Daily PM2.5 and Seasonal-Trend Decomposition to Identify Extreme Air Pollution Events from 2001 to 2020 for Continental Australia Using a Random Forest Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Scope of Study
2.2. Data
2.2.1. PM10 and PM2.5 Daily Observations
2.2.2. Spatial Predictors
2.2.3. Spatiotemporal Predictors
2.2.4. Other Predictors
2.3. Methods
2.3.1. Stage 1: Data Cleaning and PM2.5 Imputation
2.3.2. Stage 2: PM2.5 Modelling
2.3.3. Stage 3: Prediction of Daily PM2.5
- We compared (R-squared, Pearson’s correlation, and correlation plots) daily, monthly, and annual PM2.5 concentrations with those values estimated for monitoring sites.
- We calculated the normalized mean bias (NMB) and the normalized mean absolute error (NMAE) for each monitoring site [60].
2.3.4. Stage 4: Seasonal-Trend Decomposition and Estimates of PM2.5 from Extreme Pollution Days
- STL decomposition: we used a method known as seasonal and trend decomposition using loess (STL) [39] on our daily time-series using the ‘stl’ function from the stats package in R [55]. We sought to optimize the removal of season and trend influence by minimizing the autocorrelation in the remainder. To do this we conducted a grid search over candidate seasonal window parameters 15, 25, 35, and 45, and selected the value which minimized the residual autocorrelation estimated as the sum of the absolute value of the partial autocorrelation function (PACF) of the remainder (with PACF maximum lag = 38). Thus, we used a seasonal window of 15 days and a trend window of 2 years (365.25 × 2 to account for leap years). Given that Australia was struck by unprecedented bushfires between the end of 2019 and the beginning of 2020, we excluded 2020 from the STL to avoid adding the extreme variability of that season. This method decomposes a time series into three components—seasonal, trend, and irregular (remainder) components.
- Identification of days affected by potential extreme pollution episodes: for each pixel-day, we calculated the following flags (1 = yes, 0 = no), which can be used independently or in combination to identify days affected by extreme pollution episodes:
- flag_2SD_remainder: This flag indicates if the remainder component of the STL decomposition is larger than two times the standard deviation of the remainder (i.e., remainder > 2 × SD_remainder). A similar method has been used to identify statistical outliers, using three times the standard deviation to classify corresponding dates as one with an extreme pollution event [40].
- Calculation of PM2.5 component attributable to an extreme pollution episode: The PM2.5 component attributable to an extreme air pollution episode corresponds to the remainder from the STL decomposition whenever flag_p95 and/or flag_2SD equals 1. The sum of the season plus trend components on such days estimates the expected magnitude of PM2.5 had the extreme event not occurred (i.e., the difference between the season plus trend and the predicted daily PM2.5 from the model is the attributable component).
3. Results
3.1. Stage 1: Data Cleaning and PM2.5 Imputation
3.2. Stage 2: PM2.5 Modelling
3.3. Stage 3: Prediction of Daily PM2.5
3.4. Stage 4: Estimates of PM2.5 from Extreme Pollution Days
Case Studies
4. Discussion
4.1. Main Findings and Comparison to Other Studies
4.2. Strengths and Limitations
4.3. Policy Implications and Future Research
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Data Citation
Acknowledgments
Conflicts of Interest
References
