Concept of Sporadic E Monitoring Using Space-Based Low Power Multiple Beacon-Systems
Abstract
:1. Introduction
2. The Ionosphere and Sporadic E Reflections
3. Sporadic E Monitoring System Design
3.1. The Beacon Payload Design
3.1.1. The FT4-Beacon System
3.1.2. The CW-Beacon System
3.2. Spacecraft Platform Design
3.3. Radio-Amateur Ground-Station Monitoring System
4. Preliminary Design and Results
4.1. Beacon Hardware
4.2. Beacon Testing
4.3. Doppler Shift Testing
5. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schunk, R.W.; Nagy, A.F. Ionospheres: Physics, Plasma Physics, and Chemistry, 2nd ed.; Cambridge University Press: New York, NY, USA, 2009. [Google Scholar]
- Whitehead, J.D. Recent work on mid-latitude and equatorial sporadic-E. J. Atmos. Terr. Phys. 1989, 51, 401–424. [Google Scholar] [CrossRef]
- Rice, D.D.; Sojka, J.J.; Eccles, J.V.; Bradly, J.J.; Hunsucker, R.D. First Results of Mapping Sporadic E with a Passive Observing Network. Space Weather. 2011, 9, 1–11. [Google Scholar] [CrossRef]
- Harrison, R. Sporadic E—Stardust Propagation. Amat. Radio Mag. 2023, 91, 40–45. [Google Scholar]
- Maruyama, T.; Kato, H.; Nakamura, M. Meteor-Induced Transient Sporadic E as Inferred from Rapid-Run Ionosonde Observations at Midlatitudes. J. Geophys. Res.—Space Phys. 2008, 113, A09308-1-7. [Google Scholar] [CrossRef]
- Wakabayashi, M.; Ono, T.; Mori, H.; Bernhardt, P.A. Electron density and plasma waves in mid-latitude sporadic-E layer observed during the SEEK-2 campaign. Ann. Geophys. 2005, 23, 2335–2345. [Google Scholar] [CrossRef]
- Aubry, M.; Blanc, M.; Clauvel, R.; Taieb, C.; Bowen, P.J.; Norman, K.; Willmore, A.P.; Sayers, J.; Wager, J.H. Some Rocket Results on Sporadic E. Radio Sci. 1966, 1, 170–177. [Google Scholar] [CrossRef]
- Ning, B.; Hu, L.; Li, G.; Liu, L.; Wan, W. The First Time Observations of Low-Latitude Ionospheric Irregularities by VHF Radar in Hainan. Sci. China Technol. Sci. 2012, 55, 1189–1197. [Google Scholar] [CrossRef]
- Hysell, D.L.; Nossa, E.; Larsen, M.F.; Munro, J.; Sulzer, M.P.; Gonzalez, S.A. Sporadic E Layer Observations over Arecibo Using Coherent and Incoherent Scatter Radar: Assessing Dynamic Stability in the Lower Thermosphere. J. Geophys. Res. Space Phys. 2009, 114, A12303. [Google Scholar] [CrossRef]
- Haldoupis, C. An Improved Ionosonde-Based Parameter to Assess Sporadic E Layer Intensities: A Simple Idea and an Algorithm. J. Geophys. Res. Space Phys. 2019, 124, 2127–2134. [Google Scholar] [CrossRef]
- Liu, T.; Yang, G.; Jiang, C. High-Resolution Sporadic E Layer Observation Based on Ionosonde Using a Cross-Spectrum Analysis Imaging Technique. Space Weather 2023, 21, e2022SW003195. [Google Scholar] [CrossRef]
- Savastano, G.; Nordström, K.; Angling, M.J. Semi-Supervised Classification of Lower-Ionospheric Perturbations Using GNSS Radio Occultation Observations from Spire Global’s Cubesat Constellation. J. Space Weather Space Clim. 2022, 12, 14. [Google Scholar] [CrossRef]
