ECMWF Lightning Forecast in Mainland Portugal during Four Fire Seasons
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Area
2.2. Lightning Data
2.2.1. Lightning Forecast Data
2.2.2. Lightning Observation
2.3. Statistical Analysis: Data Processing
2.4. Meteorological Data
3. Results
3.1. Statistical Analysis
3.2. Lightning Spatial Distribution and Associated Weather Pattern
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dupuy, J.; Fargeon, H.; Martin-StPaul, N.; Pimont, F.; Ruffault, J.; Guijarro, M.; Hernando, C.; Madrigal, J.; Fernandes, P. Climate Change Impact on Future Wildfire Danger and Activity in Southern Europe: A Review. Ann. For. Sci. 2020, 77, 35. [Google Scholar] [CrossRef]
- Turco, M.; Rosa-Cánovas, J.J.; Bedia, J.; Jerez, S.; Montávez, J.P.; Llasat, M.C.; Provenzale, A. Exacerbated Fires in Mediterranean Europe due to Anthropogenic Warming Projected with Non-Stationary Climate-Fire Models. Nat. Commun. 2018, 9, 3821. [Google Scholar] [CrossRef] [PubMed]
- Couto, F.T.; Santos, F.L.M.; Campos, C.; Andrade, N.; Purificação, C.; Salgado, R. Is Portugal Starting to Burn All Year Long? The Transboundary Fire in January 2022. Atmosphere 2022, 13, 1677. [Google Scholar] [CrossRef]
- San-Miguel-Ayanz, J.; Durrant, T.; Boca, R.; Maianti, P.; Libertà, G.; Oom, D.; Branco, A.; De Rigo, D.; Ferrari, D.; Roglia, E.; et al. Advance Report on Forest Fires in Europe, Middle East and North Africa 2022; Publications Office of the European Union: Luxembourg, 2023; Available online: https://op.europa.eu/en/publication-detail/-/publication/500b8dfa-de5e-11ed-a05c-01aa75ed71a1/language-en (accessed on 18 December 2023).
- Linley, G.D.; Jolly, C.J.; Doherty, T.S.; Geary, W.L.; Armenteras, D.; Belcher, C.M.; Bird, R.B.; Duane, A.; Fletcher, M.; Giorgis, M.A.; et al. What Do You Mean, “Megafire”? Glob. Ecol. Biogeogr. 2022, 31, 1906–1922. [Google Scholar] [CrossRef]
- Guerreiro, J.; Fonseca, C.; Salgueiro, A.; Fernandes, P.; Lopez Iglésias, E.; de Neufville, R.; Mateus, F.; Castellnou Ribau, M.; Sande Silva, J.; Moura, J.M.; et al. Análise e Apuramento dos Factos Relativos aos Incêndios que Ocorreram em Pedrógão Grande, Castanheira de Pera, Ansião, Alvaiázere, Figueiró dos Vinhos, Arganil, Góis, Penela, Pampilhosa da Serra, Oleiros e Sertã, entre 17 e 24 de junho de 2017—Relatório Final; Comissão Técnica Independente (CTI), Assembleia da República: Lisbon, Portugal, 2017. [Google Scholar]
- Guerreiro, J.; Fonseca, C.; Salgueiro, A.; Fernandes, P.; Lopez Iglésias, E.; de Neufville, R.; Mateus, F.; Castellnou Ribau, M.; Sande Silva, J.; Moura, J.M.; et al. Avaliação dos Incêndios Ocorridos Entre 14 e 16 de outubro de 2017 em Portugal Continental. Relatório Final; Comissão Técnica Independente (CTI); Assembleia da República: Lisbon, Portugal, 2018. [Google Scholar]
- Couto, F.T.; Iakunin, M.; Salgado, R.; Pinto, P.; Viegas, T.; Pinty, J.-P. Lightning Modelling for the Research of Forest Fire Ignition in Portugal. Atmos. Res. 2020, 242, 104993. [Google Scholar] [CrossRef]
- Campos, C.; Couto, F.T.; Filippi, J.-B.; Baggio, R.; Salgado, R. Modelling Pyro-Convection Phenomenon during a Mega-Fire Event in Portugal. Atmos. Res. 2023, 290, 106776. [Google Scholar] [CrossRef]