- Cohen, A.J.; Brauer, M.; Burnett, R.; Anderson, H.R.; Frostad, J.; Estep, K.; Balakrishnan, K.; Brunekreef, B.; Dandona, L.; Dandona, R.; et al. Estimates and 25-Year Trends of the Global Burden of Disease Attributable to Ambient Air Pollution: An Analysis of Data from the Global Burden of Diseases Study 2015. Lancet 2017, 389, 1907–1918. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide; World Health Organization: Geneva, Switzerland, 2021; ISBN 9789240034228. [Google Scholar]
- Dominici, F.; Zanobetti, A.; Schwartz, J.; Braun, D.; Sabath, B.; Number, X.W. Assessing Adverse Health Effects of Long-Term Exposure to Low Levels of Ambient Air Pollution: Implementation of Causal Inference Methods. Res. Rep. Health Eff. Inst. 2022, 2022, 211. [Google Scholar]
- Shaddick, G.; Thomas, M.L.; Mudu, P.; Ruggeri, G.; Gumy, S. Half the World’s Population Are Exposed to Increasing Air Pollution. npj Clim. Atmos. Sci. 2020, 3, 23. [Google Scholar] [CrossRef]
- Yu, W.; Ye, T.; Zhang, Y.; Xu, R.; Lei, Y.; Chen, Z.; Yang, Z.; Zhang, Y.; Song, J.; Yue, X.; et al. Global Estimates of Daily Ambient Fine Particulate Matter Concentrations and Unequal Spatiotemporal Distribution of Population Exposure: A Machine Learning Modelling Study. Lancet Planet. Health 2023, 7, e209–e218. [Google Scholar] [CrossRef]
- O’Dell, K.; Ford, B.; Fischer, E.V.; Pierce, J.R. Contribution of Wildland-Fire Smoke to US PM 2.5 and Its Influence on Recent Trends. Environ. Sci. Technol. 2019, 53, 1797–1804. [Google Scholar] [CrossRef]
- Cascio, W.E. Wildland Fire Smoke and Human Health. Sci. Total Environ. 2018, 624, 586–595. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Guo, Y.; Yue, X.; Tong, S.; Gasparrini, A.; Bell, M.L.; Armstrong, B.; Schwartz, J.; Jaakkola, J.J.K.; Zanobetti, A.; et al. Mortality Risk Attributable to Wildfire-Related PM2·5 Pollution: A Global Time Series Study in 749 Locations. Lancet Planet. Health 2021, 5, e579–e587. [Google Scholar] [CrossRef] [PubMed]
- Ye, T.; Guo, Y.; Chen, G.; Yue, X.; Xu, R.; Coêlho, M.d.S.Z.S.; Saldiva, P.H.N.; Zhao, Q.; Li, S. Risk and Burden of Hospital Admissions Associated with Wildfire-Related PM2·5 in Brazil, 2000–2015: A Nationwide Time-Series Study. Lancet Planet. Health 2021, 5, e599–e607. [Google Scholar] [CrossRef]
- Vicedo-Cabrera, A.M.; de Schrijver, E.; Schumacher, D.L.; Ragettli, M.S.; Fischer, E.M.; Seneviratne, S.I. The Footprint of Human-Induced Climate Change on Heat-Related Deaths in the Summer of 2022 in Switzerland. Environ. Res. Lett. 2023, 18, 074037. [Google Scholar] [CrossRef]
- Jan Van Oldenborgh, G.; Krikken, F.; Lewis, S.; Leach, N.J.; Lehner, F.; Saunders, K.R.; Van Weele, M.; Haustein, K.; Li, S.; Wallom, D.; et al. Attribution of the Australian Bushfire Risk to Anthropogenic Climate Change. Nat. Hazards Earth Syst. Sci. 2021, 21, 941–960. [Google Scholar] [CrossRef]
- Xu, R.; Yu, P.; Abramson, M.J.; Johnston, F.H.; Samet, J.M.; Bell, M.L.; Haines, A.; Ebi, K.L.; Li, S.; Guo, Y. Wildfires, Global Climate Change, and Human Health. N. Engl. J. Med. 2020, 383, 2173–2181. [Google Scholar] [CrossRef] [PubMed]
- Filkov, A.I.; Ngo, T.; Matthews, S.; Telfer, S.; Penman, T.D. Impact of Australia’s Catastrophic 2019/20 Bushfire Season on Communities and Environment. Retrospective Analysis and Current Trends. J. Saf. Sci. Resil. 2020, 1, 44–56. [Google Scholar] [CrossRef]
- Storey, M.A.; Price, O.F. Comparing the Effects of Wildfire and Hazard Reduction Burning Area on Air Quality in Sydney. Atmosphere 2023, 14, 1657. [Google Scholar] [CrossRef]
- Hanigan, I.C.; Morgan, G.G.; Williamson, G.J.; Salimi, F.; Henderson, S.B.; Turner, M.R.; Bowman, D.M.J.S.; Johnston, F.H. Extensible Database of Validated Biomass Smoke Events for Health Research. Fire 2018, 1, 50. [Google Scholar] [CrossRef]