- Arras, C.; Jacobi, C.; Wickert, J. Semidiurnal Tidal Signature in Sporadic E Occurrence Rates Derived from GPS Radio Occultation Measurements at Higher Midlatitudes. Ann. Geophys. 2009, 27, 2555–2563. [Google Scholar] [CrossRef]
- Hodos, T.J.; Nava, O.A.; Dao, E.V.; Emmons, D.J. Global Sporadic-E Occurrence Rate Climatology Using GPS Radio Occultation and Ionosonde Data. J. Geophys. Res. Space Phys. 2022, 127, e2022JA030795. [Google Scholar] [CrossRef]
- Gooch, J.Y.; Colman, J.J.; Nava, O.A.; Emmons, D.J. Global Ionosonde and GPS Radio Occultation Sporadic-E Intensity and Height Comparison. J. Atmos. Sol.-Terr. Phys. 2020, 199, 105200. [Google Scholar] [CrossRef]
- Kursinski, E.R.; Haij, G.A.; Leroy, S.S.; Herman, B. The GPS Radio Occultation Technique. TAO Terr. Atmos. Ocean. Sci. 2000, 11, 53–114. [Google Scholar] [CrossRef]
- Frissell, N.A.; Vega, J.S.; Markowitz, E.; Gerrard, A.J.; Engelke, W.D.; Erickson, P.J.; Miller, E.S.; Luetzelschwab, R.C.; Bortnik, J. High-Frequency Communications Response to Solar Activity in September 2017 as Observed by Amateur Radio Networks. Space Weather 2019, 17, 118–132. [Google Scholar] [CrossRef]
- Frissell, N.A.; Miller, E.S.; Kaeppler, S.R.; Ceglia, F.; Pascoe, D.; Sinanis, N.; Smith, P.; Williams, R.; Shovkoplyas, A. Ionospheric Sounding Using Real-Time Amateur Radio Reporting Networks. Space Weather 2014, 12, 651–656. [Google Scholar] [CrossRef]
- Bychkov, V.; Golubkov, G.; Nikitin, A. The Atmosphere and Ionosphere: Elementary Processes, Discharges and Plasmoids, 1st ed.; Springer: Dordrecht, The Netherlands, 2013; pp. 79–165. [Google Scholar] [CrossRef]
- Heelis, R.A.; Maute, A. Challenges to Understanding the Earth’s Ionosphere and Thermosphere. J. Geophys. Res. Space Phys. 2020, 125, 1–44. [Google Scholar] [CrossRef]
- Bychkov, V.; Golubkov, G.; Nikitin, A. The Atmosphere and Ionosphere: Dynamics, Processes and Monitoring; Springer: Dordrecht, The Netherlands, 2010; pp. 97–147. [Google Scholar] [CrossRef]
- Yonezawa, T. Theory of formation of the ionosphere. Space Sci. Rev. 1966, 5, 3–56. [Google Scholar] [CrossRef]
- Jacobs, G.; Cohen, T.J.; Rose, R.B. The New Shortwave Propagation Handbook, 2nd ed.; CQ communications Inc.: New York, NY, USA, 1997. [Google Scholar]
- Haldoupis, C. A tutorial review on sporadic E layers. In Aeronomy of the Earth’s Atmosphere and Ionosphere, 1st ed.; Abdu, M.A., Pancheva, D., Eds.; Springer: Dordrecht, The Netherlands, 2011; Volume 2, pp. 381–394. [Google Scholar]
- Abdu, M.A.; Pancheva, D. Aeronomy of the Earth’s Atmosphere and Ionosphere, 1st ed.; Springer: Dordrecht, The Netherlands, 2011. [Google Scholar] [CrossRef]