- Couto, F.T.; Filippi, J.-B.; Baggio, R.; Campos, C.; Salgado, R. Numerical Investigation of the Pedrógão Grande Pyrocumulonimbus Using a Fire to Atmosphere Coupled Model. Atmos. Res. 2024, 299, 107223. [Google Scholar] [CrossRef]
- Sirca, C.; Salis, M.; Arca, B.; Duce, P.; Spano, D. Assessing the Performance of Fire Danger Indexes in a Mediterranean Area. iForest 2018, 11, 563–571. [Google Scholar] [CrossRef]
- Meddour-Sahar, O.; Meddour, R.; Leone, V.; Lovreglio, R.; Derridj, A. Analysis of Forest Fires Causes and Their Motivations in Northern Algeria: The Delphi Method. iForest 2013, 6, 247–254. [Google Scholar] [CrossRef]
- Curt, T.; Borgniet, L.; Bouillon, C. Wildfire Frequency Varies with the Size and Shape of Fuel Types in Southeastern France: Implications for Environmental Management. J. Environ. Manag. 2013, 117, 150–161. [Google Scholar] [CrossRef]
- Bento-Gonçalves, A. Os Incêndios Florestais Em Portugal; Fundação Francisco Manuel dos Santos: Lisbon, Portugal, 2021. [Google Scholar]
- Fernandes, P.M.; Santos, J.A.; Castedo-Dorado, F.; Almeida, R. Fire from the Sky in the Anthropocene. Fire 2021, 4, 13. [Google Scholar] [CrossRef]
- Moreira, N.; Barroso, C.; Bugalho, L.; Correia, S.; Gouveia, C.; Lopes, M.J.; Marques, P.; Pinto, P.; Ramos, R.; Silva, A.; et al. Condições Meteorológicas Relativas ao Incêndio na Lousã em 11 de Julho de 2020; Relatório Interno, IPMA: Lisbon, Portugal, 2020; Available online: https://www.ipma.pt/pt/media/noticias/news.detail.jsp?f=/pt/media/noticias/arquivo/2020/incendiolousa.html (accessed on 19 December 2023).
- Ramos, A.M.; Ramos, R.; Sousa, P.; Trigo, R.M.; Janeira, M.; Prior, V. Cloud to Ground Lightning Activity over Portugal and Its Association with Circulation Weather Types. Atmos. Res. 2011, 101, 84–101. [Google Scholar] [CrossRef]
- Rodrigues, M.; Jiménez-Ruano, A.; Gelabert, P.J.; de Dios, V.R.; Torres, L.; Ribalaygua, J.; Vega-García, C. Modelling the Daily Probability of Lightning-Caused Ignition in the Iberian Peninsula. Int. J. Wildland Fire 2023, 32, 351–362. [Google Scholar] [CrossRef]
- Lopez, P. A Lightning Parameterization for the ECMWF Integrated Forecasting System. Mon. Weather Rev. 2016, 144, 3057–3075. [Google Scholar] [CrossRef]
- Krause, A.; Kloster, S.; Wilkenskjeld, S.; Paeth, H. The Sensitivity of Global Wildfires to Simulated Past, Present, and Future Lightning Frequency. J. Geophys. Res. Biogeosci. 2014, 119, 312–322. [Google Scholar] [CrossRef]
- Brâncuș, M.; Burada, C.; Drîgă, F. The impact of dry thunderstorms in Southwestern Romania. In Proceedings of the 11th European Conference on Severe Storms, Bucharest, Romania, 8–12 May 2023. [Google Scholar] [CrossRef]
- Rorig, M.L.; McKay, S.J.; Ferguson, S.A.; Werth, P. Model-Generated Predictions of Dry Thunderstorm Potential. J. Appl. Meteorol. Climatol. 2007, 46, 605–614. [Google Scholar] [CrossRef]
- Giannaros, T.M.; Papavasileiou, G.; Lagouvardos, K.; Kotroni, V.; Dafis, S.; Karagiannidis, A.; Dragozi, E. Meteorological Analysis of the 2021 Extreme Wildfires in Greece: Lessons Learned and Implications for Early Warning of the Potential for Pyroconvection. Atmosphere 2022, 13, 475. [Google Scholar] [CrossRef]