- Narayana, M.V.; Jalihal, D.; Shiva Nagendra, S.M. Establishing A Sustainable Low-Cost Air Quality Monitoring Setup: A Survey of the State-of-the-Art. Sensors 2022, 22, 394. [Google Scholar] [CrossRef] [PubMed]
- Stafoggia, M.; Johansson, C.; Glantz, P.; Renzi, M.; Shtein, A.; de Hoogh, K.; Kloog, I.; Davoli, M.; Michelozzi, P.; Bellander, T. A Random Forest Approach to Estimate Daily Particulate Matter, Nitrogen Dioxide, and Ozone at Fine Spatial Resolution in Sweden. Atmosphere 2020, 11, 239. [Google Scholar] [CrossRef]
- Horsley, J.A.; Broome, R.A.; Johnston, F.H.; Cope, M.; Morgan, G.G. Health Burden Associated with Fire Smoke in Sydney, 2001-2013. Med. J. Aust. 2018, 208, 309–310. [Google Scholar] [CrossRef] [PubMed]
- Johnston, F.H.; Borchers-Arriagada, N.; Morgan, G.G.; Jalaludin, B.; Palmer, A.J.; Williamson, G.J.; Bowman, D.M.J.S. Unprecedented Health Costs of Smoke-Related PM2.5 from the 2019–20 Australian Megafires. Nat. Sustain. 2021, 4, 42–47. [Google Scholar] [CrossRef]
- Chen, X.; Li, F.; Zhang, J.; Zhou, W.; Wang, X.; Fu, H. Spatiotemporal Mapping and Multiple Driving Forces Identifying of PM2.5 Variation and Its Joint Management Strategies across China. J. Clean. Prod. 2020, 250, 119534. [Google Scholar] [CrossRef]
- Knibbs, L.D.; Hewson, M.G.; Bechle, M.J.; Marshall, J.D.; Barnett, A.G. A National Satellite-Based Land-Use Regression Model for Air Pollution Exposure Assessment in Australia. Environ. Res. 2014, 135, 204–211. [Google Scholar] [CrossRef]
- Pereira, G.; Lee, H.J.; Bell, M.; Regan, A.; Malacova, E.; Mullins, B.; Knibbs, L.D. Development of a Model for Particulate Matter Pollution in Australia with Implications for Other Satellite-Based Models. Environ. Res. 2017, 159, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Matthias, V.; Arndt, J.A.; Aulinger, A.; Bieser, J.; Denier van der Gon, H.; Kranenburg, R.; Kuenen, J.; Neumann, D.; Pouliot, G.; Quante, M. Modeling Emissions for Three-Dimensional Atmospheric Chemistry Transport Models. J. Air Waste Manag. Assoc. 2018, 68, 763–800. [Google Scholar] [CrossRef] [PubMed]
- Reid, C.E.; Considine, E.M.; Maestas, M.M.; Li, G. Daily PM2.5 Concentration Estimates by County, ZIP Code, and Census Tract in 11 Western States 2008–2018. Sci. Data 2021, 8, 112. [Google Scholar] [CrossRef] [PubMed]
- Schneider, R.; Vicedo-Cabrera, A.M.; Sera, F.; Masselot, P.; Stafoggia, M.; de Hoogh, K.; Kloog, I.; Reis, S.; Vieno, M.; Gasparrini, A. A Satellite-Based Spatio-Temporal Machine Learning Model to Reconstruct Daily PM2.5 Concentrations across Great Britain. Remote Sens. 2020, 12, 3803. [Google Scholar] [CrossRef] [PubMed]
- Biau, G.; Scornet, E. A Random Forest Guided Tour. Test 2016, 25, 197–227. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Chen, J.; de Hoogh, K.; Gulliver, J.; Hoffmann, B.; Hertel, O.; Ketzel, M.; Bauwelinck, M.; van Donkelaar, A.; Hvidtfeldt, U.A.; Katsouyanni, K.; et al. A Comparison of Linear Regression, Regularization, and Machine Learning Algorithms to Develop Europe-Wide Spatial Models of Fine Particles and Nitrogen Dioxide. Environ. Int. 2019, 130, 104934. [Google Scholar] [CrossRef]
- Enebish, T.; Chau, K.; Jadamba, B.; Franklin, M. Predicting Ambient PM2.5 Concentrations in Ulaanbaatar, Mongolia with Machine Learning Approaches. J. Expo. Sci. Environ. Epidemiol. 2021, 31, 699–708. [Google Scholar] [CrossRef]
- Ryan, R.G.; Silver, J.D.; Schofield, R. Air Quality and Health Impact of 2019-20 Black Summer Megafires and COVID-19 Lockdown in Melbourne and Sydney, Australia. Environ. Pollut. 2021, 274, 116498. [Google Scholar] [CrossRef]