- Resende, L.C.A.; Zhu, Y.; Denardini, C.M.; Batista, I.S.; Shi, J.; Moro, J.; Chen, S.S.; Conceição-Santos, F.; Da Silva, L.A.; Andrioli, V.F.; et al. New Findings of the Sporadic E (Es) Layer Development Around the Magnetic Equator During a High-Speed Solar (HSS) Wind Stream Event. J. Geophys. Res. Space Phys. 2021, 126, 1–17. [Google Scholar] [CrossRef]
- Collinson, G.A.; McFadden, J.; Grebowsky, J.; Mitchell, D.; Lillis, R.; Withers, P.; Vogt, M.F.; Benna, M.; Espley, J.; Jakosky, B. Constantly Forming Sporadic E-like Layers and Rifts in the Martian Ionosphere and Their Implications for Earth. Nat. Astron. 2020, 4, 486–491. [Google Scholar] [CrossRef]
- Hosokawa, K.; Sakai, J.; Tomizawa, I.; Saito, S.; Tsugawa, T.; Nishioka, M.; Ishii, M. A monitoring network for anomalous propagation of aeronautical VHF radio waves due to sporadic E in Japan. Earth Planets Space 2020, 72, 1–10. [Google Scholar] [CrossRef]
- Ellis, J.A.; Emmons, D.J.; Cohen, M.B. Detection and Classification of Sporadic E Using Convolutional Neural Networks. Space Weather 2024, 22, 1–19. [Google Scholar] [CrossRef]
- Mathews, J.D. Sporadic E: Current Views and Recent Progress. J. Atmos. Sol.-Terr. Phys. 1998, 60, 413–435. [Google Scholar] [CrossRef]
- Wu, D.L.; Ao, C.O.; Hajj, G.A.; de la Torre Juarez, M.; Mannucci, A.J. Sporadic E Morphology from GPS-CHAMP Radio Occultation. J. Geophys. Res.—Space Phys. 2005, 110, A01306-n/a. [Google Scholar] [CrossRef]
- Garcia-Fernandez, M.; Tsuda, T. A Global Distribution of Sporadic E Events Revealed by Means of CHAMP-GPS Occultations. Earth Planets Space 2006, 58, 33–36. [Google Scholar] [CrossRef]
- Davies, K. Ionospheric Radio; IEE Electromagnetic Waves Series, No. 31; Peter Peregrinus Ltd.: London, UK, 1990. [Google Scholar]
- Budden, K.G. The Propagation of Radio Waves: The Theory of Radio Waves of Low Power in the Ionosphere and Magnetosphere; Cambridge University Press: New York, NY, USA, 1985. [Google Scholar]
- Venkatesh, K.; Pallamraju, D.; Dalsania, K.P.; Chakrabarty, D.; Pant, T.K. Evaluation of the Performance of F-Layer Peak Height Models Used in IRI-2016 over the Indian Equatorial and Low Latitudes. Adv. Space Res. 2024, 73, 3797–3807. [Google Scholar] [CrossRef]
- Oliver, W.L. An Asymptotic Model of the F Layer. J. Geophys. Res. Space Phys. 2012, 117, A01312-1-10. [Google Scholar] [CrossRef]
- McCune, E. The ARRL Handbook for Radio Communications, 98th ed.; ARRL: Newington, CT, USA, 2021. [Google Scholar]
- Greenman, M. Digital Modes, 1st ed.; Radio Society of Great Britain: Bedford, UK, 2011; Volume 1. [Google Scholar]
- Silver, H.W. Digital Protocols and Modes. In The ARRL Handbook for Radio Communications, 98th ed.; The American Radio Relay League: Newington, CT, USA, 2021; pp. 15.1–15.36. [Google Scholar]
- Franke, S.; Sommerville, B.; Taylor, J. The FT4 and FT8 Communication Protocols. QEX July/August 2020, 7–17. Available online: https://wsjt.sourceforge.io/FT4_FT8_QEX.pdf (accessed on 24 September 2024).