- Mostajabi, A.; Finney, D.L.; Rubinstein, M.; Rachidi, F. Nowcasting Lightning Occurrence from Commonly Available Meteorological Parameters Using Machine Learning Techniques. NPJ Clim. Atmos. Sci. 2019, 2, 41. [Google Scholar] [CrossRef]
- Blouin, K.D.; Flannigan, M.D.; Wang, X.; Kochtubajda, B. Ensemble Lightning Prediction Models for the Province of Alberta, Canada. Int. J. Wildland Fire 2016, 25, 421–432. [Google Scholar] [CrossRef]
- Lac, C.; Chaboureau, J.-P.; Masson, V.; Pinty, J.-P.; Tulet, P.; Escobar, J.; Leriche, M.; Barthe, C.; Aouizerats, B.; Augros, C.; et al. Overview of the Meso-NH Model Version 5.4 and Its Applications. Geosci. Model Dev. 2018, 11, 1929–1969. [Google Scholar] [CrossRef]
- Barthe, C.; Chong, M.; Pinty, J.-P.; Bovalo, C.; Escobar, J. CELLS V1.0: Updated and Parallelized Version of an Electrical Scheme to Simulate Multiple Electrified Clouds and Flashes over Large Domains. Geosci. Model Dev. 2012, 5, 167–184. [Google Scholar] [CrossRef]
- Skamarock, C.; Klemp, B.; Dudhia, J.; Gill, O.; Liu, Z.; Berner, J.; Wang, W.; Powers, G.; Duda, G.; Barker, D.; et al. A Description of the Advanced Research WRF Model Version 4. In NCAR Technical Note ncar/tn-556+ str; National Center for Atmospheric Research: Boulder, CO, USA, 2019. [Google Scholar] [CrossRef]
- Fierro, A.O.; Mansell, E.R.; MacGorman, D.R.; Ziegler, C.L. The Implementation of an Explicit Charging and Discharge Lightning Scheme within the WRF-ARW Model: Benchmark Simulations of a Continental Squall Line, a Tropical Cyclone, and a Winter Storm. Mon. Weather Rev. 2013, 141, 2390–2415. [Google Scholar] [CrossRef]
- Price, C.; Rind, D. A Simple Lightning Parameterization for Calculating Global Lightning Distributions. J. Geophys. Res. Atmos. 1992, 97, 9919–9933. [Google Scholar] [CrossRef]
- Yair, Y.; Lynn, B.; Price, C.; Kotroni, V.; Lagouvardos, K.; Morin, E.; Mugnai, A.; Llasat, M.D.C. Predicting the Potential for Lightning Activity in Mediterranean Storms Based on the Weather Research and Forecasting (WRF) Model Dynamic and Microphysical Fields. J. Geophys. Res. 2010, 115, D04205. [Google Scholar] [CrossRef]
- McCaul, E.W.; Goodman, S.J.; LaCasse, K.M.; Cecil, D.J. Forecasting Lightning Threat Using Cloud-Resolving Model Simulations. WAF 2009, 24, 709–729. [Google Scholar] [CrossRef]
- Bright, D.R.; Wandishin, M.S.; Jewell, R.E.; Weiss, S.J. A Physically Based Parameter for Lightning Prediction and Its Calibration in Ensemble Forecasts. In Conference on Meteorological Applications of Lightning Data; American Meteorological Society: Boston, MA, USA, 2005. [Google Scholar]
- Federico, S.; Torcasio, R.C.; Lagasio, M.; Lynn, B.H.; Puca, S.; Dietrich, S. A Year-Long Total Lightning Forecast over Italy with a Dynamic Lightning Scheme and WRF. Remote Sens. 2022, 14, 3244. [Google Scholar] [CrossRef]
- Lynn, B.H.; Yair, Y.; Price, C.; Kelman, G.; Clark, A.J. Predicting Cloud-To-Ground and Intracloud Lightning in Weather Forecast Models. WAF 2012, 27, 1470–1488. [Google Scholar] [CrossRef]
- Tsonevsky, I. 45r1 New Parameters: Lightning Flash Density—Forecast User. ECMWF Confluence Wiki. Available online: https://confluence.ecmwf.int/pages/viewpage.action?pageId=106611144 (accessed on 19 December 2023).