- Hutchinson, J.A.; Vargo, J.; Milet, M.; French, N.H.F.; Billmire, M.; Johnson, J.; Hoshiko, S. The San Diego 2007 Wildfires and Medi-Cal Emergency Department Presentations, Inpatient Hospitalizations, and Outpatient Visits: An Observational Study of Smoke Exposure Periods and a Bidirectional Case-Crossover Analysis. PLoS Med. 2018, 15, e1002601. [Google Scholar] [CrossRef]
- Childs, M.L.; Li, J.; Wen, J.; Heft-Neal, S.; Driscoll, A.; Wang, S.; Gould, C.F.; Qiu, M.; Burney, J.; Burke, M. Daily Local-Level Estimates of Ambient Wildfire Smoke PM2.5for the Contiguous US. Environ. Sci. Technol. 2022, 56, 13607–13621. [Google Scholar] [CrossRef] [PubMed]
- Larsen, A.; Hanigan, I.; Reich, B.J.; Qin, Y.; Cope, M.; Morgan, G.; Rappold, A.G. A Deep Learning Approach to Identify Smoke Plumes in Satellite Imagery in Near-Real Time for Health Risk Communication. J. Expo. Sci. Environ. Epidemiol. 2020, 31, 170–176. [Google Scholar] [CrossRef]
- Cleland, S.E.; Serre, M.L.; Rappold, A.G.; West, J.J. Estimating the Acute Health Impacts of Fire-Originated PM2.5 Exposure During the 2017 California Wildfires: Sensitivity to Choices of Inputs. GeoHealth 2021, 5, e2021GH000414. [Google Scholar] [CrossRef] [PubMed]
- Jegasothy, E.; Hanigan, I.C.; Van Buskirk, J.; Morgan, G.G.; Jalaludin, B.; Johnston, F.H.; Guo, Y.; Broome, R.A. Acute Health Effects of Bushfire Smoke on Mortality in Sydney, Australia. Environ. Int. 2023, 171, 107684. [Google Scholar] [CrossRef]
- Magzamen, S.; Gan, R.W.; Liu, J.; O’Dell, K.; Ford, B.; Berg, K.; Bol, K.; Wilson, A.; Fischer, E.V.; Pierce, J.R. Differential Cardiopulmonary Health Impacts of Local and Long-Range Transport of Wildfire Smoke. GeoHealth 2021, 5, e2020GH000330. [Google Scholar] [CrossRef] [PubMed]
- Augusto, S.; Ratola, N.; Tarín-Carrasco, P.; Jiménez-Guerrero, P.; Turco, M.; Schuhmacher, M.; Costa, S.; Teixeira, J.P.; Costa, C. Population Exposure to Particulate-Matter and Related Mortality Due to the Portuguese Wildfires in October 2017 Driven by Storm Ophelia. Environ. Int. 2020, 144, 106056. [Google Scholar] [CrossRef] [PubMed]
- Kollanus, V.; Tiittanen, P.; Niemi, J.V.; Lanki, T. Effects of Long-Range Transported Air Pollution from Vegetation Fires on Daily Mortality and Hospital Admissions in the Helsinki Metropolitan Area, Finland. Environ. Res. 2016, 151, 351–358. [Google Scholar] [CrossRef]
- Cleveland, R.B.; Cleveland, W.S.; McRae, J.E.; Terpenning, I. STL: A Seasonal-Trend Decomposition Procedure Based on Loess. J. Off. Stat. 1990, 6, 3–73. [Google Scholar]
- Morawska, L.; Zhu, T.; Liu, N.; Amouei Torkmahalleh, M.; de Fatima Andrade, M.; Barratt, B.; Broomandi, P.; Buonanno, G.; Carlos Belalcazar Ceron, L.; Chen, J.; et al. The State of Science on Severe Air Pollution Episodes: Quantitative and Qualitative Analysis. Environ. Int. 2021, 156, 106732. [Google Scholar] [CrossRef]
- Borchers-Arriagada, N.; Vander Hoorn, S.; Cope, M.; Morgan, G.; Hanigan, I.; Williamson, G.; Johnston, F.H. The Mortality Burden Attributable to Wood Heater Smoke Particulate Matter (PM2.5) in Australia. Sci. Total Environ. 2024, 921, 171069. [Google Scholar] [CrossRef]
- Centre for Safe Air, 2021. National Air Pollution Monitoring Database, Derived from Regulatory Monitor Data from NSW DPE, Vic EPA, Qld DES, SA EPA, WA DWER, Tas EPA, NT EPA, and ACT Health. Downloaded from the Centre for Safe Air. Available online: https://cardat.github.io/data_inventory/cars_national_air_pollution_database.html (accessed on 15 October 2020).
