surface Temperature Using the WRF Model: Validation with Observations. Mon. Weather Rev. 2017, 145, 4813–4836. [Google Scholar] [CrossRef]
- Seidel, D.J.; Ross, R.J.; Angell, J.K.; Reid, G.C. Climatological Characteristics of the Tropical Tropopause as Revealed by Radiosondes. J. Geophys. Res. Atmos. 2001, 106, 7857–7878. [Google Scholar] [CrossRef]
- Pedruzzi, R.; Andreão, W.L.; Baek, B.H.; Hudke, A.P.; Glotfelty, T.W.; Dias de Freitas, E.; Martins, J.A.; Bowden, J.H.; Pinto, J.A.; Alonso, M.F.; et al. Update of Land Use/Land Cover and Soil Texture for Brazil: Impact on WRF Modeling Results over São Paulo. Atmos. Environ. 2022, 268, 118760. [Google Scholar] [CrossRef]
- Hudalah, D.; Firman, T. Beyond Property: Industrial Estates and Post-Suburban Transformation in Jakarta Metropolitan Region. Cities 2012, 29, 40–48. [Google Scholar] [CrossRef]
- Shen, L.; Zhao, C.; Ma, Z.; Li, Z.; Li, J.; Wang, K. Observed Decrease of Summer Sea-Land Breeze in Shanghai from 1994 to 2014 and Its Association with Urbanization. Atmos. Res. 2019, 227, 198–209. [Google Scholar] [CrossRef]
- Xiao, Y.; Yang, J.; Cui, L.; Deng, J.; Fu, P.; Zhu, J. Weakened Sea-Land Breeze in a Coastal Megacity Driven by Urbanization and Ocean Warming. Earth’s Futur. 2023, 11, e2022EF003341. [Google Scholar] [CrossRef]
- Lestari, P.; Arrohman, M.K.; Damayanti, S.; Klimont, Z. Emissions and Spatial Distribution of Air Pollutants from Anthropogenic Sources in Jakarta. Atmos. Pollut. Res. 2022, 13, 101521. [Google Scholar] [CrossRef]
Label | Station ID | Station Name | Municipality/Regency | Elevation (m) |
---|---|---|---|---|
A | 96749 | Soekarno Hatta | Tangerang | 11 |
B | 96741 | Tanjung Priok | Jakarta Utara | 3 |
C | 96745 | Kemayoran | Jakarta Pusat | 4 |
D | 96733 | Banten | Tangerang Selatan | 27 |
E | 96753 | Jawa Barat | Bogor | 207 |
F | 96751 | Citeko | Bogor | 920 |
G | 96783 | Bandung | Bandung | 791 |
Simulation | Combination (Sim. Domain–IBC–Terrestrial Data) | Number of Vertical Levels |
---|---|---|
01 | Global–NCEP–Default | 41 |
02 | Global–ERA5–Default | 41 |
03 | Global–NCEP–Modified | 41 |
04 | Global–ERA5–Modified | 41 |
05 | Regional–NCEP–Default | 55 |
06 | Regional–ERA5–Default | 55 |
07 | Regional–NCEP–Modified | 55 |
08 | Regional–ERA5–Modified | 55 |
Variables | Description | Unit |
---|---|---|
gsw | net surface shortwave radiation flux | |
glw | all-sky downward surface longwave radiation | |
hfx | upward heat flux at the surface | |
lh | latent heat flux at the surface | |
skintemp | ground or water surface temperature | K |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fajary, F.R.; Lee, H.S.; Bhanage, V.; Pradana, R.P.; Kubota, T.; Nimiya, H. Evaluating MPAS-A Performance for Mesoscale Simulation in a Tropical Region: A Case Study of Extreme Heat in Jakarta, Indonesia. Atmosphere 2024, 15, 1202. https://doi.org/10.3390/atmos15101202
Fajary FR, Lee HS, Bhanage V, Pradana RP, Kubota T, Nimiya H. Evaluating MPAS-A Performance for Mesoscale Simulation in a Tropical Region: A Case Study of Extreme Heat in Jakarta, Indonesia. Atmosphere. 2024; 15(10):1202. https://doi.org/10.3390/atmos15101202
Chicago/Turabian StyleFajary, Faiz Rohman, Han Soo Lee, Vinayak Bhanage, Radyan Putra Pradana, Tetsu Kubota, and Hideyo Nimiya. 2024. "Evaluating MPAS-A Performance for Mesoscale Simulation in a Tropical Region: A Case Study of Extreme Heat in Jakarta, Indonesia" Atmosphere 15, no. 10: 1202. https://doi.org/10.3390/atmos15101202
APA StyleFajary, F. R., Lee, H. S., Bhanage, V., Pradana, R. P., Kubota, T., & Nimiya, H. (2024). Evaluating MPAS-A Performance for Mesoscale Simulation in a Tropical Region: A Case Study of Extreme Heat in Jakarta, Indonesia. Atmosphere, 15(10), 1202. https://doi.org/10.3390/atmos15101202