- Rio, J. Probabilidade de Ocorrência de Trovoada Seca; Nota Técnica DivMV 08/2020; IPMA: Lisbon, Portugal, 2020. [Google Scholar]
- IPMA. Relatório Condições Meteorológicas Associadas ao Incêndio de Pedrógão Grande de 17 Junho 2017; IPMA: Lisbon, Portugal, 2017; Available online: https://www.ipma.pt/export/sites/ipma/bin/docs/relatorios/meteorologia/20170630-relatorio-pedrogaogrande-ipma-completo.pdf (accessed on 19 December 2023).
- IPMA. Rede de Detetores de Trovoadas no Continente; IPMA: Lisbon, Portugal, 2020; Available online: https://www.ipma.pt/bin/docs/organizacionais/POSEUR-02-1708-FC-000035.pdf (accessed on 19 December 2023).
- Correia, S. Análise de Padrões Temporais e Espaciais de Descargas Elétricas Atmosféricas em Portugal Continental. Master’s Dissertation, University of Lisbon, Lisbon, Portugal, 2012. [Google Scholar]
- Chaudhary, S.; Dhanya, C.T. Expanding Contingency Table for Intensity and Frequency Based “True” Detection of Rainy Events in Precipitation Datasets. Atmos. Res. 2020, 244, 105119. [Google Scholar] [CrossRef]
- Umar, M.; Latif, A.; Mahmood, S.A. Comparative Study of Performance of Real-Time Satellite-Derived Rainfall in Swat Catchment. Arab. J. Geosci. 2017, 10, 126. [Google Scholar] [CrossRef]
- Sarkar, R.; Mukhopadhyay, P.; Bechtold, P.; Lopez, P.; Pawar, S.D.; Chakravarty, K. Evaluation of ECMWF Lightning Flash Forecast over Indian Subcontinent during MAM 2020. Atmosphere 2022, 13, 1520. [Google Scholar] [CrossRef]
- Dafis, S.; Fierro, A.; Giannaros, T.M.; Kotroni, V.; Lagouvardos, K.; Mansell, E. Performance Evaluation of an Explicit Lightning Forecasting System. J. Geophys. Res. Atmos. 2018, 123, 5130–5148. [Google Scholar] [CrossRef]
- Xu, L.; Chen, S.; Yao, W. Evaluation of Lightning Prediction by an Electrification and Discharge Model in Long-Term Forecasting Experiments. Adv. Meteorol. 2022, 2022, e4583030. [Google Scholar] [CrossRef]
- Giannaros, T.M.; Kotroni, V.; Lagouvardos, K. Predicting Lightning Activity in Greece with the Weather Research and Forecasting (WRF) Model. Atmos. Res. 2015, 156, 1–13. [Google Scholar] [CrossRef]
- Giannaros, T.M.; Lagouvardos, K.; Kotroni, V. Performance Evaluation of an Operational Lightning Forecasting System in Europe. Nat. Hazards 2016, 85, 1–18. [Google Scholar] [CrossRef]
- Ebert, E.E. Fuzzy Verification of High-Resolution Gridded Forecasts: A Review and Proposed Framework. Meteorol. Appl. 2008, 15, 51–64. [Google Scholar] [CrossRef]
- Gold, S.; White, E.; Roeder, W.; McAleenan, M.; Kabban, C.S.; Ahner, D. Probabilistic Contingency Tables: An Improvement to Verify Probability Forecasts. WAF 2019, 35, 609–621. [Google Scholar] [CrossRef]
- Met Office’s Website. Digital Library and Archive. Met Office. Available online: https://digital.nmla.metoffice.gov.uk/ (accessed on 19 December 2023).
- ECMWF. Available online: https://www.ecmwf.int/ (accessed on 20 December 2023).
- Instituto Português do Mar e da Atmosfera. IPMA. Available online: https://www.ipma.pt/ (accessed on 19 December 2023).