- Riley, M.; Kirkwood, J.; Jiang, N.; Ross, G.; Scorgie, Y. Air Quality Monitoring in NSW: From Long Term Trend Monitoring to Integrated Urban Services. Air Qual. Clim. Change 2020, 54, 44–51. [Google Scholar]
- Moritz, S. ImputeTS: Time Series Missing Value Imputation. R J. 2017, 9, 207. [Google Scholar] [CrossRef]
- Buchard, V.; Randles, C.A.; da Silva, A.M.; Darmenov, A.; Colarco, P.R.; Govindaraju, R.; Ferrare, R.; Hair, J.; Beyersdorf, A.J.; Ziemba, L.D.; et al. The MERRA-2 Aerosol Reanalysis, 1980 Onward. Part II: Evaluation and Case Studies. J. Clim. 2017, 30, 6851–6872. [Google Scholar] [CrossRef] [PubMed]
- Buchard, V.; da Silva, A.M.; Randles, C.A.; Colarco, P.; Ferrare, R.; Hair, J.; Hostetler, C.; Tackett, J.; Winker, D. Evaluation of the Surface PM2.5 in Version 1 of the NASA MERRA Aerosol Reanalysis over the United States. Atmos. Environ. 2016, 125, 100–111. [Google Scholar] [CrossRef]
- Giglio, L.; Boschetti, L.; Roy, D.P.; Humber, M.L.; Justice, C.O. The Collection 6 MODIS Burned Area Mapping Algorithm and Product. Remote Sens. Environ. 2018, 217, 72–85. [Google Scholar] [CrossRef]
- NASA_FIRMS MODIS Collection 61 NRT Hotspot/Active Fire Detections MCD14DL Distributed from NASA FIRMS. 2021. Available online: https://Earthdata.Nasa.Gov/Firms (accessed on 15 October 2020).
- Australian Bureau of Statistics Regional Population. Available online: https://www.abs.gov.au/statistics/people/population/regional-population/latest-release (accessed on 25 October 2022).
- Bureau of Meteorology Gridded Climatology Data. Available online: http://www.bom.gov.au/climate/averages/climatology/gridded-data-info/gridded_datasets_summary.shtml (accessed on 15 October 2020).
- Muñoz Sabater, J. (2019): ERA5-Land Hourly Data from 1950 to Present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). Available online: https://cds.climate.copernicus.eu/datasets/reanalysis-era5-land?tab=overview (accessed on 15 October 2020).
- Beguería, S.; Vicente-Serrano, S.M.; Reig, F.; Latorre, B. Standardized Precipitation Evapotranspiration Index (SPEI) Revisited: Parameter Fitting, Evapotranspiration Models, Tools, Datasets and Drought Monitoring. Int. J. Climatol. 2014, 34, 3001–3023. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef]
- Beguería, S.; Vicente-Serrano, S.M. SPEI: Calculation of the Standardized Precipitation-Evapotranspiration Index. Available online: https://spei.csic.es (accessed on 15 September 2024).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018. [Google Scholar]
- Wright, M.N.; Ziegler, A. Ranger: A Fast Implementation of Random Forests for High Dimensional Data in C++ and R. J. Stat. Softw. 2017, 77, 1–17. [Google Scholar] [CrossRef]
- Wager, S.; Hastie, T.; Efron, B. Confidence Intervals for Random Forests: The Jackknife and the Infinitesimal Jackknife. J. Mach. Learn. Res. 2014, 15, 1625. [Google Scholar]