- Correll, B.; Swanson, C.N. Difference-Based Structural Properties of Costas Arrays. Des. Codes Cryptogr. 2023, 91, 779–794. [Google Scholar] [CrossRef]
- Radu, S.; Uludag, S.; Speretta, S.; Bouwmeester, J.; Gill, E.; Chronas Foteinakis, N. Delfi-PQ: The first pocketqube of Delft University of Technology. In Proceedings of the 69th International Astronautical Congress, Bremen, Germany, 1–5 October 2018. [Google Scholar]
- Bouwmeester, J.; Radu, S.; Uludag, M.S.; Chronas, N.; Speretta, S.; Menicucci, A.; Gill, E.K.A. Utility and Constraints of PocketQubes. CEAS Space J. 2020, 12, 573–586. [Google Scholar] [CrossRef]
- Frissell, N.; Romanek, V.; Miller, E.; Erickson, P.; Engelke, W.; Luetzelschwab, R.; Gerzoff, R.; Howell, F. HamSCI: Ionospheric Climatology Over a Complete Solar Cycle Observed Using Amateur Radio Contact Data. Authorea 2022, 2, 1–14. [Google Scholar] [CrossRef]
- Retzler, A. Software Defined Radio Receiver Application with Web-based Interface. Bachelor’s Thesis, Budapest University of Technology and Economics, Budapest, Hungary, 2014. [Google Scholar]
- Tutun, J.; Girianto, S. An SDR-Based Multistation FM Broadcasting Monitoring System. In Proceedings of the 11th International Conference on Telecommunication Systems Services and Applications (TSSA), Lombok, Indonesia, 26–27 October 2017. [Google Scholar] [CrossRef]
- Frissell, N.A.; Kaeppler, S.R.; Sanchez, D.F.; Perry, G.W.; Engelke, W.D.; Erickson, P.J.; Coster, A.J.; Ruohoniemi, J.M.; Baker, J.B.H.; West, M.L. First Observations of Large Scale Traveling Ionospheric Disturbances Using Automated Amateur Radio Receiving Networks. Geophys. Res. Lett. 2022, 49, e2022GL097879. [Google Scholar] [CrossRef]
- STM32 Nucleo-64 Development Board with STM32F401RE MCU, Supports Arduino and ST Morpho Connectivity. Available online: https://www.st.com/en/evaluation-tools/nucleo-f401re.html (accessed on 25 July 2024).
- Si5351A/B/C, I²C Programmable Any-Frequency CMOS Clock Generator + VCXO, Silicon Labs. Available online: https://cdn-shop.adafruit.com/datasheets/Si5351.pdf (accessed on 18 September 2024).
- Sidiku Mosunmola, B.; Agboola, A.O.; Ale, F.; Abdullahi, M. The Mathematical Model Of Doppler Frequency Shift in Leo At Ku, K And Ka Frequency Bands. Int. J. Trend Res. Dev. (IJTRD) 2017, 4, 156–160. Available online: https://www.ijtrd.com/papers/IJTRD12035.pdf (accessed on 25 July 2024).
Parameter | Value | Unit |
---|---|---|
Orbit Mass | 550 10.5 | km Grams |
Volume | 42 × 42 × 20 | mm |
GNSS onboard needed | Preferably | |
Voltage level | 5 | V |
Power consumption | 300 | mW |
RF output power level | >10 | mW |
Current consumption (idle) | 20 | mA |
Current consumption (peak) | 60 | mA |
Power supply | Solar based | |
Frequency for satellite 1 Frequency for satellite 2 | 28 50 | MHz MHz |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vanhamel, J.; Berwaerts, M.; Speretta, S.; Uludag, S. Concept of Sporadic E Monitoring Using Space-Based Low Power Multiple Beacon-Systems. Atmosphere 2024, 15, 1306. https://doi.org/10.3390/atmos15111306
Vanhamel J, Berwaerts M, Speretta S, Uludag S. Concept of Sporadic E Monitoring Using Space-Based Low Power Multiple Beacon-Systems. Atmosphere. 2024; 15(11):1306. https://doi.org/10.3390/atmos15111306
Chicago/Turabian StyleVanhamel, Jurgen, Marc Berwaerts, Stefano Speretta, and Sevket Uludag. 2024. "Concept of Sporadic E Monitoring Using Space-Based Low Power Multiple Beacon-Systems" Atmosphere 15, no. 11: 1306. https://doi.org/10.3390/atmos15111306
APA StyleVanhamel, J., Berwaerts, M., Speretta, S., & Uludag, S. (2024). Concept of Sporadic E Monitoring Using Space-Based Low Power Multiple Beacon-Systems. Atmosphere, 15(11), 1306. https://doi.org/10.3390/atmos15111306