- Brown, D.P. Subtropical Storm Alpha—Tropical Cyclone Report; NOAA: Washington, DC, USA, 2021. [Google Scholar]
- Bechtold, P.; Semane, N.; Lopez, P.; Chaboureau, J.-P.; Beljaars, A.; Bormann, N. Representing Equilibrium and Nonequilibrium Convection in Large-Scale Models. J. Atmos. Sci. 2014, 71, 734–753. [Google Scholar] [CrossRef]
- Hoinka, K.P.; Castro, M. The Iberian Peninsula Thermal Low. Q. J. R. Meteorol. 2003, 129, 1491–1511. [Google Scholar] [CrossRef]
- Royé, D.; Lorenzo, N.; Martin-Vide, J. Spatial–Temporal Patterns of Cloud-To-Ground Lightning over the Northwest Iberian Peninsula during the Period 2010–2015. Nat. Hazards 2018, 92, 857–884. [Google Scholar] [CrossRef]
- IPMA. Boletim Climatológico de Setembro de 2020; IPMA: Lisbon, Portugal, 2020; Available online: https://www.ipma.pt/pt/publicacoes/boletins.jsp?cmbDep=cli&cmbTema=pcl&cmbAno=2020&idDep=cli&idTema=pcl&curAno=2020 (accessed on 19 December 2023).
- Owens, B. ECMWF Confluence Wiki. Section 8.1.13 Lightning. Available online: https://confluence.ecmwf.int/display/FUG/Section+8.1.13+Lighning (accessed on 19 December 2023).
Forecast | Observation | ||
YES | NO | ||
YES | A | B | |
NO | C | D |
Statistical Indices | Definition | Description |
---|---|---|
BIAS | The frequency bias (BIAS) is the ratio of the number of occurrences predicted (A+B) and the number of observed occurrences (A+C). This parameter reveals if the model is underforecast or overforecast [49]. | |
Success rate | H is a success rate, calculated as the fraction of observed events that were correctly predicted. | |
False alarm rate | False alarm rate (F) is calculated as the fraction of false alarms on all non-occurrences. | |
Threat score | Critical success rate or threat score (TS) is a degree measure of forecast correctness of a given event, calculated as the fraction of correctly predicted events out of all predicted or observed events. This score does not account for correct negatives, so it calculated the fraction of correctly predicted events compared to the observed ones [49]. | |
Equitable threat score | Equitable threat score (ETS) is calculated as TS but in which a value, Arandom, is subtracted from the numerator and denominator, which represents the correct number predictions of the event occurrence that could be achieved “by luck” only based on knowledge of climatology. Arandom can be calculated by: | |
True skill score | Hanssen and Kuipper index or true skill score (HK) is a rate of true success, given by the difference between the success rate and the false alarm rate. |
Forecast | Observation | ||
YES | NO | ||
YES | 1318 | 1529 | |
NO | 966 | 54,747 |
Forecast | Observation | ||
YES | NO | ||
YES | 2501 | 4196 | |
NO | 2573 | 224,970 |
Horizontal Resolution | ||
---|---|---|
Indices | 1° | 0.5° |
BIAS | 1.25 | 1.31 |
H | 0.577 | 0.49 |
F | 0.027 | 0.018 |
TS | 0.346 | 0.269 |
A_random | 111.041 | 145.067 |
ETS | 0.326 | 0.258 |
HK | 0.549 | 0.475 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Campos, C.; Couto, F.T.; Santos, F.L.M.; Rio, J.; Ferreira, T.; Salgado, R. ECMWF Lightning Forecast in Mainland Portugal during Four Fire Seasons. Atmosphere 2024, 15, 156. https://doi.org/10.3390/atmos15020156
Campos C, Couto FT, Santos FLM, Rio J, Ferreira T, Salgado R. ECMWF Lightning Forecast in Mainland Portugal during Four Fire Seasons. Atmosphere. 2024; 15(2):156. https://doi.org/10.3390/atmos15020156
Chicago/Turabian StyleCampos, Cátia, Flavio T. Couto, Filippe L. M. Santos, João Rio, Teresa Ferreira, and Rui Salgado. 2024. "ECMWF Lightning Forecast in Mainland Portugal during Four Fire Seasons" Atmosphere 15, no. 2: 156. https://doi.org/10.3390/atmos15020156
APA StyleCampos, C., Couto, F. T., Santos, F. L. M., Rio, J., Ferreira, T., & Salgado, R. (2024). ECMWF Lightning Forecast in Mainland Portugal during Four Fire Seasons. Atmosphere, 15(2), 156. https://doi.org/10.3390/atmos15020156