- Kuhn, M. Building Predictive Models in R Using the Caret Package. J. Stat. Softw. 2008, 28, 1–26. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-Learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Casciaro, G.; Cavaiola, M.; Mazzino, A. Calibrating the CAMS European Multi-Model Air Quality Forecasts for Regional Air Pollution Monitoring. Atmos. Environ. 2022, 287, 119259. [Google Scholar] [CrossRef]
- Van Donkelaar, A.; Hammer, M.S.; Bindle, L.; Brauer, M.; Brook, J.R.; Garay, M.J.; Hsu, N.C.; Kalashnikova, O.V.; Kahn, R.A.; Lee, C.; et al. Monthly Global Estimates of Fine Particulate Matter and Their Uncertainty. Environ. Sci. Technol. 2021, 55, 15287–15300. [Google Scholar] [CrossRef]
- Inness, A.; Ades, M.; Agustí-Panareda, A.; Barré, J.; Benedictow, A.; Blechschmidt, A.-M.; Dominguez, J.J.; Engelen, R.; Eskes, H.; Flemming, J.; et al. The CAMS Reanalysis of Atmospheric Composition. Atmos. Chem. Phys. 2019, 19, 3515–3556. [Google Scholar] [CrossRef]
- Broome, R.A.; Powell, J.; Cope, M.E.; Morgan, G.G. The Mortality Effect of PM2.5 Sources in the Greater Metropolitan Region of Sydney, Australia. Environ. Int. 2020, 137, 105429. [Google Scholar] [CrossRef]
- Hertzog, L.; Morgan, G.G.; Yuen, C.; Gopi, K.; Pereira, G.F.; Johnston, F.H.; Cope, M.; Chaston, T.B.; Vyas, A.; Vardoulakis, S.; et al. Mortality Burden Attributable to Exceptional PM2.5 Air Pollution Events in Australian Cities: A Health Impact Assessment. Heliyon 2024, 10, e24532. [Google Scholar] [CrossRef]
- Victoria. Department of Sustainability and Environment The Victorian Great Divide Fires 2006-07/A Narrative Prepared by: David Flinn, Kevin Wareing and David Wadsley for Fire and Emergency Management, Department of Sustainability and Environment. Available online: https://nla.gov.au/nla.cat-vn4668582 (accessed on 28 October 2024).
- Reisen, F.; Meyer, C.P.M.; Keywood, M.D. Impact of Biomass Burning Sources on Seasonal Aerosol Air Quality. Atmos. Environ. 2013, 67, 437–447. [Google Scholar] [CrossRef]
- Johnston, F.H.; Hanigan, I.C.; Henderson, S.B.; Morgan, G.G. Evaluation of Interventions to Reduce Air Pollution from Biomass Smoke on Mortality in Launceston, Australia: Retrospective Analysis of Daily Mortality, 1994-2007. BMJ 2013, 346, e8446. [Google Scholar] [CrossRef]
- Jones, P.J.; Furlaud, J.M.; Williamson, G.J.; Johnston, F.H.; Bowman, D.M.J.S. Smoke Pollution Must Be Part of the Savanna Fire Management Equation: A Case Study from Darwin, Australia. Ambio 2022, 51, 2214–2226. [Google Scholar] [CrossRef]
- Borchers-Arriagada, N.; Bowman, D.M.J.S.; Price, O.; Palmer, A.J.; Samson, S.; Clarke, H.; Sepulveda, G.; Johnston, F.H. Smoke Health Costs and the Calculus for Wildfires Fuel Management: A Modelling Study. Lancet Planet. Health 2021, 5, e608–e619. [Google Scholar] [CrossRef]
- Borchers-Arriagada, N.; Palmer, A.J.; Bowman, D.M.J.S.; Williamson, G.J.; Johnston, F.H. Health Impacts of Ambient Biomass Smoke in Tasmania, Australia. Int. J. Environ. Res. Public Health 2020, 17, 3264. [Google Scholar] [CrossRef] [PubMed]
- Hanigan, I.C.; Broome, R.A.; Chaston, T.B.; Cope, M.; Dennekamp, M.; Heyworth, J.S.; Heathcote, K.; Horsley, J.A.; Jalaludin, B.; Jegasothy, E.; et al. Avoidable Mortality Attributable to Anthropogenic Fine Particulate Matter (Pm2.5) in Australia. Int. J. Environ. Res. Public Health 2021, 18, 254. [Google Scholar] [CrossRef] [PubMed]
- Bi, J.; Wildani, A.; Chang, H.H.; Liu, Y. Incorporating Low-Cost Sensor Measurements into High-Resolution PM2.5 Modeling at a Large Spatial Scale. Environ. Sci. Technol. 2020, 54, 2152–2162. [Google Scholar] [CrossRef] [PubMed]
- Pu, Q.; Yoo, E.H. A Gap-Filling Hybrid Approach for Hourly PM2.5 Prediction at High Spatial Resolution from Multi-Sourced AOD Data. Environ. Pollut. 2022, 315, 120419. [Google Scholar] [CrossRef]
- Pu, Q.; Yoo, E.H. Ground PM2.5 Prediction Using Imputed MAIAC AOD with Uncertainty Quantification. Environ. Pollut. 2021, 274, 116574. [Google Scholar] [CrossRef]
- Boulter, P.; Cope, M.; Hanigan, I.; Chaston, T.; Morgan, G.; Kulkarni, K.; Noonan, J.; Vander Hoorn, S. Towards the Regulation of Non-Road Diesel Emissions in Australia—A National Impact Pathway Model. Air Qual. Clim. Change 2023, 57, 16–23. [Google Scholar]
- Di, Q.; Amini, H.; Shi, L.; Kloog, I.; Silvern, R.; Kelly, J.; Sabath, M.B.; Choirat, C.; Koutrakis, P.; Lyapustin, A.; et al. An Ensemble-Based Model of PM2.5 Concentration across the Contiguous United States with High Spatiotemporal Resolution. Environ. Int. 2019, 130, 104909. [Google Scholar] [CrossRef]
- de Hoogh, K.; Héritier, H.; Stafoggia, M.; Künzli, N.; Kloog, I. Modelling Daily PM2.5 Concentrations at High Spatio-Temporal Resolution across Switzerland. Environ. Pollut. 2018, 233, 1147–1154. [Google Scholar] [CrossRef]
- Huang, C.; Hu, J.; Xue, T.; Xu, H.; Wang, M. High-Resolution Spatiotemporal Modeling for Ambient PM2.5Exposure Assessment in China from 2013 to 2019. Environ. Sci. Technol. 2021, 55, 2152–2162. [Google Scholar] [CrossRef]
- Aguilera, R.; Corringham, T.; Gershunov, A.; Benmarhnia, T. Wildfire Smoke Impacts Respiratory Health More than Fine Particles from Other Sources: Observational Evidence from Southern California. Nat. Commun. 2021, 12, 1493. [Google Scholar] [CrossRef]
- Raffuse, S.; Neill, S.O.; Schmidt, R. A Model for Rapid Wildfire Smoke Exposure Estimates Using Routinely-Available Data—Rapidfire v0.1.3. EGUsphere 2023, 1–26. [Google Scholar] [CrossRef]
State/Territory | PM10 | PM2.5 | PM2.5 (Including Imputed Values) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
N Sites | N Obs | p50 | p5–p95 | N Sites | N Obs | p50 | p5–p95 | N Sites | N Obs | p50 | p5–p95 | |
ACT | 3 | 8236 | 9.77 | 3–25.5 | 3 | 8073 | 5.43 | 1.6–20.2 | 3 | 10,492 | 5.33 | 1.7–19.4 |
NSW | 84 | 193,291 | 16.03 | 5.7–38 | 84 | 130,899 | 6.13 | 1.4–16.4 | 84 | 195,390 | 6.11 | 1.9–15.2 |
NT | 3 | 6949 | 17.66 | 6.9–40.2 | 3 | 6948 | 6.06 | 0.9–22.6 | 3 | 6953 | 6.06 | 0.9–22.6 |
QLD | 31 | 72,611 | 14.78 | 6.4–32.9 | 31 | 56,639 | 5.00 | 1.7–13.2 | 31 | 73,027 | 5.33 | 1.9–12.9 |
SA | 8 | 11,556 | 17.25 | 8.1–36.3 | 8 | 15,195 | 6.50 | 3.1–12 | 8 | 16,337 | 6.35 | 3–11.9 |
TAS | 1 | 2043 | 14.30 | 7.3–33.9 | 35 | 111,279 | 2.70 | 0–17.4 | 35 | 112,635 | 2.80 | 0–17.3 |
VIC | 9 | 40,262 | 15.71 | 7.6–34.9 | 13 | 28,159 | 5.71 | 1.9–14.4 | 13 | 52,285 | 6.05 | 2.5–13.9 |
WA | 8 | 33,887 | 15.65 | 8–30.7 | 8 | 37,694 | 7.20 | 3.8–14 | 8 | 44,307 | 7.25 | 3.9–14 |
National | 147 | 368,835 | 15.58 | 6.1–35.9 | 185 | 394,886 | 5.29 | 0.9–15.8 | 185 | 511,426 | 5.56 | 1.1–15 |
Year | (95 Pct) | (2SD Remainder) | (95 Pct + 2SD Remainder) | |||
---|---|---|---|---|---|---|
# of Extreme Pollution Days (Mean) | # of Extreme Pollution Days (Popw Mean) | # of Extreme Pollution Days (Mean) | # of Extreme Pollution Days (Popw Mean) | # of Extreme Pollution Days (Mean) | # of Extreme Pollution Days (Popw Mean) | |
2001 | 9.6 | 13.2 | 13.2 | 15.0 | 14.0 | 16.5 |
2002 | 8.9 | 22.6 | 12.7 | 23.3 | 13.1 | 26.3 |
2003 | 6.1 | 22.0 | 8.1 | 23.2 | 8.5 | 25.1 |
2004 | 6.7 | 9.8 | 8.5 | 10.8 | 9.3 | 12.5 |
2005 | 2.9 | 7.6 | 4.9 | 10.2 | 5.3 | 11.4 |
2006 | 7.8 | 15.1 | 11.0 | 19.1 | 11.5 | 19.9 |
2007 | 5.5 | 7.9 | 8.0 | 9.8 | 8.5 | 11.1 |
2008 | 2.8 | 4.9 | 4.1 | 6.9 | 4.4 | 7.5 |
2009 | 8.4 | 22.0 | 12.4 | 25.4 | 12.8 | 26.9 |
2010 | 2.6 | 5.7 | 4.0 | 8.9 | 4.2 | 9.6 |
2011 | 16.9 | 10.3 | 22.8 | 14.2 | 23.4 | 15.1 |
2012 | 18.7 | 9.2 | 23.4 | 12.7 | 24.5 | 13.7 |
2013 | 6.6 | 13.1 | 9.0 | 15.6 | 9.6 | 17.4 |
2014 | 6.9 | 10.8 | 9.6 | 14.0 | 10.2 | 15.3 |
2015 | 6.4 | 9.6 | 10.2 | 13.2 | 10.6 | 14.2 |
2016 | 2.9 | 11.1 | 4.5 | 12.7 | 4.7 | 14.2 |
2017 | 5.9 | 16.0 | 8.5 | 17.0 | 8.7 | 19.1 |
2018 | 6.8 | 16.3 | 8.8 | 17.5 | 9.4 | 19.6 |
2019 | 15.8 | 38.5 | 18.9 | 40.2 | 20.0 | 43.6 |
2020 (*) | 5.8 | 18.5 | 6.4 | 19.3 | 6.9 | 20.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borchers-Arriagada, N.; Morgan, G.G.; Van Buskirk, J.; Gopi, K.; Yuen, C.; Johnston, F.H.; Guo, Y.; Cope, M.; Hanigan, I.C. Daily PM2.5 and Seasonal-Trend Decomposition to Identify Extreme Air Pollution Events from 2001 to 2020 for Continental Australia Using a Random Forest Model. Atmosphere 2024, 15, 1341. https://doi.org/10.3390/atmos15111341
Borchers-Arriagada N, Morgan GG, Van Buskirk J, Gopi K, Yuen C, Johnston FH, Guo Y, Cope M, Hanigan IC. Daily PM2.5 and Seasonal-Trend Decomposition to Identify Extreme Air Pollution Events from 2001 to 2020 for Continental Australia Using a Random Forest Model. Atmosphere. 2024; 15(11):1341. https://doi.org/10.3390/atmos15111341
Chicago/Turabian StyleBorchers-Arriagada, Nicolas, Geoffrey G. Morgan, Joseph Van Buskirk, Karthik Gopi, Cassandra Yuen, Fay H. Johnston, Yuming Guo, Martin Cope, and Ivan C. Hanigan. 2024. "Daily PM2.5 and Seasonal-Trend Decomposition to Identify Extreme Air Pollution Events from 2001 to 2020 for Continental Australia Using a Random Forest Model" Atmosphere 15, no. 11: 1341. https://doi.org/10.3390/atmos15111341